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Abstract. We propose the following conjecture: Let m > k > 2 be integers such that
k| m, and let Ty, be a tree on m edges. Let G be a graph with §(G) > m+ k — 1.
Then for every Zy-colouring of the edges of G there is a zero-sum (mod k) copy of
Tv, in G. We prove the conjecture for m > k = 2, and explore several relations to the
zero-sum Turan numbers.

1. Introduction and Observations
In 1961, Erdds, Ginzburg and Ziv [16], proved the following theorem:

Theorem A. Let {a1,02,...,8m+k-1} b€ & collection of integers and suppose
k | m. Then there exits a subset I C {1,2,...,m+ k — 1}, |I| = m, such that

This theorem was the starting point of the seminal paper of Bialostocki and
Dierker [3], in which they introduced the concept of zero-sum colouring.

Graphs in this paper are finite and have no multiple edges nor loops. By R(G; k)
we denote the least positive integer r such that in any k colouring of the edges of
the complete graph K, there is a monochromatic copy of G. In the sequel we
assume that G is a graph with m edges. By Zero-Sum Ramsey number denoted
R(G:; Zi), k | m, we mean the least positive integer r such that in any colour-
ing of the edges of the complete graph K, by Z;, the additive group of integers
modulo k, there is a copy of G such that the sum of the values on its edges is 0
(mod k). Such a copy of G is called a zero-sum copy (mod k) of G. The ex-
istence of R(G; Z}), follows from the existence of the classical Ramsey number
R(G; k).

By T'(n,G) we denote the classical Turan number, namely, the maximum pos-
sible number of edges in a graph H on n vertices without a copy of G. When
using k colours the Turan number is denoted T'(n, G, k). By Zero-Sum Turan
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number, denoted T'(n, G, Z), k | m, we mean the maximum number of edges
in a Z,-colouring of a graph on n vertices that contains no zero-sum (mod k)
copy of G. Following [1] and [10] we have,

(1) T(n,G,2) <T(nG,k) < kT(n,G) ifk | m.

@ T(n,G,2) <T(nG,Z) ifk=m.

There is a rapidly growing literature on zero-sum problems as can be indicated
from the list of references (which is by no means complete ) [1]-[5), [8]1-[14],
[16]-[17] and {20]-{21).

It is natural to start a paper related to Turan numbers of trees with the celebrated,
and yet unsolved, conjecture of Erdos and Sos [15].

Conjecture 1.1. Let T, be a tree on m edges. Then T(n,Tr) < {2522,

A solution of that conjecture implies solutions and improvements in many other
related problems, including better upper bounds for the Ramsey numbers R(Ty,Tn).
The conjecture is known to be true for stars, paths and some family of trees with
large maximal degree (see [22]). The best known general upper bound is based
upon two simple observations (see [18]):

Observation 1.2. If G is a graph with minimal degree §(G) > m, then G
contains a copy of every tree Tp,. .

Observation 1.3. If the average degree of a graph G is d then G contains an
induced subgraph H, such that 5(H) > [$].

Using these observations and a result of Bollobas [7], it is easy to obtain the
bounds:
B) T(n,Tn) <(Mm-1n—- (';) +1and
@ T(nTn,Zk) < k(m—Dn
Hence, in order to tackle with T(n, T, Z¢), it is convenient to determine a
parallel observation. One possibility is to modify a conjecture of Seymour and
Schrijver [21]:

Conjecture 1.4. If G is a graph such that every {0, 1}-coloring of its edges
implies a monochromatic spanning tree of G, then every Zmy-coloring of its edges
implies a zero-sum spanning tree of G.

This conjecture was proved for m a prime number ([21]). It is tempting to
strengthen Conjecture 1.4:

Problem 1.5. Prove that if G is a graph such that every {0, 1}-coloring of its
edges implies a monochromatic copy of a given tree Ty, then every Zm-coloring
of its edges implies a zero-sum copy Of T,

If true, Problem 1.5 would imply that T'(n, T, Zm) < T(1, Tpn, 2) <2T(%, Ts) -
Surprisingly the answer to Problem 1.5 is negative since we have,
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Theorem 1.6. Let m = 3 (mod 4) and P,, a path on m edges. Then,

@ T(n Pm,Zm) > m(n—m) forn>m.
(i) Forn> m?,T(n Ppn,Zm) > 2T(n,Py).

Proof: Observe first that (ii) follows from (i) since m(n— m) > (m — l)nfor
n>m?,and (m — 1)n> 2T(n, Py).

