New Optimal Ternary Linear Codes
of Dimension 6!
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Abstract In this paper, new optimal (pm,m) and (pm,m — 1)
ternary linear codes of dimension 6 are presented. These codes
belong to the class of quasi-twisted codes, and have been con-
structed using a greedy local search algorithm. Other codes
are also given which provide a lower bound on the maximum

- possible minimum distance. The minimum distances of known
quasi-twisted codes of dimension 6 are given.
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I. INTRODUCTION

A fundamental and challenging problem in coding theory
is to find a linear (n, k) code over GF(gq) achieving the maxi-
mum possible minimum Hamming distance, dpnin. This value
is denoted as d,(n, k), and linear codes which have a minimum
distance equal to d,(n, k) are called optimal. A related problem
is to find the smallest value of n for which there exists an (n, k)
code with minimum distance d. This is denoted as n,(d, k). For
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a given value of g, solving one of these problems is equivalent to
solving the other. For ¢ = 3, n,(d, k) has been determined for
k <4 [1], and all but 11 values of n3(d, 5) have been established
[2]. Conversely, there remain many unknown values of n3(d, 6)
and d3(n,6). Lower bounds for linear codes over GF(3) with
k < n < 50, have been tabulated by Kschischang and Pasupa-
thy [3]. Sloane [4] is presently tabulating bounds and Brouwer
[5] maintains an up to date table of upper and lower bounds
for k < n < 132. In this paper several values of dj(n,6) are
determined through code constructions.

The Gilbert-Varshamov bound [6] gives a lower bound on
dy(n,k), but few classes of codes are known which attain this
bound. One exception is the class of rate 1/p quasi-twisted (QT)
codes, which has been shown to meet this bound [7]. Therefore it
is not surprising that QT codes exists for many values of d,(n, k).
QT codes were first characterized by Hill and Greenough [8].
They are a generalization of the class of quasi-cyclic (QC) codes
in the same way that constacyclic codes are a generalization of
cyclic codes [9, 3].

A best code is defined as one which achieves the maximum
possible minimum distance for a given class of linear codes. A
good code is defined as one which has the maximum known min-
imum distance for a given n and £, i.e., it attains (or improves)
the known lower bound on the minimum distance. In general,
to find a best (n, k) linear code requires an almost exhaustive
search, which is intractable for all but the smallest code di-
mensions. In fact, this problem falls into the class of NP-hard
combinatorial optimization problems [10]. While the restriction
to QT codes considerably reduces the search, this approach also
becomes computationally intensive as k increases because the
number of potential codes increases very rapidly [11]. Therefore
some means must be found to prune the search, while maintain-
ing the possibility of achieving dy(n, k).

The approach taken here is to begin with an arbitrary QT
code of the required blocklength and dimension, and use a greedy
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local search to find a better code. By restricting the search
to QT codes, and using a heuristic algorithm rather than one
which guarantees a best code, good codes can be found with
a reasonable amount of computational effort. The next section
describes the class of QT codes considered. Section 3 gives the
construction results, and lists the codes which have improved
the lower bounds on d3(n,6), as well as all new optimal codes.
These codes extend previous results on rate 1/p [12] and rate

(m —1)/pm [13] QC codes.

II. QUuAsi-TwISTED CODES

The class of quasi-twisted codes is a generalization of the
class of quasi-cyclic codes over GF(g), ¢ > 2 [8]. A code is
called quasi-twisted if a negacyclic! shift of a codeword by p
positions results in another codeword. Thus if p = 1 the code
is constacyclic. The blocklength, n, of a QT code is a multiple
of p, so that n = mp. Many QT codes can be constructed
from m x m twistulant matrices (with a suitable permutation
of coordinates). In this case, the generator matrix, G, can be
represented as,

G = [By, Ba, ..., By) (1)
where the B; are m x m twistulant matrices of the form
[ b b bo -+ bmez bmo1 |
oy bo by -+ bp-z bmz
B = abm—Z ab’m—l bO ot bm—4 bm—3 (2)
Clbl O.’b2 ab3 v abm_l bo i

and a €GF(¢)\{0}. The algebra of m x m twistulant matrices
over GF(q) is isomorphic to the algebra of polynomials in the

'A negacyclic shift of an m-tuple (zo,z1,...,2m—1) is the m-tuple
(aZm=1,%0, - .-, Zm-2), @ EGF(g)\{0}.



ring GF(g)[z]/(z™ — a) if B; is mapped onto the polynomial,
bi(z) = bo;+ bz + b2,i$2 +--- 4 bm—l.imm_l

formed from the entries in the first row of B;. The b;(z) are
called defining polynomials. If @ = 1, we obtain the algebra
of m x m circulant matrices [6], and a subclass of quasi-cyclic
codes.

