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Abstract. Through combinatorial analysis we study the jump number, greediness and
optimality of the products of chains, the product of an (upward rooted) tree and a chain.
It is well known [1] that the dimension of products of n chains is n. We construct

a minimum realizer Ly, ... , Ly for the products of n chains such that a(ﬂf=l L) €

a(ﬂ{__tll Ly wherej=1,...,n—1.

1. Introduction

Suppose we are given a finite number of tasks to be sequenced subject to prece-
dence constraints, that is, a task cannot be scheduled until all of its predecessors
have been scheduled. If a task ¢ is scheduled immediately after the task u, then
there is a jump (or setup) resulting in a fixed cost if u is not one of ¢ ’s precedeces-
sors and there is no cost (no setup) if u is one of ¢ ’s precedecessors. Since the cost
of a jump does not depend on where it occurs, the cost of a schedule is completely
defined by the structure of the underlying partial order which represents the prece-
dence constraints. The problem is: schedule the tasks to minimize the number of
Jjumps. This is the jump number problem of a poset.

Let P be a finite poset and let | P| be the number of vertices in P. A subposet
of P is a subset of P with the induced order. A chain C in P is a subposet of P
which is a linear order. The length of the chain C is |C| — 1. A poset is ranked
if every maximal chain has the same length. A linear extension of a poset P is
a linear order L = zy,z2,...,T, of the elements of P such that z; < z; in P
implies 1 < j. Let L{ P) be the set of all linear extensions of P. Szpilrajn [16]
showed that £{ P) is not empty. Algorithmically, a linear extension L of P can
be defined as follows:

1. Choose a minimal element z; in P.

2. Givenz),2,...,z; choose aminimal element from P\ {z,... ,z;} and

call this element z;4,.

Let P, Q be two disjoint posets. The disjoint sum P+ Q of P and Q) is the poset
onPUQsuchthatz < yifandonlyifz,y€ Pandz < yinPorz,y € Q and
z < yin Q. The linear sum P & Q of P and Q is obtained from P+ Q by adding
therelationz < yforallz € Pandy € Q.
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Throughout this section, L denotes an arbitrary linear extension of P. Leta,b €
P with a < b. Then b covers a, denoted a < b, provided that for any c € P,
a < ¢ < bimplies that c = b. A (P, L)-chain is a maximal sequence of elements
21,22,...,2g suchthatz; < z3 < --- < 2z inboth L and P. Let ¢(L) be the
number of ( P, L) -chains in L.

A consecutive pair (z;, z;+1) of elements in L is a jump (or setup) of P in L if z;
is not comparable to z;., in P. The jumps induce a decomposition L = C,@- - -®
Cp of L into (P, L)-chains C), ... ,Cy, where m = ¢( L) and (max C;, min Cy)
isajumpof PinLfori=1,...,m— 1. Let s(L, P) be the number of jumps of
P in [ and let s( P) be the minimum of s( L, P) over all linear extensions L of
P. The number s( P) is called the jump number of P. If s(L, P) = s(P) then L
is called an optimal linear extension of P. We denote the set of all optimal linear
extensions of P by O(P).
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Figure 1: The poset N and its linear extensions.

In Figure 1 only L3 is optimal.

The width w( P) of P is the maximal number of elements of an antichain (mu-
tually incomparable elements) of P. Dilworth [6] showed that w( P) equals the
minimum number of chains in a partition of P into chains. Since for any linear
extension L of P the number of ( P, L) -chains is at least as large as the minimum
number of chains in a chain partition of P, it follows from Dilworth’s theorem
that

s(P) >w(P) —1. )]

If equality holds in (1), then P is called a Dilworth poset or simply a D-poset
[15]. ’

A crown is a partially ordered set with diagram in Figure 2(a). In 1982, Duf-
fus, Rival and Winkler [7] proved that every poset which contains no crown as a
subposet is a D-poset.

A linear extension L = z;,%,,...,z, of P is greedy if L can be obtained by
applying the following algorithm:

1. Choose a minimal element z, of P.
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Figure 2: (a) Crown (b) C.

2. Suppose z,, ..., z; have been chosen. If there is a minimal element of P \
{z1, ..., z;} which is greater than z; then choose z;; to be this minimal
element. If not, choose z;,; to be any minimal element of P\ {z1,... ,z;}.

