On the number of points on a plane algebraic curve over $GF(q)[t]/t^n$

Dirk Keppens V

Wim Mielants

ABSTRACT. A general formula is obtained for the number of points lying on a plane algebraic curve over the finite local ring $GF(q)[t]/t^n(n>1)$ whose equation has coefficients in GF(q) and under the restriction that it has only simple and ordinary singular points.

1. Preliminaries

Let C be an algebraic curve in PG(2, GF(q)((t)), GF(q)((t)) being the field of Laurent series over GF(q), with minimal equation $F(X_0, X_1, X_2) = 0$ whose coefficients are supposed to belong to GF(q).

The finite local ring $GF(q)[t]/t^n$ is denoted as R_n and the "projective plane" over it (in fact a projective Hjelmslev plane) as $PG(2, R_n)$.

Then $C \mod t^n = \{R_n^*(x_0, x_1, x_2) | R_n^*(x_0, x_1, x_2) \in PG(2, R_n) \text{ and } F(x_0, x_1, x_2) = 0 \pmod{t^n}\}$ is an algebraic curve in $PG(2, R_n)$. In particular $C \mod t$ is an algebraic curve in PG(2, q).

The canonical epimorphism from $PG(2, R_i)$ onto $PG(2, R_j)(i \geq j)$ is denoted as Π_j^i . It is clear that $\Pi_n^{\infty}(C)$ $(R_{\infty} = GF(q)((t)))$ is a subset of C mod t^n .

If p is a point of C mod t^n then $\Delta_i^n(p) = (\Pi_i^n)^{-1}(\Pi_i^n(p))$ $(1 \le i \le n-1)$ is called the *ith neighbourhood of* p.

In this paper we shall calculate the number of points in the intersections $C \mod t^n \cap \Delta_i^n(p)$ for $\Pi_i^n(p)$ a simple ordinary point of $C \mod t$. As a consequence we obtain a general formula for the number of points on $C \mod t^n$. It will turn out that $|C \mod t^n|$ depends on $|C \mod t|$ (the number of points on the canonical projection $\Pi_i^n(C \mod t^n)$) and on the intersection numbers $|C \mod t^n \cap \Delta_1^n(p)|$.

2. The intersection numbers $|C \mod t^n \cap \triangle_i^n(p)|$

Suppose C had degree m and write $F(X_0, X_1, X_2) = F_0(X_1, X_2)X_0^m + F_1(X_1, X_2)X_0^{m-1} + \ldots + F_m(X_1, X_2)$ where F_i is a homogenous form of degree i in X_1 and X_2 . Without loss of generality we may assume that $p = R_{\infty}^*(1, 0, 0)$ is a point of C. Then $F_0 = 0$.

An arbitrary point of $\triangle_i^n(p)$ has coordinates of the form $R_n^*(1, t^i U, t^i V)$ with $U, V \in GF(q)[t]/t^{n-i}$.

Hence, the coordinates of the points of $C \mod t^n \cap \Delta_i^n(p)$ satisfy

$$F_{1}(t^{i}U, t^{i}V) + F_{2}(t^{i}U, t^{i}V) + \dots + F_{m}(t^{i}U, t^{i}V) = 0 \mod t^{n}$$

$$\iff t^{i}F_{1}(U, V) + t^{2i}F_{2}(U, V) + \dots + t^{mi}F_{m}(U, V) = 0 \mod t^{n}$$

$$\iff F_{1}(U, V) + t^{i}F_{2}(U, V) + \dots + t^{(m-1)}F_{m}(U, V) = 0 \mod t^{n-i}$$
(1)

2.1. Case I: p a simple point

We write $U = u_0 + u_1t + \ldots + u_{n-i-1}t^{n-i-1}$ and $V = v_0 + v_1t + \ldots + v_{n-i-1}t^{n-i-1}$ with $u_j, v_j \in GF(q), \ 0 \le j \le n-i-1$

