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Abstract. For any double sequence (gx o) With gx o = 0, the “summatorial sequence”

(Phn) =Y (gr,n) isdefined by poo = 1 and prn = 30 0 S g aPhegom- If

Qkn = 0 fork < n—1 thenthere exists aunique sequence () satisfying the recurrence
Phin = 3 pu0 €/Ph—sins—1 fork < n. We apply this combinatorial recursion 1o certain
counting functions on finite posets. For example, given a set A of positive integers, let
Pk,n denote the number of unlabeled posets with npoints and exactly & antichains whose
cardinality belongs to A, and let g ,, denote the corresponding number of ordinally
indecomposable posets. Then (py,) is the summatorial sequence of (gxn). If2 € A
then (p;,) enjoys the above recurrence for ¥ < n. In particular, for fixed k, there
is a polynomial pi of degree k such that pxn = pi(n) for all n > k, and py, is
asymptotically equal to (”;l ) . For some special classes 4 and small k, we determine
the numbers ¢; and the polynomials p; explicitly. Moreover, we show that, at least
for small k, the remainder sequences pj , — px(n) satisfy certain Fibonacci recursions,
proving a conjecture of Culberson and Rawlins. Similar results are obtained for labeled
posets and for naturally ordered sets.

Introduction

The enumeration of all posets with a given finite number of points by means of a
reasonable explicit or recursive formula is still an open problem (for a survey and
recent numerical results, see [8]). However, the enumeration of finite posets with a
relatively small number of “doubletons™’, i. € . two-element antichains, has made
some progress in the last years. In [2] Culberson and Rawlins had discovered
that the numbers py,, of unlabeled posets with n points and k doubletons satisfy

a recursion of the form N

Pkn = E CjPk=jn—j-1
Jj=0

as long as k < n, while this recurrence formula fails for £ > n. The formula was
proved in [6] and [7], and it was shown that this phenomenon mainly relies on the
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fact that the corresponding numbers gy, of ordinally indecomposable posets (see
Section 2) are zero for k < n— 1, and that the computation of the numbers p;,,
may be reduced to that of the numbers gi,, (cf. Stanley [11]).

This observation suggests to consider such triangular double sequences in gen-
eral and to derive analogous recurrences for other types of counting functions on
finite posets. As the above formula shows, it suffices to know the diagonal se-
quences pyx and pi x+1 in order to compute the numbers c; and the values p; , for
alln> k. .

Many counting problems concerning antichains in finite posets may be attacked
by this method. For example, generalizing the situation of two-element antichains,
consider any set A of positive integers containing the number 2, and denote by
Dk,n the number of all unlabeled posets having exactly k antichains whose size
belongs to A. Then we are able to show that the numbers py, satisfy a recursion
of the above type, for k < n. After having developed the general machinery for
the aforementioned recurrences, it is not hard to find explicit expressions for p;
when k is small. It turns out that for fixed k and variable n > k,

Din = Pi(n)

where p;. is a polynomial of degree k with leading coefficient 1/k!. Similarly, we
shall see that for n > k, the corresponding numbers Py, of labeled posets may
be expressed as n! times a polynomial of degree k in the variable n, with leading
coefficient 1/(k!2%).

Although the polynomial values p(n) differ from the exact values py, for
k > m, it is possible to express the differences

djk = Peg—j-1 —Pi(k—j—1)

in terms of the numbers s;,m = ¢j+mm+1 and we have explicit formulae for these
numbers if 7 is small. This enables us to show that at least for j = 0 and j = 1
(and probably also for greater values of 7), the differences d;,; satisfy certain gen-
eralized Fibonacci recursions, confirming a conjecture of Culberson and Rawlins
[2] based on their numerical computations for small k.

At the end of the paper, we use recent numerical tables from [12] to determine
the polynomials p; explicitly for k£ < 11 and some important choices of A.

1. Identities for triangular double sequences

We denote by w the set of all natural numbers including 0, and by < the usual
order on w. For n € w, it will be convenient to denote by = the set of natural
numbers 1, ...,n (in particular 0 = @).

Let (gkn) = (gkn : k,m € w) be any double sequence (of real numbers), and

let o oo
o(z,9) = Y ) qkaz'y"

k=0 n=0



denote its generating function (considered as a formal power series without any
.convergence restrictions). If g¢o = 0 for all k, define the summatorial (double)
sequence (pru) = Y (gk.») by the recursion

poo =1
k =

Pea= ) 9 GmPk-jam  for(km)#(0,0) Ly
J=0 m=1

A straightforward comparison of coefficients shows that the generating function
[- - -]
p(z,9) = Y D Prazty”
k=0 n=0
is given by
pz,9) = (1 —g(z,9)) " = 1+ g(z,9) + g(z, ) +...  (12)

The combinatorial significance of this construction is evident: suppose J is a

class of unlabeled (i.e. isomorphism classes of) finite structures (e.g. topological

spaces, ordered sets, graphs, etc.) If f and g are functions from 7 tow and gx»

is the number of structures S € J with f(S) = k and g(S) = =, then the

summatorial sequence (px..) = 3 _(gk.») counts the number of all finite sequences

(S1,...,8;) in T suchthat f(S)) +---+ f(S;) = kandg(Sy) +---+9(Sy) = n
By a I-triangular sequence we mean a double sequence (gx,,) such that

go1=1, gqro=0forallk, andgi,=0fork<n—1.