In words, L is obtained by climbing as high as one can. Let G( P) be the set

of all greedy linear extensions of P. In Figure 1, L;, Ly, L3 are greedy linear
extensions of the poset N, but L4 is not greedy. So O(N) C G(N). Infact, L3
is a greedy optimal linear extension of N. Since the greedy algorithm above is a
particular way of carrying out the algorithm for a linear extension, by induction
we obtain [13] that every poset P has a greedy optimal linear extension.

A poset P is greedy if G(P) C O(P), thatis, every greedy extension is opti-

mal
X |24 .

Figure 3: The poset X and W.

In Figure 3, G(X) C O(X), O(W) = G(W). In the above examples, X and
W are greedy but N is not greedy.

A poset P is called series parallel if it can be constructed from singletons using
the operations of disjoint sum (+) and linear sum (@®). For example, (1+ 1) &
(1+ 1), acrown with 4 elements, is a series parallel poset.

In 1979, Cogis and Habib [5] proved that every series parallel poset is greedy.
In 1982, Cogis [4] asked for a characterization of greedy posets. The problem
remains open. A poset P is N-free if P contains no cover-preserving subposet
isomorphic to the poset N in Figure 1. The next lemma [12] by Rival partially
characterizes greedy posets.

Lemma 1.1. Every N -free poset is greedy.

In 1985, El-Zahar and Rival [9] showed that if P is a poset which contains no
subposet isomorphic to C in Figure 2(b), then O(P) C G( P).
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Let P4 denote the dual of the poset P, that is, the poset obtained from P by
reversing the order. If L is a linear extension of P, then its dual L¢ is a linear
extension of P4.

A poset P is said to be reversible if L € G(P?) forevery L € G(P). In 1986,
Rival and Zaguia [13] showed the following:

Lemma 1.2. A poset P is reversible if and only if O(P) = G(P).

2. Products of chains
Let P, Q be two posets. The direct product P x Q of P and Q is the poset on
{(p,9) : p€ P,g € Q} where(a,b) < (c,d) ifandonlyifea < cinPandb < d
in Q. Let k be a k-chain and P be P x --- x P (ntimes).

We consider the poseta) x - - - X ay Whereay, ... , a, are positive integers. We
assume thata; > 2 fori=1,... ,nand leta®* = max{e,,...,a,}. Without loss
of generality, we assume that a* = a;.

Proposition 2.1. Let
L=CioC®---€L(a1 X+ X@ys).
Then every (a1 X -+ - X ag, L) -chain C; is of the form
{b1...bi—1pbis1 ...y :c<p<L dforsomec>1,d < a;},

and hence has at most a* elements.

Proof: Suppose there was a chain C; containing two elements which differed in
at least two coordinates, say e = (ej,e2,...,€,) and f = (fi,f2,...,fa)
withe, < fi,e2 < f, e < fi (i > 3). The C; contains at most one of
(e1+1,er,e3,...,e,)and (e;, e + 1,e3,... ,e,). Buteach of these elements is
betweeneand fing) x - - - X a4, and so cannot be in G; for j # 1, a contradiction.
The proposition now follows.

Define C(b, ... ,bs) = {(4,b2,...,b,) : 1 < i< a*}. Then C(by,...,b,)
isachain of length a* — 1 forany by,... ,b, where1 < b; < gjforj=2,...,n

Theorem 2.2, Let L* = @C(ba,... ,b,) wherethe (by,... ,b,) are in lexico-
graphic order. Then L* € O(a) X --- X a,) and

s(a1 X -+ X ag) = (H::la,-)/a' —1.
Proof: Suppose (b2,...,bs) < (c2,...,cq) (lexicographic order). Then for all

y € C(c,...,c,) there does not exist z € C(bz,...,b,;) such thaty < z.
Hence L* € L(a1 x - -+ x az). Thus we get

8(L*,a1 X -+ X @g) = (Hlla.-)/a' —-1.
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Now by the definition of jump number,

star x - x ga2) <(IT @0 /a" - 1.

But Proposition 2.1 implies that
n
s(a1 X +++ X ag) > (Hiala,-)/a' —-1.

Hence we get the result.

Theorem 2.2 implies that every (a; X - - X ay, L)-chain in an optimal linear
extension L has length a* — 1.

