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1 Imntroduction

Given a finite undirected graph G with e edges, a labeling of G is a mapping
f from its vertex-set V(G) into a set N of integers. If f is a one-to-one
labeling of G, and f is a mapping from the edge-set E(G) onto a set N
of nonnegative integers given by f{u,v} = |f(u) — f(v)| then f is called
a graceful labeling (or B-labeling) of G if N = {1,2,...,e} (cf. [2], [4]).
Clearly, the most interesting question on graceful labehng is related with a
conjecture of Ringel [1] that the K341 can be decomposed into 2n+1 copies
of any tree with n edges. Ringel’s problem was strengthened by A. Kotzig
[1] which was subsequently transformed into a series of vertex labelings
problems by A. Rosa [2]. Another graph labeling is given by Graham and
Sloane [3] as follow: If f is a labeling such that N = Z, and f is a mapping
from E(G) onto N given by f{u,v} = f(u) + f(v) then f is a harmonious
labeling of G if N = Z..

The author recently introduced a new vertex labeling for graphs by let-
ting the labeling f of G, where N = {0,1} and the induced edge labeling
Ff{u,v} = |f(u) = f(v)|, N = {0,1}. The labeling is called cordial (hence-
forth the graph is called cordial) if the condition

lvp(1) —vr(0)] < 1, les(1) —ef(0)| <1 1)

is satisfied, where v;(i) and e;(¢), i = 0,1 is the number of vertices and
edges of G, respectively with label i. It has been shown that all trees are
cordial and the relation of this kind of labeling with graceful and harmo-
nious labelings has been investigated [5].

Consider now a labeling f of G where N = {0,1,...,k}, k < e and
the induced edge labeling f is given by f{u,v} = |f(u) — f(v), N =
{0,1,...,k}. We call such a labeling (k + 1)-equitable if the following
conditions are satisfied:

lofG@) —veG) S 1, les()) —esG)I <1, 45=0,1,....k  (2)

ARS COMBINATORIA 40(1995), pp. 279-286



where v¢(z) and ef(z), z =0,1,...,k is the number of vertices and edges
of G respectively with label z. Note that a 2-equitable labeling is cordial
and an (e + 1)-equitable labeling is graceful. Similarly, let f be the labeling
of Gand N ={0,1,...,k}, k < e and the induced edge labeling f{u,v} =
f(u) + f(v) mod (k + 1). Then f is called a (k + 1)-equitable additive
labeling of G if the conditions (2) above hold. Figure 1 gives equitable and
equitable additive labelings of some small trees with various values of k.
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Figure 1. k-equitable and k-equitable additive tree labellings

Let us begin with the following theorem.

280



Theorem 1. If all trees of order k + 1 are graceful, then all trees of order
(k + 1)-equitable.

Proof: Let Tk42 be any tree of order k+2. In any (k+2)-equitable labeling
of T2 we are allowed to repeat exactly one vertex label. In other words,
the vertex labels are {0,1,...,k} U {z}, 0 < £ < k and the induced edge
labels are 0,1,...,k. Consider any tree of order k + 2. Delete any edge
(u,v) where u is an end-vertex. By hypothesis, the new tree has a graceful
labeling. Let z be the label of the vertex v. If we restore the edge (u,v)
and label « also with z, we have a (k + 1)-equitable labeling of the original
tree.

The truth of the reverse statement of Theorem 1 would be an interesting
result. However, it is not clear whether (k + 1)-equitable labelings of all
trees of order k + 2 imply existence of graceful labelings of all trees of
order k + 1. This statement could be proved easily if one would shows
that in any (k + 1)-equitable labeling the induced zero edge label could be
generated on an arbitrary edge of the tree of order k + 2. The problem
has some resemblances with the zero vertex-label rotatability problem of
graceful trees [2], [6]. We could not find any counter examples for zero
edge-label rotatability for (k+ 1)-equitable labelings of trees of order k+-2.
From Theorem 1 and the arguments we see that the problem of equitable
labeling is just as difficult as that of graceful labeling. In this paper we give
some results on 3-equitable tree labeling.