Let (gk.) be any such 1-riangular sequence. Then the generating function

oo oo oo 00
HERED PSP LILED P Pr s L (1.3)

k=0 n=0 k=0 n=0

satisfies the functional equation
9(z,y) =y - s(z,zy) 1.4)

and conversely, any such‘equau'on forces ( gx,») to be 1-triangularif only so,0 = 0.
Using the coefficients s, of the i-th power

sz =303 sy,

j=0 m=0
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we obtain for the generating function of the summatorial sequence ( pg,a) = S (gkm) :

z,9) =(1—q(z,y)) ' = (1 —y-s(z,39)) "

= i y's(z,29)' =) i DI s T

=0 i=0 j=0 m=0
whence
n k
i+ n—k
Pha= 3 Slmimi= D, Sher a.s
i=max(n—k,0) s=max(0,k—-n)

As go, = 1, we may write the generating function s( z, y) in the form
s(z,y) = 1+ 5 (z,9),
where the constant term of 3(z, y) is zero. As before, we use the powers
d (u)
° (-]
HERSE EZ Sm T Y™
7=0 m=0

to obtain

[ oo oo jtm
s(x.y)"=§:( ) 3(z,9)" -222( ) S T

=0 m=0 u=0

becauses 3;:3, vanishes for u > j + m,and (*) = 0 for u > i > 0. Taking
j+m
( ') o(u)
=3 (1) oim
u=0

as the defining equation of the coefficients s{", also if i is a negative integer, we
see that they are polynomials in ¢ of degree at most j + m. Now, we may rewrite
(1.5) in the following form:

k ienck) k—n—-1 .
= i+ (i+n—k)
Pkn = E t,k—wt- E Sik—i
1=0 i=0

where the first sum is a polynomial p,(n) of degree at most k. Thus, setting
Pk = O for negative », and

djk = — E sf'k_’. D = prpojor —pu(k—j— 1) (1.6)

1=0

we arrive at
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Proposition 1.1. Let (gx,») be any 1-triangular sequence. Then the correspond-
ing summatorial sequence (py ) satisfies an equation

Pin = Pi(n) + din1

- where pyis a polynomial of degree < k, and the dzﬂ’emnces d;jvanish forj <
0. The generating function d(z,y) = 3 720 Y=o 9, +2’y* and the generating
functions(z,y) withq(z,y) = y-s(x, zy) arerelated by the following functional
equation:

d(z,y) - (z— s(zy,y)) = 1.

Proof. The last assertion can be deduced from (1.6) by a somewhat tedious com-
parison of coefficients. An alternative and perhaps more instructive way is the
following. Observe that

j*l
Phn = EZ GjmPr—jum  for(k,m) #(0,0)
J=0 m=1
and
k j+1
pe(m) =) Y gmPhj(n—m).
j=0 m=l

Indeed, the first equation is true by (1.1) (recall that g;,, = 0 for j < m — l),
consequently, the second equation holds for fixed k and all n > k, since then
pr(n) = Piq and pe_j(n— M) = Pr—ju-m for m < 7 + 1. But two polynomials
having the same values for infinitely many entries must be equal. Thus

k J+l

di-n-1,t = Pen —Pr(n) = E > @mdijonem-t i
720 m=1

kE J
. E E Gjm+1 Dhjrtmbj
=0 m=0

unless (k,n) = (0,0), whered_10 = 0 # —1 = go,1do . Replacing j with
i + m and observing thatdy_;_ ¢—i—m = 0 fori > k — n, we obtain

k-n k—i k-n k—i
Qkon1k = 3 D Gismmt1 Bhminfmiom = YN simii-nkeiom
i=0 m=0 i=0 m=0

Then, replacing k — n with j, we arrive at the equation
J k=i

i1k = 2 Z 3imdj—ik-i-m for(j,k) #(0,0).

§=0 m=0
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Finally, after insertion of suitable powers of z and y, a summation over all terms
gives the desired functional equation

-1+ z-d(z,y) = s(zy,y) - dz,9). |

Our next (and crucial) observation is that for any 1-triangular sequence (gkn)
the lower triangular part of the summatorial sequence (pk,a) = _(gk,s) can be
computed if only the diagonal elements pix and pik+1 are known (cf. [2] and
.

Proposition 1.2. Let (gx,) be any I-triangular sequence. Then there exists a
unique formal power series

o(z) = Ec;:ci
Jj=0

such that the summatorial sequence (prs) = Y (Qkn) Satisfies the following re-

cursion; R

Dikn = E CjPk—jn—j—1 (k<m Qa7
j=0
In fact, the generating function c(z) is the unique solution f of the fixpoint equa-
tion
s( If s f) = f ’

where s(z,y) is the formal power series determined by (1.3).

This was shown in [7] for a slightly more special situation, but the arguments
carry over verbatim to the present general setting. The above fixpoint equation
plays a role in the theory of Banach spaces (see [3], Chapter 10). The recursion
below provides a method to compute the solutions of such fixpoint equations.