Corollary 2.3,
O(a_]x xa_”) gg(a_lx “'XE&)'
Proof: Use Proposition 2.1 and Theorem 2.2.

Corollary 2.4,
, s(E™) = k7 -

The Boolean algebra B4 = (24, C) on a set 4 is the poset of all subsets of A
ordered by inclusion. Let[n] be {1,2, ..., n}. Forsimplicity, we write B, instead
of Biy. Itis well known that 2* = B,. Thus we get s(B,) = 2! — 1. For
asubset {l1,L,... 4} of [n] withl; < .-- < I we define B,(ly,...,L) tobe
the subposet of B,, which is induced by restricting B, to the sets of cardinalities
Lb,...,k.In [10] we can find

s(Ba(l, - -.h))-—nE( ) E(n-zkxuk).

k=1

Theorem 2.5. Let n > 2. Then P = a) X --- X a, is greedy if and only if
n< 3 andall a; equal 2.

Proof: Without loss of generality we assume e > - -+ > a,. Suppose n < 3 and
all a; equal 2. Thenn = 2 or 3, and so P is B, or Bs. By direct construction, we
can easily show that B, and B5 are greedy.

Suppose that eithera; > 3 orn >4 and e; = 2 forall 1.

Casel: a) > 3.

Ifa; > 3,thenletCo = {(y,1) : u=1,...,¢1}and C; = {(4,u) : u =
2,...,a2}fori=1,...,a,. ThenL; = Co ®C, ® - - - ® C,, is a greedy linear
extension of a; % a; which is not optimal. If a; = 2, thenlet C; = {(i,u) 1 u =
1,2}. Then Ly = C1 & - - - @ C,, is a greedy linear extension of a; x @ which
is not optimal. Hence a; x a3 is not greedy. Now we may identify a; x a2 with
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a1 X 82 X 1 x --- x 1. Thus we regard L), L as a greedy linear extension of
arxXgz Xx1x---x1,
Now let L be a linear extension of g1 x «-- x ay such that L = L; @ [ where
= 1 or 2 depending on the case above and [ is a greedy linear extension of
61 X -+-Xag\ a1 Xa3 X1 x---x 1. Then L is greedy but not optimal, and so
a1 X - X @y is not greedy.

Case2: n>4 anda; = 2 foralli.

Theorem 2.2 implies that for any optimal linear extension L, of By, every ( By, Lo) -
chain has length one. Thus it suffices to show that there exists a greedy linear
extension L of B, which has at least one one-element ( B, L)-chain. Since B,
is contained in B, for n > 4, it is enough to show that B4 has a greedy lin-
ear extension which is not optimal. Let C, = {6,{1}}, C2 = {{2}, {l 2}},
Cs = {{3},{1,3}}.Cs = {{4},{2,4}}, Cs = {{3,4}}, 1 € G(Ba \ UL, C).
Then

L=CioCaC;aCiCsol

is a greedy linear extension of By, but L is not optimal since Cs is a one-element
(B4, L)-chain.

By Corollary 2.3 and Theorem 2.5, we get from Lemma 1.2 that B,, is reversible
ifandonlyifn=1,2,3.

One may ask the following question: Let Q be a subposet of a greedy poset P.
Is Q greedy?

This is false. For example, by Theorem 2.5 B3 is greedy. Clearly,2 x 3 is a
subposet of B; but again by Theorem 2.5 not greedy.

3. Product of a tree and a chain

Throughout the section we let T denote an upward rooted tree, that is, a poset
whose diagram is an upward rooted tree and we study the properties of posets
T x k.

Proposition 3.1. Let P, Q be posets, and Lp = C, @ --- ® C, € L(P),
Lo=D1&®---®D, € L(P), and l,'j € L(C; x Dj). Let!l = ei.jlij where
1, Is arranged by keeping the following order relation: (1), j1) < (42,j2) ifand
onlyif iy <iyand j1 < j2. Then (i) le L(P x Q), (i) l € L(Lp x Lq).