2 Labeling trees with at most 4 end-vertices

In this section we will prove that all trees with fewer than 5 end-vertices
are 3-equitable. All trees with fewer than 5 end-vertices can be one of the
trees shown in Figure 2, where P, is a path with n vertices, ¢t(m, ¢,) and
t(m, g, 7, s) are star-like trees consisting of four disjoint paths of lengths m,
g, r and s. The t(m, g;;k, s) is a tree consisting of five edge disjoint paths
of lengths m, g, r, k and s (see Figure 2d). These trees have been shown
to be graceful in [4].

Before the main result of this paper, we illustrate the all 15 types of
3-equitable labelings with the special case where the trees are the paths P,.
Group I: n: 0 (mod 3)

Type 1. v(0) =v(1) =v(2), e(0) =e(1) =e(2) + 1

n=3 impossible

n==6 0-0-2-1-1-2 1-0-0-2-2-1

n=9 1-0-0-1-1-2-0-2-2 1-2-2-1-1-0-2-0-0
Type 2. v(0) = v(1) = v(2), e(0) = e(1) + 1 =¢e(2)

=3 impossible
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n==6 1-1-2-0-0-2 1-1-0-2-2-0
n=9 1-1-0-2-2-0-2-1-1 0-2-0-1-1-1-0-2-2

Type 3. v(0) = v(1) = v(2), ¢(0) + 1 = (1) = e(2)
n=3 0-2-0 2-01
n==6 1-2-0-0-2-1 0-2-1-1-0-2

Group II: n =1 (mod 3)
Type 4. v(0)=v(1)=v(2)-1, e(0)=e(l)=e(2)

n=1 2 cannot have 0 or 1 as an end label
n=4 2-2-0-0 0-2-2-1
n=7 0-2-2-1-1-0-2 1-0-2-2-2-0-1

Type 5. v(0) = v(1) — 1 = v(2), e(0) = e(1) = &(2)

1 1 cannot have 0 or 2 as an end label
4 1-1-0-2 1-1-2-0
7

n
n
n 2-0-1-1-1-2-0

Type 6. v(0) — 1 = v(1) = v(2), (0) = e(1) = ¢(2)
1 0 cannot have 1 or 2 as an end label

4 0-0-2-1 2-0-0-1

7 2-0-0-1-1-2-0 1-2-0-0-0-2-1

n
n
n

Group III: n =2 (mod 3)
Type 7. v(0) = v(1) =v(2) + 1, e(0) = e(1) = ¢(2) — 1

impossible
1-1-0-2-0 cannot have 2 as an end label
1-1-2-0-0-2-0-1 0-1-1-1-0-2-0-1

1 1-1-0-2-0-1-1-2-0-0-2

SS9 8Bs
B
= 00t N

Type 8. v(0) = v(1) = v(2) + 1, (0) = (1) — 1 = ¢(2)
n=2 0-1 cannot have 2 as an end label

n=5 0-1-1-0-2 1-2-0-0-1

n=28 1-0-0-2-0-1-1-2

Type 9. v(0) = v(1) = v(2) + 1, e(0) — 1 = ¢(1) = ¢(2)

n=2 impossible
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n=>5 1-1-2-0-0 1-1-0-0-2
n=2_8 1-1-0-2-2-0-0-1 0-0-2-0-1-1-1-2

Type 10. v(0) = v(1) + 1 =v(2), e(0) = e(1) = e(2) — 1

n=2 0-2 cannot have 1 as an end label
n=>5 1-0-2-2-0 1-2-0-0-2
n==8 1-0-0-2-0-2-2-1

Type 11. v(0) = v(1) + 1 = v(2), e(0) = e(1) — 1 = ¢(2)

n=2 impossible

n=>5 0-1-0-2-2 cannot have 1 as an end label
n=2_8 0-0-12-02-2-1 2-2-1-0-2-0-0-1
n=11 1-2-2-0-1-2-0-0-0-2-1

Type 12. v(0) = v(1) + 1 = v(2), e(0) — 1 = e(1) = e(2)

n=2 impossible
n=>5 1-0-0-2-2 1-2-2-0-0
=8 1-2-2-0-0-0-2-1 0-1-1-2-2-0-0-1

Type 13. v(0) + 1 = v(1) = v(2), e(0) = (1) = e(2) — 1

n=2 impossible

n=>5 1-1-2-0-2 cannot have 0 as an end label
n=3_§8 1-2-2-0-2-0-1-1 0-2-1-1-1-2-0-2
n=11 0-1-2-2-0-2-0-2-1-1

Type 14. v(0) +1 = (1) = v(2), e(0) = e(1) — 1 =¢(2)
n=2 1-2 cannot have 0 as an end label

n=>5 1-0-2-2-1 0-2-1-1-2

n=2_§8 1-1-2-2-1-0-2-0

Type 15. v(0) + 1 = v(1) = v(2), €(0) — 1 = e(1) = ¢(2)

n=2 impossible
n=>5 0-2-2-1-1 2-2-0-1-1
n=2=§8 1-1-2-2-0-0-2-1 2-2-0-1-1-1-2-0

Based on the above classification of 3-equitable labelings of trees we state
the following theorems.