Then we obtain from (1) the system (2):

$$\begin{cases} F_1(u_0, v_0) = 0 \\ F_1(u_1, v_1) = 0 \end{cases} \text{ (coefficient of } t) \\ \vdots \\ F_1(u_{i-1}, v_{i-1} = 0) \text{ (coefficient of } t^{i-1}) \\ F_1(u_i, v_i) + F_2(u_0, v_0) = 0 \text{ (coefficient of } t^i) \\ \vdots \\ F_1(u_{2i-1}, v_{2i-1}) + f(u_0, \dots, u_{i-1}, v_0, \dots, v_{i-1}) = 0 \\ \text{ (coefficient of } t^{2i-1}) \\ \vdots \\ F_1(u_{n-i-1}, v_{n-i-1}) + f'(u_0, \dots, u_{n-2i-1}, v_0, \dots, v_{n-2i-1}) = 0 \\ \text{ (coefficient of } t^{n-i-1}) \end{cases}$$

It is clear that this system has q^{n-i} solutions $(u_0, \ldots, u_{n-i-1}, v_0, \ldots, v_{n-i-1})$. So: $|C \mod t^n \cap \triangle_i^n(p)| = q^{n-i}$ if p is a simple point.

2.2. Case II: p an ordinary singular point

Let $p = R_{\infty}^*(1,0,0)$ be an r-fold singular piont $(2 \le r \le m-1)$ of C. Then $F_1 = F_2 = \ldots = F_{r-1} = 0 \ne F_r$.

The equation (1) becomes:

$$t^{(r-1)i}F_r(U,V) + \ldots + t^{(m-1)i}F_m(U,V) = 0 \mod t^{n-i}$$

$$(U,V \in GF(q)[t]/t^{n-i}). \tag{3}$$

1.
$$i \ge n/r$$

Then (3) becomes: $0 = 0 \mod t^{n-i}$.

Hence, $|C \mod t^n \cap \Delta_i^n(p)| = q^{2(n-i)}$ in this case.

2.
$$i < n/r$$

Then (3) becomes: $F_r(U,V) + t^i F_{r+1} + \ldots + t^{(m-r)i} F_m(U,V) = 0 \mod t^{m-ri} \ (U,V \in GF(q)[t]/t^{m-i}).$

Put $U = \tilde{U} + U'$ and $V = \tilde{V} + V'$ with $\tilde{U}, \tilde{V} \in GF(q)[t]/t^{n-ri}$ and $U' = u_{n-ri}t^{n-ri} + \ldots + u_{n-i-1}t^{n-i-1}$ and $V' = v_{n-ri}t^{n-ri} + \ldots + v_{n-i-1}t^{n-i-1}$.

Then $|C \mod t^n \cap \triangle_i^n(p)| = q^{2(r-1)i}$ times the number of solutions of

$$F_r(\tilde{U}, \tilde{V}) + t^i F_{r+1}(\tilde{U}, \tilde{V}) + \ldots + t^{(m-r)i} F_m(\tilde{U}, \tilde{V}) = 0 \mod t^{n-ri}$$
 (4)

One can see that the original problem is reduced to the problem of finding the numbers of points $(\tilde{U}, \tilde{V}) \in GF(q)[t]/t^{n-ri} \times GF(q)[t]/t^{n-ri}$ on the curve over $GF(q)[t]/t^{n-ri}$ with equation (4).

CASE (i)
$$\frac{n}{r+1} \le i < \frac{n}{r}$$

(4) becomes:

$$F_r(\tilde{U}, \tilde{V}) = 0 \bmod t^{n-ri}$$
 (5)

or equivalently (6):

$$\begin{cases} F_r(u_0, v_0) = 0 \\ u_1 \frac{\partial F_r}{\partial u_0} + v_1 \frac{\partial F_r}{\partial v_0} = 0 \\ u_2 \frac{\partial F_r}{\partial u_0} + v_2 \frac{\partial F_r}{\partial v_0} + f_2(u_0, u_1, v_0, v_1) = 0 \\ \vdots \\ u_{n-ri-1} \frac{\partial F_r}{\partial u_0} + v_{n-ri-1} \frac{\partial F_r}{\partial v_0} \\ + f_{n-ri-1}(u_0, \dots, u_{n-ri-2}, v_0, \dots, v_{n-ri-2}) = 0 \end{cases}$$

From now on we assume that the r-fold singular point p is an ordinary singular point (i.e. all tangents in p are distinct) with real index r'' (i.e. there are r'' distinct "real" tangents (with coefficients of their equation in GF(q)) (cfr. [1])).