Proof: Letz = (zp,zq) € by ji» ¥ = (yP,¥Q) € iz ju-
@Ifz<yinPxQ,thenzp < ypinPandzq < yqin Q. Thus 1) < 12
and j1 < jz and we get (i1, /1) < (42, /2).
@) Ifz < yin P x Q then (zp,zq) < (yp,yq) in Lp x Lq. This implies
thatzp < yp in Lp and zq < yg in Lq, and thus 4; < 43 and 5, < j2. Hence
(i1, /1) £ (12, 72).
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Lemma3.2. s(Pxk) < Y &, min{|Ci],k}—1 where C @---®C, € O(P).

i=1
Proof: LetC1@---@C, € O(P).Thenforlf € O(Cixk),c(l?) = min{|Ci, k}.
By Proposition 3.1, 1{ @ --- @13 € L(P x k). Andalsowe getc({ D ---®12) =
3oy min{|C;|, k}. Hence s(P x k) < Y i min{|C;|, k} — 1.

Figure 4: The tree T..

Consider the Figure 4. Let C; = {1,5,6,7},Cz = {3,4},C; = {2}, and
Dy ={1,3,4},D, = {5,6,7}, Ds = {2},and E, = {1,2}, B, = {3,4},
Ey ={5,6,7}. Notethat L, = C, ®C2®C3s € O(T.), Lo = D1 @D, ®
D3 € O(T.), Ls = E, ® E; ® E; € O(T.). Applying Lemma 3.2, we obtain
s(T. x 3) < 5. It follows from Theorem 3.5 that s(T, x 3) = 5.

To determiné s(T x k), we need the following Lemma. A k-family in P is a
subposet of P in which no (k + 1)-chain exists.

Lemma 3.3 (Saks [14]). The size of the largest k-family in a ranked poset P is
the maximal size w( P x k) of a set of mutually incomparable elements in P x k.

Proposition 3.4. If the maximum size of a chain in a ranked poset P is at most
k, then s(P x k) = |P| - 1.

Proof: By the hypothesis, P itself is a k-family. By Saks’ Lemma, w(P x k) =
|P|. Sos(P x k) > |P|-1. Nowlet C(a) = {(a,i) : i = 1,...,k} forall
a € P. Choose a linear extension L of P, and let L, = @C(a) where C(a)
is arranged just like the order of @ in L. Then s(L,,P x k) = |P| — 1. Hence
s(Pxk)=|P|-1.

Since T is an upward rooted tree, T" is N-free. By Lemma 1.1 T is greedy. Let
Cf be the longest chain in T". For j > 1 let G} be the longest chain in T\, C;.
ThenCy@- - -®C;, € G(T) wheren= w(T). SinceT is greedy, C; ®-- -®C; €
o).
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Theorem 3.5. Let C; & --- @ C;; € O(T) be as above. Then
'slie---0l,e0(Txk

wherel; € O(C!xk) (i=1,...,n) and thus s(T'x k) = Y .., min{|C}|, k}-1.

Proof: By construction, |C}| > --- > |C;|. We use induction on the number of
elements in T'.

Casel: k> |C}|.

This follows by Proposition 3.4.

Case 2: |C}| > k.

Letzbealeafof T in C; and T, be T\ {z}. Define D} = C! fori=1,... ,n—1

and D} = C; \ {z}. Let L} = D} @ - -- ® D},. Then L} € O(T,). The induction
hypothesis implies that

s(To x k) = min{|D}[,k} = 1= min{|C}],k} =1 > s(T x k).

i=1 =1

Let! € O(T x k) and [, be the restriction of  to Ty x k. Then c(L) < c({)
s(Txk)+1,and s(Tp x k) < (l,) —1 < s(T x k). Hence s(T x k)
s(Tox k) =Y, min{|C;,k} - 1.Sol'=l{®--- Dl € O(T x k).
Case3: |Cf| > k > |C).

Letz bealeaf of T in C;. Let T, = T \ {z}. By the induction hypothesis,
there exists L € O(T, x k) such that ¢(L) = Y., min{|C}|, k} — 1. Choose a
L* e O(Txk). Thenc(L*) > c(L). Suppose that c(L) = c(L*). Let L, be the
restriction of L* t0 T, x k. Then ¢(L*) > ¢(L,) > c(L). Since ¢(L) = ¢(L*),
we have

e(Ly) =¢e(L). )
Let y be an element in the tree covered by z. Then (2) implies that each (y, i)
(¢=1,...,k) is the last element of some (T X k, L,)-chainin L,. If |C}] < k,
then ¢(L*) = c(L,) implies ¢(L,) > c(L). Contradiction! If |C%| = k, then
{z}xkisa(Txk, L*)-chainin L*. Thus c(L,) = c(L)+1. Again contradiction!
Hencec(L) < c(L*),and thus s(To x k) < s(T x k) — 1. Now let D} be defined
in the same way as in Case 2. Then

n n
s(Tox k) =) min{|D}|,k} 1= min{|C}|,k} -1 1> s(Tx k) - 1.
1=1 i=]