On account of the equations ¢(z,y) = y - s(z, y) and s(zy,y) = y fory =
o(z), the sequence (cy) is determined by the formula (cf. [7)

k k—i
Ck = E E C§-0 Qhmj kit (1.8)
i=0 j=0
where the numbers c§-° are the coefficients of the i-th power
. et s
o(z)' = 2 c§0 7.
j=0

Hence these coefficients satisfy the following recursion:

j
®=1,¢" =0 forj >0, and & =Y acl?, 1.9)
k=0
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In particular, we obtain the following explicit expressions for the coefficients c:

€0 = qo,1,

G =q2+qg,1q1,

=qQ3+g102+qa2a1t 40,191,12 + qo,lzqz.l.
etc.

Thus we have constructed the coefficients c; from the numbers g; », but it is easier
to express them in terms of the diagonal sequences (pg ) and (p.x+1) by setting
n=k+ 1in(L.7):

k-1

Ck = Ph ksl — E CjPk—jk—j (1.10)
j=0

Employing the generating functions

c(z) = f:cka:",

k=0

p'(z) = ) prast,

k=0

p<(2,9) = Y Prazty®,
k<n

the recurrence in Proposition 1.2 may be written as a functional equation:
p<(z,9) = p*(zy) + v - c(zY) - p<(3,9),

which provides a representation of the two-parametric generating function p<( z, y)
in terms of the one-parametric power series c(z) and p*(z):

Corollary 1.3. With the above notations and the same hypotheses as before,
p<(z,y) = p"(zy) - (1 —y - c(zy)) .

Furthermore, one can derive the following binomial representation for py(n)
from 1.2, by a double induction argument (se¢ [6] or [9]):

Corollary 1.4. The polynomials pi(n) in Proposition 1.1 satisfy equations
& n—j—1
pe(n) = E%j( k—j )

j=0
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where the coefficients ax; can be determined recursively from the diagonal se-
quences py i and pg x+1, using formula (1.10):

j*1
akj = Eq(ak-;, j—it1 = Ok—i, j—i) forj < k (with ax—;—1 = 0),
i=1 )

Gk,k = Pkk-

In particular, a0 = c1*.

Corollary 1.5. If ¢, # O then the leading coefficient of the polynomial p; is
c1*/k!, and consequently, pi ., is asymptotically equal to (";1 ) ak.

Of course, for fixed k, the binomial coefficient (*;') has the same asymptoti-
cal behavior as n*/k!, but in concrete computations like those in Section 2, one
observes that (*;') gives better approximations for s than n*/k!.

For explicit computations, the following reduction is often helpful:

Corollary 1.6. Under the same hypotheses as before and the additional assump-
tion ¢, = 1, the coefficients ay; in Corollary 1.4 may be represented in the form

= Sma(i70)

m=0

where the numbers b,, j can be determined recursively from the diagonal sequences
Dk k and D k+1, using (1.10):

m+1

bm, 5 = E(Cm — ) bm—is1, j-i — zc,bm_.' j-i form < j,

i=l i=1
bj,j=¢j,j =) ;-

Hence, for fixed j, the coefficients aj, ; are polynomials in k. It may happen
very well that the exact degree of these polynomials is strictly smaller than ;. For
example, if co = ¢1 = c2 = 1 then the degree of a; is not greater than j /2 ( for
details, see [6]).

In most of the situations we shall encounter, the sequences (gx,,) and (cx) enjoy
certain monotonicity properties:

Lemma 1.7. Let (qx,) be any 1-triangular sequence satisfying

Qkn 2 Qk-1,n-1 (k,n>0)

72



andlet (pr) beits summatorial sequence. Then the sequence (ci) in Proposition
1.2 js monotone increasing, and

n—-1
P 2 Pl + Ph-1n-1 2 ( k ) forallk,n>0.

Proof. Observe that the hypothesis ensures nonnegativity of the numbers g , and,
consequently, of the numbers p;,. To prove the monotonicity assertion for the
sequence (ci), we use the recursions (1.8) and (1.9). First, by (1.9) and induction
on j + 1, we obtain c > O for all § and 1. Then, by (1.8), we get

k=1 k-1-5 k-1 k-1-1
Ck = E E c; Qk—j,k-j-ul“'ECk_,Qs.l 2 E Z cj’ﬂk—j—l,k—j—i = Ck-1-
=0 ;=0 i=0 §=0 j=0

The inequality pen > Prnu-1 + Dk-1,n-1 follows by induction from the equation
(1.1).

Finally, starting with the initial values py, = 1 = (”'1) and p1 > pio +
Pi-1,0 > 0= () for k > 0, one obtains inductively p; , > ("-‘) forallk >0
and n > 0, and consequently pga-1 + Pe-1a-1 2 ("32) + (33) = (') for
k>1,n>2.

2. Additive functions on the class of finite posets

The ordinal sum Q & R of two disjoint posets Q and R is their union, endowed
with the partial order

z<qery ¥ r<qyorz<pyor(zs,y) €EQxR.