The 1-generator QC codes [14] can be generalized to 1-generator
QT codes. The order of a 1-generator QT code, V, is defined as

™ — o

ged{z™ — a, bo(z), ba(z),- - -, bp—1(z)}’ (3)

h(z) =

where o €GF(¢)\{0}, and %, the dimension of V, is equal to the
degree of h(x). If h(z) has degree m, the dimension of V is m,
and (1) is a generator matrix for V. If deg(h(z)) = k < m, a
generator matrix for V can be constructed by deleting m—k rows
of (1). Only codes with k = 6 and m = 6 or 7 are considered in
this paper.

A search for good QT codes requires a representative set
of defining polynomials. Consider the set, A, of polynomials
of degree m — 1 or less, with |A| = ¢™ elements. Let two
polynomials, b;(z) and b;(z) belong to the same equivalence class
if

b;(z) = az'bi(z) mod (z™ — @),
for some integer ! and scalar a €GF(¢)\{0}. This means that
two polynomials are in the same class if one can be obtained from
the other by a constacyclic shift, by multiplying by a nonzero
scalar, or both. Only one polynomial from each class need be
considered when constructing QT codes since polynomials from
the same class produce equivalent codes [11]. This equivalence
relation is induced by the action of a finite group on the set
of ternary n-tuples. Distinct equivalence classes correspond to
distinct orbits under the action of this group and so can be
enumerated using Burnside’s Lemma [11]. It has been shown
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that if m is odd, the ternary QT codes are equivalent to QC
codes [8]. For ¢ = 3 and m = 6, there are 67 equivalence
classes for @ = 1 and 62 classes for a = 2. For 1-degenerate QC
codes with m = 7, there are 48 classes, and the corresponding
1-degenerate QT codes are all QC since m is odd.

The exponential growth in the number of codes which must
be examined to find a best rate 1/p QT code quickly renders
an exhaustive search impractical. As an alternative, heuristic
techniques can be used. Although the resulting code is not guar-
anteed to be the best possible, it can still attain or improve the
known bounds. Techniques for heuristic combinatorial optimiza-
tion include greedy algorithms, genetic algorithms and simulated
annealing [10]. To limit the number of potential codes to be ex-
amined, the search can be restricted to a subset of the defining
polynomials. A greedy search algorithm is used in this paper,
similar to that employed in [12].

The Griesmer bound [15] provides a lower bound on the
length, n, of a linear code for a given k,d and g¢,

kld
n(kyd) 2 G(kd) = L[], (4)

=0

where [z] denotes the smallest integer greater than or equal to
z. For the problem considered in this paper, if d is the maximum
minimum distance found for an (n, k) code, the code is optimal

if G(k,d +1) > n.

III. CONSTRUCTION RESULTS

The maximum minimum distances for the ternary QT codes
constructed are compiled in Tables I and II. d;, denotes the
present bounds given in [5]. For m = 7, 27 — o has a degree 1
factor for @ = 1 and a = 2, but the resulting (7p,6) codes are
all QC since m is odd. It is interesting that for m = 6, the codes
with a = 1 (QC codes) establish the larger minimum distance in
some cases, while in other cases the best code is achieved with
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a = 2. For example, with a = 1 and m = 6, the best QC code
found had dn;, = 20, while for a = 2,d,,;, = 21 was achieved.
This code has generator matrix

100000 | 211000 | 101210 | 221210 | 110210 | 222100
010000 | 021100 | 010121 | 022121 | 011021 | 022210
G 001000 | 002110 | 201012 | 202212 | 201102 | 002221

- 000100 | 000211 | 120101 | 120221 | 120110 | 200222
000010 | 200021 | 212010 | 212022 | 012011 | 120022
000001 | 220002 | 021201 | 121202 | 201201 | 112002

and weight distribution

Weight |0 21 24 27 30
Count |1 240 288 152 48

This code establishes that d3(36,6) = 21 based on the upper
bound given in [5].

The defining polynomials for the QT codes which have es-
tablished the maximum possible minimum distance are given in
Table III. The polynomials are listed with the lowest degree
coefficient on the left, i.e., 2021 corresponds to the polynomial
23 4+ 222 + 2, or 23 — 22 — 1. Several of the codes with n < 132
"appear in the tables of bounds on maximum minimum distance
[5]. The weight distributions of those that have not appeared in
[12] or [13] are listed below, along with those for which optimal-
ity can be proven by the Griesmer bound. It is expected that
many of the other codes will be proven to be optimal once the
table of bounds [5] is extended.