Hence s(T x k) = s(T, x k) + 1= 3%, min{|C?], k} — 1.
Let V be a poset with three elements {z,y, z} such that z > y and z > y hold,
and z and z are incomparable.
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Proposition 3.6. If T x k isgreedy, then [T| <2 ork < 2.

Proof: Assumethat|T’| >2 andk > 2.LetCt®---@C; € O(T). If|C}| > 2
then G} x k is not greedy. Let [, be a greedy linear extension of C} x £ which
is not optimal. Choose any greedy linear extension [ of T x k£ \ C} x k. Then
L & Ly is a greedy linear extension of T x & but not optimal. Thus T x k is not
greedy. If |Cy| < 2 then T contains V. But V' x k is not greedy. So T" x k is not

greedy.

4. Application

In 1930, Szpilrajn [16] also proved that any order relation is the intersection of
its linear extensions. A set of linear extensions of P whose intersection is P is
called a realizer of P. In 1941, Dushnik and Miller (8] defined the dimension of
an ordered set P to be the minimum cardinality of a realizer of P. A minimum
realizer of P is arealizer which achieves the dimension of P. Dushnik and Miller
also showed that a poset has dimension at most 2 if and only if P has a conjugate
order if and only if its incomparability graph is a comparability graph.

In 1962, Ore [11] proved that the dimension of a poset P is the least number of
chains whose product contains P as a subposet.

The greedy dimension dimg P of P is the least number of greedy linear exten-
sions whose intersection is P. Bouchitte, Habib, and Jegou [2] showed that if P
is N-free then dimy P = dim P.

A poset is bounded if it has a least element and a greatest element. Baker [1]
showed the following lemma:

Lemmad4.1. Let P, Q be bounded posets. Then dim P x Q = dim P + dim Q.

Let P = a; x a3 x -+ x agq. Without loss of generality assume that a; >
G2 > -+ > 6n. A (reverse cyclic) jth chain C;(d1, ..., in1) of PO is {(ij1,
eer i L, 1',-,_1,...,2')') 1= l,...,a,-} where 1 < ij..] <ap,...,1 < £
gj-1,1 < ip1 € aje1,...,1 <3 <aq.Forj=1,... ,nlet

L; = (&Cj(41,... ,4n-1) : (41,... ,1s1) lexicographic order ).
Then L; € L( PY%). We call above Lj; the (reverse cyclic) jth linear extension of
P LetPi=LiN.---NLgfork=1,...,n
Proposition 4.2, Fork=1,...,n,
Pk=a_1x---a;,_1xL'° 3)

where L* is the first linear extension of ag X -+ X .

Proof: Weinducton k. If k = 1 then (3) is true. Suppose that (3) is true for k = 1.
Then Py = @) X - - - X aj_ X L where L* is a first linear extension of a; X - - - X Gy.
It suffices to show that P, = @y x --- x gy x L', that is,

(a_lx-o-xaz_lxL‘)an+1=__1.x---ngxL'“. @
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Letz = (z1,...,24) and y = (y1,... ,yn). Let any order relation be lexico-
graphic order.
Suppose z < yin (a1 % -+ X a1 x LY N Ly, Since z < y in L1,

(Ztyee  T1, Ty e, Tie1) < (Ylyeee U1, Ynseee s ie1) &)
Also,z < yinay x -+ x a1 x L', Thus we get
<y fori=1,...,[-1, ©6)
and
(Zayeee s 2D < (Ynseee s W0)- Q)]

Conversely, (5), (6), and (7) imply z < y in(ay X -+ - X @11 X LY N Ly, . Hence
(5), (6), and (7) are equivalent to T < yin (a1 X - -+ X g1 X L) N Lye1.
Now suppose z < yinay x --- x gy x Li*!. Then

g, <yifori=1,...,1 ®)
and (Zye1, .-+ 1 Za) < (Yie1,.-- , Yu) in L¥*1 thatis,
(CB",... xIHI) < (ym--- ’yl+l)' (9)

Conversely, (8) and (9) imply z < yina; x --- X a; x L**'. Hence (8) and (9)
are equivalenttoz < y i gy x -+~ x gy x L¥*!.