Of course, one may also form ordinal sums of non-disjoint posets, by replacing
them in the usual way with disjoint isomorphic copies. A poset is said to be (or-
dinally) decomposable if it is empty or of the form Q @ R for some nonempty
posets Q and R; otherwise it is (ordinally) indecomposable. Each finite poset P
has a unique decomposition

P=Q1®---0Qr

into indecomposable posets Q; (with r = 0 for empty P) . Hence finite posets
are in one-to-one correspondence with finite sequences of indecomposable finite
posets, and consequently, our considerations from Section 1 will apply to the
present situation .

A function f assigning to each finite poset P a natural number is called isomorph-
ism-invariant if it is constant on isomorphism classes. If, moreover, f(0) = 0
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and f(Q ® R) = f(Q) + f(R) for all pairs of disjoint finite posets Q, R then f
is said to be additive. A few typical additive functions are:

- the cardinality function, assigning to each poset P the number |P| of its
points,

- the height function, assigning to each poset the maximal size of its chains,

- the antichain function, assigning to each poset the number of its nonempty
antichains,

- the incomparability function, assigning to each poset the number of its two-
element antichains (“incomparable pairs” or “doubletons”; cf. [7]).

Let f be any isomorphism-invariant function on the class of all finite posets. By
P . we denote the number of posets P = (z,<Pp) with f(P) = k, and by p{n
the correspondmg number of unlabeled (i.e. isomorphism classes of) posets. Sim-
ilarly, Q kn and «;1,c . Will denote the numbers of ordinally mdecomposable posets

with these properties. Noucelhatho = 900 =0, whlleP00 p{o =1iffis
addmve 1t will be convenient to use the symbols B, and g{ , for the quotients

/ ! and Q] /1t respectively. Further, we denote by p{ o the number of all
naturally ordered sets P = (n,<p) with f(P) = k (where P is said to be nat-
urally ordered if z <p y implies z < y in the natural order on g; cf. [1]), and

byq q & the corresponding number of ordinally indecomposable naturally ordered
sets. Thus we have

qku < qkn <ql=.n< Qku and P{u < P{,, Spkn< Pkn

Using the fact that every nonempty finite poset P is uniquely representable as a
sum Q @ R with an indecomposable poset Q, one arrives at the basic result that
the counung functions p{“ etc. are the summatorial sequences of the counting

functions q for the corresponding indecomposable posets (see Section I):
Proposition 2.1. For any additive function f on finite posets,

(mhgmumhﬂmum>3m>

Hence the generating functions

Pz, =Y. Y pl.atv" and ¢f(z,9) =) 3 a2ty

k=0 n=0 k=0 =0

are related by the identity

(z,9) = (1 -¢/(z,u)7",
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and similar equations hold for / and §', as well as for 3’ and 3.

Proof. It will suffice to consider the labeled case; the other cases are similar.
" Choose a set M of m distinct numbers between 1 and n. Then combine each
indecomposable poset on M with each poset on n \ M and form the ordinal sum.
In this way, each poset on x is obtained exactly once, and we get

n k
n
2= Y () 2 WmFlojum:
m=1 j=0

Division by n! yields the claimed equation (1.1) for 5, andg{ , (recall that 5 o =
1).

Henceforth X denotes any class of ordinally indecomposable posets which is
closed under isomorphisms. Examples are (for a fixed natural number m):

A, the class of all antichains with m elements,
Agm, the class of all nonempty antichains with at most m elements,
Asm, theclass of all antichains with more than m elements.
For any finite poset P = (S,<p), we denote by fX(P) the number of all
subsets R C S such that the induced poset ( R, < pjr) belongs to K. Furthermore,

it will be convenient to write P, for P/ nx: etc. Hence, for example, pf, is the
number of all unlabeled posets with n points and k subposets belonging to the
class KC.
Proposition 2.2. For any class K of indecomposable posets, the counting func-
tion f* is additive. If K contgins all two-element antichains then the double
sequences (q§,), (3E,) and(qy,) are 1-triangular.
Conversely, if one of these double sequences is 1-triangular and K contains no

singleton then it must contain all two-element antichains.

Proof. The first statement is clear since any indecomposable subposet of an ordi-
nal sum Q @ R must be contained completely in Q orin R. If A, C K and Q is
any indecomposable poset then by Lemma 1 of [7],

Q) > Q) 21Ql-1,

~x
whence g5, = 7, =0y,= 0 for k < n— 1. Furthermore, we have gf; =

ko ='&f.0= 0 because the empty set is ordinally decomposable.
Conversely, if one of these three double sequences is assumed to be 1-triangular
then we must have f(Q) > |Q| — 1 for each indecomposable poset Q, since

~K
af.n S qfu SQk.nS Qf,n = ”!?f,m
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and one of these numbers is zero whenever k < n— 1. In particular,
A(Q) >1forallQ € As.