Now to prove (i), consider the bipartite graph K,, 441,441 Where,m = 4k—1.
Split the 4 k — 1 vertices into three sets A, B,C such that |A| = |B| = 2k -1,
|C] = 1 andlet D be the rest of the vertices. Color all the edges between A and D
with 0. Color all the edges between B and D with 1. Color all the edges between
C and D with 2 k.

Clearly there is no monochromatic copy of P, and as |C| = 1 a zero-sum mod
m copy of P,, must have an edge sum equal to either m or to 2m depending
upon the number of edges of color 2k taken in the path. One can see that this is
impossible, completing the proof. [ |

The next conjecture is along the same line. The rest of the paper is devoted to
support that conjecture.

Conjecture 1.7. Let m > k > 2 be integers such that k | m and Ty, a tree on
m edges. If G is a graph such that §(G) > m + k — 1, then every Z-coloring
of its edges implies a zero-sum (mod k) copy of Tp,.

To indicate the strength of Conjecture 1.7, observe that:

Fact1. Conjecture 1.7 implies R(Tm; Z) < m+k and inparticular R(Tp; 2) <
R(Tm; Zm) <2m.

It is easy to see that the Erdds—Sos Conjecture (15] implies R(Thm,2) < 2m
but there is no known proof of this Ramsey bound avoiding that conjecture.

Fact 2. Conjecture 1.7 implies T(n,Tn, Zk) < (m+ k—2)n.

Proof: If G is a graph on nvertices and n{m+k—2)+1 edges then d= 222

where d=d(Q) is the average degree of the graph G. Hence, by Observation 1.3,
G contains an induced subgraph H such that §( ) > [42] = m+ k—1, which
implies, by Conjecture 1.7, a zero-sum (mod k) copy of Tr,. [ |

One can see that the bound mentioned in Fact 2 is much better than the trivial
bound in statement (4).

2. Results and Proofs
The zero-sum Turan numbers for stars were determined in [1] and [11].

Theorem 2.1. Let m > k > 2 be integers, k | m. Suppose n> 2(m — 1)(k—

1). Then,
(mtk=D8 _ | p-1=m=k=0 (mod 2)
T(m KimiZ6) =3 | )
(1, K1,m, Zx) lmg-znj, otherwise.
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It is also clear that because of Theorem A, Conjecture 1.7 holds for stars. In or-
der to extend the list of trees for which Conjecture 1.7 holds we need the following
lemma.

Lemma 2.2. Let G be a graph such that §(G) > k and let T be a tree with k
edges. Then for every vertex u € V(T and every vertex v € V(G) thereis an
embedding of T in G such that u is mapped onto v.

Proof: We use induction on k. For k = 1,2 itis trivial. Let T be a tree with k
edges and G a graph with §(G) > k,andletu € V(T),v € V(G).

Case 1: u is not an end-vertex of T".

In this case define 7' = T'\w, where w is some end-vertex of T'. Then T” has
k — 1 edges and by the induction hypothesis we can embed T" in G such that u is
mapped onto v. As 8(G) > k, it follows that every vertex in G has a neighbor in
V(G\T") and we can add the missing end-vertex to obtain the desired embedding.

Case 2: u is an end-vertex of T'.

Let w be the vertex adjacent to u in T'. Define 7/ = T'\u. Embed T” in G\v
such that w is mapped onto a vertex z adjacent to v in G. This is possible since
8(G\v) > k — 1 and using the induction hypothesis. Now add the edge (2,v) to
T' to obtain an embedding of T" in G in which u is mapped onto v. 1

Theorem 2.3. Let T = T, beatree and 2 | m. Let G be a graph such that
5(G) > m + 1. Then in every Z, -coloring of the edges of G, there exists a
zero-sum (mod 2) copy of Tn,.

Proof: As8§(G) > m+1,theremustexista vertex v in G, in which there are edges
from the two colors. Otherwise every component of G would be a monochromatic
subgraph of minimal degree at least m + 1 and by Observation 1 we are done.

Hence, we may assume that v is incident with edges colored 0 and 1. Define
G) = G\{a,b}, where a and b are adjacent vertices of v such that ¢(v,a) = 0
and c(v, b) = 1, where c is the colouring function. Clearly, §(G1) > m — 1 and
by observation G contains every tree T' on m — 1 edges.