Theorem 2. Except as noted in the above examples, every path Py has
a 3-equitable Iabeling of a prescribed type within the appropriate group,
which has an end label with prescribed value.
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Proof: We use induction on n, the above examples serving as basis. In
general, let a type within the appropriate group and a value for an end
label be prescribed. By induction hypothesis, P,—¢ has such a labeling.
We copy these labels for the first n — 6 vertices of P,. If the last vertex
of P,_g has label 0, we label the last vertices of P, 021120. If it is 1, we
use 102201. If it is 2, we use 201102. Clearly, the end labels are preserved.
Since each of v(0), v(1), v(2), €(0), e(1), and e(2) goes up by 2, the type is
also preserved. This completes the inductive arguments.

Theorem 3. Every tree with exactly three end vertices has a 3-equitable
labeling.

Proof: Such a tree consists of three paths coming together at a vertex »
(see Figure 2b). Let one of them be P,, and let the other two join up to form
P,.. Note that = > 1 and u belongs to both paths. Denote by v the vertex
on P, adjacent to u. In the most cases, our technique may be described as
“pinning the tail on the donkey”, or attaching P, to P, by identifying u.
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(In other cases, we glue the tail P, — {u} on P, by reconnecting u and v.)
We choose an appropriate 3-equitable labeling for P, and then one for P,
so that they agree on u. If they are chosen suitably, the identification will
induce a 3-equitable labeling for the tree. The verification are routine. We
first deal with the special case where two of the paths have only one edge
each. We take their union as P, and label its vertices 2, 0 and 1 in order.
We then use a Type 3, 6 or 10 labeling on P, — {u} according to whether
r= 0,1, or 2 (mod 3), in which v has the same label as u. Henceforth, we
may assume that n > 3 and r > 2.

If n = 0 (mod 3), we use a Type 1 labeling on P,. If » = 0 (mod 3),
we use a Type 3 labeling on P,. If r =1 (mod 3), we use a Type 6, 5 or
4 labeling on P; according to whether the label on u is 0,1, or 2. If r =2

(mod 3), we use a Type 10, 7, or 10 labeling on P. according to whether
the label on % is 0,1 or 2.

If n=1 (mod 3), we use a Type 4 labeling on P,. If r =0 (mod 3), we
use a Type 3 labeling on P, if the label on u is 2. If it is 0 or 1 we use
a Type 8 labeling on P.{U} in which v has the same label as . If r =1

(mod 3) we use a Type 6, 5, or 4 labeling on P, according to whether the
label on u is 0,1, 2. If » =2 (mod 3), we use a Type 8, 8 or 10 labeling on
P, according to whether the label on u is 0,1, or 2.

If n = 2 (mod 3), we use a Type 9 labeling on P,.. If r = 0 (mod 3),
we use a Type 3 labeling on P, if the label on » is 0 or 1. If it is 2, we
use a Type 10 labeling on P, — {u} in whlch the label on v is 1. If r -1

(mod 3), we use a Type 6, 5 or 4 labeling on P; according to whether the
label on u is 0,1 or 2. If r = 2 (mod 3), we use a Type 10 or 14 labeling on
P, according to whether the label on u is 0 or 1. If it is 2, we use a Type 4
labeling on P, — {u} in which the label on v is not 2. This completes the
proof of Theorem 3.

The next theorem deals with the 3-eguitable labelings of trees with exactly
four end vertices which are in, one of the forms shown in Figure 2 c and d.
The proof of this theorem follows similar lines as the Theorem 3 above and
all 15 3-equitable labeling types are to be used. The details will be given
elsewhere.

Theorem 4. Every tree with exactly four end vertices has a 3 -equitable
labeling.
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