If the singletons are not members of K, then the only subset of Q € Az counted
by fX is Q itself, whence Q € K. 1

Combining the previous result with Proposition 1. 2, we can now state a rather
general recursion formula for posets (the case K = A has been handled in [7]):

Proposition 2.3. Let K be any isomorphism-closed class of ordinally indecom-
posable posets with A, C K. Then, for n > k, the numbers p’,f;“ of all unlabeled
posets with n points and exactly k subposets in K satisfy a recursion of the form

k
Pha= D Pk jniet
j=0

where the coefficients cf can be determined recursively from the numbers p,
and pf,,, . Analogous recurrences hold for the numbers 5:'_,, and pf,,. Hence

k
n—1
Plfu = nE:ClF( j )Pf-f-“-f-l
j=0 .

for suitable coefficients Cf = j\Tf and all n > k.
Next, we apply 1.1 and 1.5 to the present situation. Observing that

~n
& = qt’)c,l =Co,1=%=?1§,1 =1,
= qln,z =¢1=q12=1,
1
?F =af,2 = '2—1

we arrive at

Corollary 2.4. Under the same hypotheses as in Proposition 2.3, the numbers

o, Pen and B, are, for fixed k andall n > k, the values of certain polynomials
of degree k in the variable n. The leading coefficient is 1/k! in the first two cases
and 1/(k!2*) in the last case. Thus we have the asymplotical equalities

~K n—1
pﬁn"'?k,ﬂ"‘f’ﬁn'z""’( k )

The last statement is quite surprising with regard to the fact that the claimed
asymptotical equality is independent of the chosen class K with A; C K.
For an application of Lemma 1.7, we need
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Lemma 2.5. If A, C K C A5 then gf, > qf, ,_,, and similar inequalities
~n
hold for g, , and ..

Proof. Let Q = (n— 1, <q)be any indecomposable poset with f*(Q) = k— 1,
and choose a maximal element mof Q. We construct a poset Q'=(n, <g'), by
putting the point n above all elements except m. The resulting poset is indecom-
posable because any ordinal decomposition of Q' would induce an ordinal decom-
position of Q. Furthermore, the only set R C nwithn € Rand (R, <q|r) €K
is the doubleton {n, m}, as K consists of antichains with more than one element.
Thus we have f~(Q') = fX(Q) + 1 = k. Since two posets Q; and Q2 must
be isomorphic if so are the posets Q] and Q) (the point n being fixed under iso-
morphisms), the asserted inequality for q,"‘fﬂ follows. The other cases are treated
similarly. |

Now we apply Lemma 1.7 and obtain

Corollary 2.6. Under the same hypotheses as in Proposition 2.3 and the addi-

tional assumption A, C K C Asi, the sequences (of), ('Ef) and (E’f) are
monotone increasing. Furthermore, one has the inequalities

Pk,n2 pf,ﬂ 2 < k )

PE >n ("_ 1)2-"
’ k
with asymptotical equality in all three cases.

Hence, for large n, the number of posets having n points and n+ &+ 1 antichains
with at most two elements is about the same as the number of posets with n+ k+ 1
antichains (of unrestricted size).

Here are some of the polynomials we have computed explicitly (for more nu-
merical material, see the end of this note):

£ 0 1 2
i |1 n—1 (% —3n+2)
ﬁ‘*(n) 1 n—1 2 —3n+2)

w1 n—1 1 +n-6)
i | 1| w-1 L + n—6)
i) | 1| Ha-1 | jn2+3n-10)
22 | 1| ds-1) [ d?+3a-10)
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k 3 4

) 1 -6+ 1Tn—-29) 2r(nt =107 + 592 — 1460+ 96)
P2 (n) }(r® — 6 +23n—36) J(r* — 107 + 8372 — 290n+ 288)
P (0 1w + 6% —25n—6) gt + 1457 — 37 — 1460+ 144)
P | P+ —19a-18) | A(nt+14r — 1352 — 1460-96)

PN | (4120 —250-60) | ggr(n®+26n° + 357 — 478n—248)
) | (P +120 —170-76) | gr(nt+26% + 67n" — 382n—888)

Let us shortly digress and translate the previous results into the language of
finite topological spaces. Recall that a topological space satisfies the To-axiom
iff different points have distinct closures, and that the finite To -spaces are in one-
to-one correspondence with finite posets (while arbitrary finite topological spaces
correspond to finite quasiordered sets). Denote by T,‘,’.ﬂ (resp. zg,,,) the number of
all (homeomorphism classes of) To-topologies on n points with k open sets; it is
well known that this is also the number of all (isomorphism classes of) posets with
n points and k antichains (see, e.g., [5] or [ [8]). Thus

A 0 A
Tl?,mhlc =P k,;l and temelek = Pk,:'

Corollary 2.7. There are polynomials Ry, and ry of degree k with leading coef-
ficient 1 such that for all n> k,

n! 1
Tlg.u+1+k = WRI:(“) and tg.umk = H"'k(n)-

It is well known that the enumeration of arbitrary topologies can be reduced to
that of T -topologies (see, for example, [4] and [10]).

3. Generalized Flbonacci recursions

Recall from 1.1 that for any 1-triangular sequence (gi,) and its summatorial
sequence (pg ) , there is a representation

P = Pe(n) + de_n-14

where p; is a polynomial of degree < k and the remainder di_,-1, vanishes for
k < n. On the base of numerical tables, Culberson and Rawlins [2] have observed
that for the special case where p; , denotes the number of unlabeled posets with n
points and k doubletons (i.e. two-clement antichains), the sequences (di) seem
to satisfy certain generalized Fibonacci recursions, at least if k is small.