- If $(u_0, v_0) \neq (0, 0)$ is a solution of $F_r(u_0, v_0) = 0$ then $(\frac{\partial F_r}{\partial u_0}, \frac{\partial F_r}{\partial v_0}) \neq (0, 0)$ since p is ordinary and singular. Hence, in (6) we have for each solution $(u_0, v_0) \neq (0, 0)$ of $F_r(u_0, v_0) = 0$, q solutions (u_1, v_1) , q solutions $(u_2, v_2), \ldots, q$ solutions (u_{n-ri-1}, v_{n-ri-1}) so that the number of solutions (\tilde{U}, \tilde{V}) of (5) with $(u_0, v_0) \neq (0, 0)$ equals $q^{n-ri-1}.r''(q-1)$.
- Consider the solution $(u_0, v_0) = (0, 0)$ of $F_r(u_0, v_0) = 0$. The first r equations in (6) become: 0 = 0.
 - a) If $n-ri \leq r$, then all equations in (6) become trivial (0=0) and consequently the number of solutions (\tilde{U}, \tilde{V}) of (5) with $(u_0, v_0) = (0, 0)$ equals $q^{2(n-ri-1)}$.
 - b) If n ri > r then the system (6) reduces to (7):

$$\begin{cases} F_r(u_1, v_1) = 0 \\ u_2 \frac{\partial F_r}{\partial u_1} + v_2 \frac{\partial F_r}{\partial v_1} = 0 \\ u_3 \frac{\partial F_r}{\partial u_2} + v_3 \frac{\partial F_r}{\partial v_2} + f_3'(u_0, u_1, u_2, v_0, v_1, v_2) = 0 \\ \vdots \\ u_{n-ri-r} \frac{\partial F_r}{\partial u_1} + v_{n-ri-r} \frac{\partial F_r}{\partial v_1} \\ + f_{n-ri-r}'(u_0, \dots, u_{n-ri-3}, v_0, \dots, v_{n-ri-3}) = 0 \end{cases}$$

- If $(u_1, v_1) \neq (0, 0)$ is a solution of $F_r(u_1, v_1) = 0$ then we obtain $q^{n-ri-r-1}.q^{2(r-1)}.r''(q-1)$ solutions (\tilde{U}, \tilde{V}) of (5) with $(u_0, v_0) = (0, 0) \neq (u_1, v_1)$
- For the solution $(u_1, v_1) = (0, 0)$ of $F_r(u_1, v_1) = 0$ the first r equations in (7) are 0 = 0.
 - (a) If $n-ri \leq 2r$ then all equations become trivial and the number of solutions (\tilde{U}, \tilde{V}) of (5) with $(u_0, v_0) = (u_1, v_1) = (0, 0)$ is $q^{2(n-ri-2)}$.
 - (b) If n-ri > 2r the system reduces to (8):

$$\begin{cases} F_r(u_2, v_2) = 0 \\ u_3 \frac{\partial F_r}{\partial u_2} + v_3 \frac{\partial F_r}{\partial v_2} = 0 \\ \vdots \\ u_{n-ri-(2r-1)} \frac{\partial F_r}{\partial u_2} + v_{n-ri-(2r-1)} \frac{\partial F_r}{\partial v_2} \\ + f''_{n-ri-(2r-1)}(u_0, \dots, u_{n-ri-4}, v_0, \dots, v_{n-ri-4}) = 0 \end{cases}$$
 As above we obtain that (5) has $q^{n-ri-2r-1}.q^{2(2r-2)}.r''$ $(q-1)$ solutions (\tilde{U}, \tilde{V}) with $(u_0, v_0) = (u_1, v_1) = (0, 0) \neq (u_2, v_2)$

and $q^{2(n-ri-3)}$ solutions (\tilde{U}, \tilde{V}) with $(u_0, v_0) = (u_1, v_1) = (u_2, v_2) = (0, 0)$ in the case where $n - ri \leq 3r$ and another system (with first equation $F_r(u_3, v_3) = 0$) for the solution $(u_2, v_2) = (0, 0)$ in the case where n - ri > 3r.