Consider two cases:
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Case 1: In T there are two end-vertices of the form

>0
&
In this case we choose T" to be: TV = T'\{y}. Embed T" in G, such that u is

mapped onto v. Ifzeez(r') c(e) =1 (mod 2), then add to T” the edge (v, b).
Otherwise add the edge (v, a) to obtain a zero-sum (mod 2) copy of T'.

Case 2: All the end-vertices of T" are of the form

e

In this case we choose T" to be: T'=T\{z}. Againembed I" in G; such that u
is mapped onto v. If vy c(€) =1 (mod )2, then add to T" the edge (v, b).
Otherwise add the edge (v, a) to obtain a zero-sum (mod )2 copy of T ]

We already know Conjecture 1.7 is true for stars. We prove it also for a starlike
trees.

Definition. A free T is called k-simple if there exists a sequence of subtrees T' =
To,Th,...,Tn = 9, such that T is obtained from T;_, by deleting k-endvertices
having a common neighbor. \

Observe that a k-simple tree admits a K x-decomposition.

Example: a 2-simple tree

Denote by H(m, k) the family of all k-simple trees having m edges.

Theorem 2.4. Let m > k > 2 be integers, k | m. Let G be a graph such
that (@) > m + k — 1. Then in every Z-coloring of G there is a zero-sum
(mod k) copy of every member H € H(m, k).

Proof: Letc: E(G) — Zy, k | m. The proof is by induction on m.
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Form = k , H(m, k) = {K14} and 8G) > 2k — 1. Hence, by Theorem A
there is a zero-sum (mod k) copy of K1 & in G. Suppose we proved the theorem
form = (¢ — 1)k and let now m = tk. Let H € H(m, k). Delete from H, k
end-vertices having common neighbor w to obtain a tree H' € H(m — k, k). As
8(G) > m+ k—1 and by the induction hypothesis there is a zero-sum (mod k)
copy of H' in G. The vertex w in H' is adjacent to at least 2k — 1 vertices not
belonging to H', since |H'| = m — k + 1 implies deg’y w < m — k. But,
deg gw > m+ k— 1. Hence, applying Theorem A to the vertices of G\H' which
are adjacent to w we can find a zero- sum (mod k) copy of Ky among those
edges with a center at w. Adding these edges we have a zero-sum (mod k) copy
of HinG. [}

Arnother family of trees for which we can prove Conjecture 1.7 is the family of
k-symmetric trees.

Definition. A tree T is called k-symmetric if there is a vertex v of T in which
every branch B; appears o; times in v and k | a.

The k-closure of a k-symmetric tree T', denoted by T'(k), is the tree obtained
from T by adding k — 1 copies of B; for every type of branches at v.

Example.

a 2 — symmetric tree T()

Theorem 2.5. Let T be a k-symmetric tree on m edges. Let G be a graph such
that 5(G) > G2 Then, in every Zy-coloring of E(G) there is a zero-sum
(mod k) copyof T.

Proof: Observe first that k | m since T is k-symmetric. Next consider T'(k).
Every branch B; at v appears a;-times in T hence a; + k — 1 times in T'(k).
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Hence,

e(T(k)) = E(a.-+ k— )e(By)

= Ea.e(B.-) + (k l) Ee(B‘) < (T) + (k - Ik)e(T)

(2k—l)e(T) (2k Dm
k k

L6).

Hence, by Observation 1.2 G contains a copy of T'( k). By Theorem A (applied
to the branches at v), T(k) contains a zero-sum copy (mod k) of T in every

Z-coloring. |
Final Remarks
(1) Using Fact 2, it follows that if T, is k-simple then T'(n,Trs, Z) < (m +

¢))

©))

1.

2,

k —2)n, which is much better than the bound k(m — 1) ngiven in statement
).
It follows from Theorem 2.5 that if §(G) > 2m—1 then forevery k | m and
in every Z;-coloring of its edges, G contains a zero-sum copy (mod k)
of every k-symmetric tree T on m edges. In particular for a k-symmetric
tree T' on m edges we have, (using observations 1.2 and 1.3),

\

T(nTm,2Zk) < (gk_;ﬂ - 1) n<2(m-—Dn,

again much better than the bound k(m — 1)= given in statement (4).
The construction given below gives alower bound for T'(n, Tp,, Z,,) namely,

n(3"‘4'4) < T(n,Tim, Zm) for2m | n.

Take 52~ pairs of the complete graph K. Each component of K, is colored
byO. In each pair color by 1 the two vertex disjoint complete bipartite graphs
Kim/21,1m/2)- It is obvious that there is no zero-sum (mod m) copy of Tr,.
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