The key for a proof of this phenomenon lies in the observation that similar
recursions hold for the sequences (Sgs) = (Gntkn+1)-
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Proposition3.1. For k = 0 and k = 1, respectively, the numbers ses = Q3% u1
of all unlabeled ordinally indecomposable posets with n+ 1 points and n+ k
doubletons obey the following recursions and explicit identities:

80,0 = 80,1 =802 =1,
80 =2804-1=2"2(n>3),
510=811=0,312=1,33=3,84=8,
81n =281 g1 + 38002 =2"*(3n—-4)(n>5).
While the equations for sy , are easily obtained, the proof of those for sy 4 is

more involved (for details, see [6] or [12]). From the table at the end of this note,
we read off the following values:

Bo=8,1=922=0,23=1,524= 8,325=32,86= 105 3.1
and it appears very likely that
82n=292,-1+33102 +9%03 = 2"'7(9112 —-15n-24)(n2>7) (3.2

Probably, similar expressions can be found for all sequences (8g,) if n is suffi-
ciently large (perhaps for all n > 2k + 3). However, it seems hard to solve the
general case explicitly.

A straightforward comparison of coefficients in Proposition 3.1 gives

Corollary 3.2. The generating functions si(y) = Y meo Skay™ Satisfy the fol-
lowing identities for k=0 and k= 1:

1—y—¢? 201 y+24°
So(y)='—13—2'yL, 81(!I)=y((l—_yzy)zi)--

Similarly, one finds that ( 3.1 ) together with ( 3. 2) is equivalent to

P (1+ 1) (1+2y —4y?)

s2(y) = =29 (3.3)

and we conjecture that s;(y) is always a rational function, i.e., a quotient of two
polynomials. If one can prove this conjecture then the generating functions d(y)
will be rational again, on account of the functional equation at the end of Propo-
sition 1.1 and the following straightforward

Lemma 3.3. Suppose s(z,y) = 3 oo sk(y) =t and d(z,y) = Y 32 di(y) =’
are formal power series satisfying the identity

d(z,y)(z— s(zy,y)) = 1.
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Then the functions d;(y) can be computed from the functions si(y) by recursion:
do(y) = —s0(y) ™"

j-1
di(y) = so(y)~' (d;_n(y) =Y sy - 'dj-k(y)) (j >0).
k=0
In particular,
di(y) = so(9) 2(s1(y) -y — D).

Now it is easy to confirm two formulae conjectured in [2]:

Proposition 3.4. Lef pyy, = pﬁ denote the number of all unlabeled posets with
n singletons and k two-element antichains; furthermore, let p; denote the poly-
nomial of degree k with py, = pi(n) for n> k, and (d;x = pix—j-1 — Pe(k—

j — 1). Then the sequences (do ;) and (d, ;) obey the following Fibonacci re-
cursions:

doo=-1, dog=1, do & = do k-1 + do k2 (k2>2),
do=-1, dig=2,dizg=-1, dig=dig-1+dig2+dog (k293),

and their generating functions are given by

_ —-1+2y
do(y)———-l_y

—1+4y—4y? + ¢ —y* + 2y
_yz' )

(1-y-9?)?

Proof. The explicit representation of the generating functions follows at once
from 3.2 and 3.3, and then the recursion formulae are easily obtained by com-
paring coefficients. 1

If one can prove similar recursions as in 3.1 for other sequences ( si,) then the
general proof scheme will follow the same pattern as before. In particular, under
the hypothesis (3.2), one obtains:

do=-1,d1=3,d22=-3,da3= 6,dya=-3,do5=8,drs=8

di(y) =

(3.4)

hr=dg1+drp2+dig1—dog-s (k27) 3.5
—146y—1252 + 10y —6y* + 5¢° + 645 — 9y +¢° — y°

v-v (3.6)

For k < 14, the validity of the recursion for d; x has been verified in (2] .

Without proof, we note analogous results for the numbers By ,, and py, ,,. Recall
the following notational conventions:

Sf; : number of naturally ordered sets with n points and k doubletons
1‘1‘,;"3. : number of labeled posets with n points and k doubletons, divided by n!

The same symbols, with g instead of p, denote the corresponding numbers of in-
decomposable posets. Then one can prove (cf. [7] and the tables at the end):
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Proposition 3.5. The numbers of unlabeled ordinally indecomposable posets,
resp. of naturall ordered sets, with n or n+ 1 doubletons satisfy the following
identities:

~A
T isz:»l =31 (n21)
Ty =2%5(50—9)  Gp1an=3"%(251-42) (n2>3)

= 2»—2

Using these formulae and similar arguments as in the proof of 3. 4, one obtains:
Proposition 3.6. Let p, denote the polynomial of degree k with f;‘,‘}; = Di(n)
for n> k, and put &y = B _,_y —Pe(k —j —1). Then
zo,n do,w-l + dO,w—Z (‘n2 2):
dig=dig1 +dig2 +dos1 (n23).