But we can easily show that (5), (6), and (7) are equivalent to (8) and (9). There-
fore we get (4).

Thus Lemma 4.1 and Proposition 4.2 imply that reverse cyclic linear extensions
Ly, ..., L, of P° are a minimum realizer. From Propostion 4.2 and Lemma 4.1,
we also obtain that a minimum realizer of a poset P satisfies (3) if and only if P is a
products of chains. But this does not imply any minimum realizer of a products of
chains satisfies (3). Forexample, let L1, L2, L3 be aminimum realizerof B; = 23
where

n={e{1tez)e{12}e 302,30 {1,3}0(1,2,3},
L={f}e{3}e{l}e{1,3}0{2}0{1,2}8{2,3}0{1,2,3},
Ly={0}e{3}e{2}e{2.3}0{1}e{1,3}0{1,2}8{1,2,3},
then L N Ly is By with {2,3} > {1}.

Letn>3anda; >2 fori=1,...,n Then P° = a; x - -- x a, always con-
tains {(0,1,1,0,...,0),(1,1,0,...,0),(0,0,1,0,...,0),(0,1,0,... ,0)}.
So P is not N-free. But since the reverse cyclic linear extensions Ly, ... , L, of
PO are a greedy minimum realizer, P° satisfies dim, P® = dim P°.

Another interesting observation is that the reverse cyclic linear extensions L,
«.., Ly of m™ are an optimal greedy minimum realizer.

Now we get a good property of dimension and jump number for the products
of n chains.

118



Theorem 4.3. Forj=1,...,n,let L; be the jth linear extension of ay X - - - X

ay. Then
s(P) <s(P) << 3(P)

where Py = Nk, L;. Furthermore, if all a; = m, then we get strict inequality.

Proof: Without loss of generality, we may assume that a; = max {a;}. By Propo-
sition 4.2, Py = a1 x --- X @x_1 x L* where L* is is the first linear extension
of ag X --- X ay. Since |L'| > |L%| > --- > |L"|, we get max{ay, [LF]} >
max{a1,|L**!|}. Now by Theorem 2.2 s(P;) = ([ ai/c) — 1 where ¢ =
max{a;, |L*|}, and hence we have s(P;) < s(Pi1).

Ifalla; = m, then we get|L’| = m™*!. Thus we getmax{ay, |L|} = m**!.
Again by Theorem 2.2 s( Py) = ([[h,;m/m™*!) — 1 = m*! — 1. Hence we
get strict inequality.

Suppose there are n jobs which are partially ordered, and there are a group of
people who scheduled those jobs linearly without violating the given partial order.
If consecutive jobs are not ordered then some extra cost is required. We want to
interview some people about their schedule and get the best schedule as regards
cost. Assume that after interviewing m people we can get the original partial order.

There are some questions about this.

“Find the minimum number of persons to get the original partial order on jobs™
is equivalent to “find the dimension of the poset P obtained from n jobs”.

Suppose we find the minimum number d of persons. After each interview we
have a poset with the cumulative results. Finding the minimum cost after each
interview is reformulated as follows: Let P be a poset and Ly,..., L4 be any
minimum realizer for P. Find s((Y,., L) forj=1,...,d.

By observing some examples(e.g., standard poset), we may ask whether or not
8V L) < s(Y2) L) istrue fori=1,...,d— 1.

Ly = z12011 Tayaw) 21 we 22 W3 w4 2324Y3,
L, = T2T3Y3T1Y2Y1 W1 21 22WaW323W4 24,

L3 = T372y3 %1 19221 22 2324 W1 Wa 03104,

Y3

T3

Figure 5: A poset and its minimum realizer L, L2, L3.
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There is a counterexample [17] for this. In Figure 5, s(L1) = 0,s(L1 NL32) =
4, and s(Ly N Ly N L3) = 3. But we conjecture the following:

Conjectured.d4. Let P be a poset with dimension d. Then there exista minimum
realizer Ly ... , Ly for P suchthat s((Y., L) < s((Y2) Ly) forj=1,... ,d—1.
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