The (90,6) QT code with dpi, = 57 establishes that d3(90,6) =
57 since this attains the upper bound on dp;, given in [5]. This
code has weight distribution

Weight [0 57 60 63 66 72
Count |1 384 144 4 192 4

The (114,6) QT code with d,,;r = 73 establishes that d3(114,6) =
73 since the upper bound given in [5] is 73. This code has weight
distribution
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Weight [0 73 74 75 76 78 81 82 83 91 92
Count |1 156 264 36 108 36 8 48 43 12 12

The (120,6) QT code with dpin = 78 establishes that d3(120,6) =
. 78 since this attains the upper bound on d,;, given in [5]. This
code has weight distribution

Weight |0 78 81 87 96
Count |1 528 80 96 24

The (174,6) QC code with dpnin = 114 establishes that d3(174,6) =
114 since

G(6,115) =175 > 174
This code has weight distribution

Weight |0 114 117 120 123 126 132
Count [1 516 100 36 24 16 36

The (246,6) QT code with di, = 162 establishes that da(246,6) =

162 since

G(6,163) = 248 > 246
This code has weight distribution

Weight |0 162 171 180
Count |1 572 132 24

Note that this is a 3 weight code. The (259,6) QC code with
dmin = 171 establishes that d3(259,6) = 171 since

G(6,172) = 261 > 259

This code has weight distribution

Weight [0 171 180 189
Count |1 588 126 14

Note that this is also a 3 weight code.
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IV. SUMMARY

The construction of quasi-twisted (QT) codes of dimension
6 over GF(3) has been presented. The new codes include several

optimal codes which determine d3(n, 6) for n = 36,90, 114, 120, 174,246

and 259. In addition, lower bounds have been established for
ternary linear codes of length 130 < n < 260.
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Table I. Maximum Minimum Distances for (6p,6) Ternary QT
Codes

a=1|a=2 ||a=1|oz=2 a=1|a=2

P dmin dyr Y4 dmin dy, p dmin

2 6 6 6 16 60 61 |61—62|30( 117 117
3 9 9 9 17| 64 64 |64—66| 31| 121 120
4 13 13 13 18 69 69 |69—T701| 32| 124 124
5 17 16 17 19 72 73 73 33 || 128 129
6 20 21 21 20 76 78 78 34| 132 133
7 24 24 25 21 81 81 81 35| 136 136
8 28 28 129-30| 22 84 84 |84-—-86(36]| 139 141
9 33 34 34 23 89 89 - 37 || 144 144
10 36 36 [36-—-37|24| 93 92 - 38 || 149 148
il 40 40 |41 —-421|[25 96 | 97 - 39| 153 154
12 45 45 45 26 || 101 100 - 40 || 156 157
13 48 48 |49 —50 27| 105 106 - 41 ) 161 162
14 52 52 54 28 | 109 108 - 42 | 165 164
15 56 57 57 29 || 114 112 — 43 [ 169 169




Table II. Maximum Minimum Distances for (7p, 6) Ternary QC
Codes

P dmin dbr Y4 dmin dbr )4 dmin
2 6 6 14| 63 63 26 || 118
3 || 11 11 15 66 |66 —68| 27| 123
4 || 15 |15—-16 16| 72 72 28 || 127
5 20 ]20—21 )17 || 76 77 29 || 132
6 || 24 25 18| 80 81 30 || 136
71 30 30 19| 85 - 31 || 141
8 || 34 36 20 90 - 32 || 146
9 1 39 39 2111 94 —  |[33} 150
10| 43 |43 —44 |22 99 — 34 || 156
11| 48 |48 —49 || 23 |[ 103 - 35 || 160
12 || 54 54 24 || 108 - 36 || 165
13| 57 |57 —58 25| 114 — |[37 | 171
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Table ITI. Defining Polynomials for Quasi-Twisted Codes over GF(3)

code | o bi(x)

(36,6) | 2 | 1,211,10121, 22121, 11021, 2221

(s0,6) 2 | 12111, 2211, 1101, 1121, 1001, 1211, 2221, 2111, 22221, 1201, 112121, 2011, 10111, 11021, 11

(114,6) | 2 | 112121,121, 20111, 10121, 10211, 1001, 2101, 21021, 21, 20221, 20121, 2021, 12121, 2201, 12211, 22121, 20211, 11211, 10221

(120,6) | 2 | 10211,11, 221, 111211, 111111, 20211, 11121, 11011, 1121, 22211, 121, 11211, 2201, 21, 1101, 12211, 2121, 21021, 2101, 1201

(174,6) | 1 | 102,1111,11111, 112122, 112, 1021, 11021, 10122, 10211, 1, 11212, 11, 11221, 11211, 121, 12221, 11122, 10102, 1212, 1121
10212, 10111, 122, 1101, 1201, 111112, 1222, 12112, 12111

(246,6) | 2 | 10101, 11121, 20111, 22111, 2221, 1111, 1221, 11, 10201, 12121, 2211, 2111, 1201, 2201, 20121, 22121, 1001, 101, 1, 11211
21121, 21111, 211, 21, 221, 11221, 111111, 11011, 1011, 10211, 2101, 1101, 1211, 111221, 21211, 12111, 2021, 22021, 12211
111121, 112121

(259,6) | 1 | 2211, 2001, 202101, 2021022, 21012, 21, 21102, 22221, 212121, 222111, 2202, 221112, 211122, 2212122, 222, 212112, 2022

22011, 21021, 20211, 22212, 221022, 20121, 222102, 2201202, 212022, 21222, 2121, 21111, 212202, 20112, 202212, 222222
22122, 211101, 21201, 221211