The corresponding equations for naturally ordered sets are

d0n-2do.»-1-2" (ﬂ21)»
. d —Zdln-l+d0n—d0,u-5=2”_3(7n+ 19) (n2>3).
In [2], the validity of the last two formulae has been confirmed forn < 14.

Analogous results are obtained for A2, the class of all antichains with at least
two elements, instead of A, . For example, one can prove the following formulae:

ganty =22 (n>2),

g1 =274 (n-2) (n>4),

a:;: =22 (n2D,

qf»l,m-l =2"4(n-2) (n2>2).
and probabiy also

q,,‘:z' =2%7(2+17n-28) (n>6),
=2"7(w*+13n-32) (n2>3).

qmz,m-l

Then one may proceed as in the case of A3 in order to derive analogous Fibonacci
recursions .
On the next two pages, we list the following tables for k£ < 11 and n < 12:
g, the number of unlabeled indecomposable posets with x points and k dou-
bletons
pF,, the number of unlabeled posets with » points and k doubletons
ck, gxg)coeﬂicxents of the recursion pf, = Ej,o FPE jnjr fOTk < n(see
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and the polynomial representation of p{f_n for k < n(see 14):

k i1
pf(n)=§ja§,-(” ’ )

On the pages after, the same numbers are listed for unlabeled (indecomposable)
posets with n+ k+ 1 antichains. Finally, we present the corresponding coefficients
%x and polynomials 5(n) for the labeled case. The tables of explicit values for
k> Di.n and T; 5 (contained in the preprint version [9]) have been omitted be-
cause of the somewhat confusing shape of the involved fractions (notice that the
coefficients ¢ are not always integers!) For the case of naturally ordered sets, the

j=0

k—-j

corresponding tables can be found in [2] and [7].

K =A; Unlabeled posets, antichains with 2 elements

w 01 2 3 4 5 6
&, 01 000 0 0
: 00100 0 0
g¥,0 0001 0 0 0
q§»:00012oo
@, 00 003 4 0
&: 00001 8 8
¢, 00001 8 2
£: 00000 6 32
¢, 0 0 0 0 0 3 37
F.0 0 0 0 0 0 1 34
dha 00 000 123
g, 00000 016
s 11111 11
P, 001 23 45
g, 0001 3 610
A, 0001 4 917
Pf,; 0 0 0 03 12 28
P, 00 0 0 1 10 35
pk,: 0 0 0 0 1 10 44
g: 00000 6 4
P,y 00000 3 4
o, 0 0 000 1 36
Phe: 0 0 0 0 0 1 25
Pk, 0 0 0 0 0 0 16

Qo000 OO0

56
105
160
198

15
29
54
83
123
168

239
249
243

[~ 20— T — I — I - I — = - ]

W
[ ]

136
312
568
874

21

94
166
274
434
629
874

1136
1402

82

Scococoocoococowvw

w

541

1528
2386
3551
5054

10 11

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
128 0
736 256
2280 1664
1 1

9 10

36 45
99 137
237 353
506 811
986 1694
1836 3351
3240 6306
5492 11385
8974 19897
14096 33614

—
[

OO0 0 OO0 O0OO0OOO0O

512

1

1

55
184
509
1249
2779
5808
11545
21985
40515
72382



K = A2 Unlabeled posets, antichains with 2 elements

w 0123 4 5 6 71 8 9 10 1
& 1 1 1 3 8 21 63 195 612 1971 6458 21426
e, 1 1 1.1 1 1 1 1 1 1 1 1
af,: 0 00 0 0 o0 O 0 0 0
oy 0 24 6 8 10 12 14 16 18
of,: 1 4 7 10 13 16 19 22 25
af ot 3 11 23 39 59 8 11 143
afy: 10 37 76 127 190 265 352
of,: 44 127 251 424 654 949
agt;: 168 433 850 1455 2284
af,: 629 1525 2955 5069
af 2386 5444 10375
o 8974 19552
afia 33614
pf(n) = 1/01

P = (n=1)/11

() = (F —3n+2)/2

PE(n) = (1 — 69 + 23n—36)/31

oF(n) = (n* — 105 + 8372 — 200n+ 288) /4!

PE(n) = (n° — 150" + 2054 — 1245 + 3454n — 4320) /5!

PE(n) = (n® —214° + 4155 — 38557 + 204642 — 594841 + 63360) /6!

Pr(n) = (0’ —28n8 + 7425° — 9730n* + 82369%° — 41612217 + 1083648 n — 1239840) /7!

pE(n) = (n® =360 + 1218nf —21336 5 +259329 n* — 1989204 v® + 9174332 1% — 24157104 n+
26288640) /8!

5 (n) = (n° —45n8 + 1878 v —4221005 +688737 5 —7393365 1* + 52188632 1> ~ 234242460 % +
586515312 n — 646652160) /9!

P (n) = (nl0 — 550° + 2760n — 7719047 + 161433305 — 22952055x° + 2274398905 —
1526250860 + 6504181416 %% — 16186479840 n+ 17635968000) /10!

Ph(n) = (n'] —66n'0+ 3905+ — 132660%° + 3438303 — 622216987 + 817150235 —
7587963240 n* + 48222532996 n® —200934920736 r2 + 489015380160 n—533607782400) /111
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K =A,; Unlabeled posets,antichains with 2 or more elements

m 0 1 34 5 6 71 8 9 10 1
&: 1 1 1 2 6 15 39 108 308 890 2613 7777
s 11 1 11 1 1 1 1 1 1 1
af:: 0 00 0o o o0 o 0 0 0
of 01 2 3 4 5 6 7 8 9
o, 03 6 9 12 15 18 21 p
af 3 8 14 21 29 38 48 59
ol 8 22 42 6 100 138 182
of, 26 67 127 207 308 431
o, 9% 212 392 639 92
oy 309 671 1221 2001
of 1038 2149 3864
afyq: 3482 . 6948
Olin 11658
o5 (n) = 1/0!

#(m = (n—D/11

F(m) = (1 ~3n+2)/2

K (n) = (n® =62 + 17n—24)/31

oF(n) = (n* = 100® + 590 — 146+ 96) /41

pF(n) = (n° — 150* + 145¢® — 585+ + 814n — 360) /51

PE(n) = (8 —219° + 2955 — 18155 + 4744 > — 2484n — 10800) /6!

Pr(n) = (0] — 2815 + 532¢° — 4690n* + 204195 — 2048212 — 1671120+ 413280)/71

oE(n) = (n® — 364" + 88205 — 1058415 + 694890 — 1412041 — 103805212 + 6522384 11—
11289600) /8!

PE(n) = (n° —45n8 + 137457 —21546 n8 + 198345 n® —707805n* —3802744 1° + 49355316 % —
197432496 n+ 288126720) /9!

Pl (1) = (n10—551° +2040n° —40470 17 + 495453 n° —2751735 r® —8568190n* + 247461220 * —
17174237041 + 5497907040 n — 6960038400) /101

Pl (n) = (n'1-66n'0+2915%° ~71280 n® + 1115763 n” —8860698 1° 60713951 +932291580 n* —
10108904564 15 + 53483238864 12 — 145082661120 n + 159707116800) /111
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K =A; Labeled posets, antichains with 2 elements
w 01 2 3 4 5 6

x: 1 21 2 STh 142 2¥m

n 7 8 9 10 11

x: 1233714 3727 ss 1139181728 3547162 faz20 1118410697260

Pa(n) = 17201

Fm = (n-1)/2'11

B(n) = (7 +3 —10)/2221

() = (a + 1242 =170 T76)/2%31

PE(n) = (n* + 269 + 67r% — 382n— 888) /2% 41

FF(n) = (n + 454* + 405 — 125+ — 9526 n— 6160) /235!

FE(n) = (n + 691 + 12351 + 53355® — 30506 n* — 149164 n— 88480) /2°61

FE(n) = (o7 + 9815 + 28701 + 292604* + 15169n° —976878x* —3136120n+ 463680) /2771

(1) = (nB+132n" +5698n5 + 100184 1 + 572369 i* —2245292 * —29574868 r* —55519344
39365760 /288!

() = (1 + 171nd + 1018207 + 270438+5 + 31235615° + T025739x° — 129642752 —
8695261082 — 767035952 n+ 1565679360) /2991

7% (n) = (n10+ 2150 + 16860 w® + 6265507 + 115103735 + 86795415%° — 141950810 n* —~
5802007300+ — 23374926824 i — 6700023520 + 67453263360) /210101

7 (n) = (nl! +2640'° +263451° + 1301520 u® + 34225983 n +454162632+° + 1953784195 %° —
18815591520n% — 228465202284n® — 651706340736 + 483094289600 n+
2501470540800) /2 1111



K = A, Labeled posets, antichains with 2 or more elements

w 01 23 4 5§ 6 7 8 9 10 1

&1 121 2 425 11502 2938 TTTh2 210512 5823/s 1637 )16 466147/2s8

() =120

A =(m-1np2'n

() = (# + 30— 10)/2221

() = (@ + 1202 — 250 60)/2331

Pr(n) = (n' +26% + 350 — 478n— 248)/24 41

PE(n) = (v’ + 450" + 325%° — 1165 — 6166n+ 4080)/2551

PE(n) = (n® + 699 + 10755 + 855¢° — 3587617 — 36204 n+ 100320)/256!

Pr(n) = (7 +98n® + 25907° + 15820 5% —90951n* — 6274382 + 276520 n+ 3017280) /2771
B (n) = (18 + 13207 + 52508 + 674807 + 14609 n* — 3416812 v5® — 8121940 2 + 40732560 n+

12664960) /2881

B (n) = (1 +1715° +9510%" +201222 18 + 1137801 5° —9159381 n* — 87184000 1> + 99919908 1® +

817844688 n + 88784640) /279!

o (n) = (010 + 215%° + 1590058 + 4940707" + 58386935 — 154570515 — 436356250n° —

12098460205 + 7776402456 # + 15652311840 % — 26158809600) /210 10!

PR (m) = (' +264 110 +25025%° + 1066560 18 + 202630230 + 111432552 15 — 1205744485 15 —
13013666160n* + 14489212276n° + 264164117184n2 — 11068415040 n—

761346432000) /21 111

Added in proof. In May1993,we have computed the numbers for n= 12, too.
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