This procedure stops after a finite number of steps. Indeed, there is a non-negative integer k such that n-ri > kr and $n-ri \le (k+1)r$.

If r|n then $k = \frac{n-ri}{r} - 1$ and if r /n then $k = \left\lceil \frac{n-ri}{r} \right\rceil$.

So after a finite number of steps we obtain the system (9):

$$\begin{cases} F_r(u_k, v_k) = 0 \\ u_{k+1} \frac{\partial F_r}{\partial u_k} + v_{k+1} \frac{\partial F_r}{\partial v_k} = 0 \\ \vdots \\ u_{n-ri-(kr-k+1)} \frac{\partial F_r}{\partial u_k} + v_{n-ri-(kr-k+1)} \frac{\partial F_r}{\partial v_k} + g(\dots) = 0 \end{cases}$$

- If $(u_k, v_k) \neq (0, 0)$ is a solution of $F_r(u_k, v_k) = 0$ then the number of solutions (\tilde{U}, \tilde{V}) with $(u_0, v_0) = (u_1, v_1) = \dots = (u_{k-1}, v_{k-1}) = (0, 0) \neq (u_k, v_k)$ equals $q^{n-ri-kr-1}.q^{2(kr-k)}.r''(q-1)$.
- For $(u_k, v_k) = (0, 0)$ all equations in (9) become 0 = 0 (since $n ri kr \le r$). Hence, there are $q^{2(n-ri-k-1)}$ solutions (\tilde{U}, \tilde{V}) of (5) with $(u_0, v_0) = \ldots = (u_k, v_k) = (0, 0)$.

We conclude that $F_r(\tilde{U}, \tilde{V}) = 0 \mod t^{n-ri}$ with $\tilde{U}, \tilde{V} \in GF(q)[t]/t^{n-ri}$ has $r''(q-1)q^{n-ri-1} + r''(q-1)q^{n-ri}$ $(\sum_{j=1}^k q^{jr-2j-1}) + q^{2(n-ri-k-1)}$ solutions (the second term does not occur if k=0).

Since we had the number of solutions (U,V) of (3) is $q^{2(r-1)i}$ times the number of solutions (\tilde{U},\tilde{V}) of (5) we finally get: $|C \mod t^n \cap \triangle_i^n(p)| = r''(q-1)q^{n+(r-2)i-1}.(1+q(\sum_{j=1}^k q^{(r-2)j-1}))+q^{(n-i-k-1)}$ if p is an ordinary r-fold singular point with real index r'' and if $\frac{n}{r+1} \leq i \leq \frac{n}{r}$

CASE (ii)
$$\frac{n}{r+h+1} \le i < \frac{n}{r+h} \ (h \in \{1, ..., n-r-1\})$$

The case h = 0 has already been treated in Case (i).

(4) becomes: $F_r(\tilde{U}, \tilde{V}) + t^i F_{r+1}(\tilde{U}, \tilde{V}) + \ldots + t^{(s-r)i} F_s(\tilde{U}, \tilde{V}) = 0 \mod t^{n-ri}$ with s = r + h if $h \le m - r$ and s = m if h > m - r, or equivalently:

$$\begin{cases} F_r(u_0,v_0) = 0 \\ u_1\frac{\partial F_r}{\partial u_0} + v_1\frac{\partial F_r}{\partial v_0} = 0 \\ \vdots \\ u_{i-1}\frac{\partial F_r}{\partial u_0} + v_{i-1}\frac{\partial F_r}{\partial v_0} + f_{i-1}(u_0,\ldots,u_{i-2},v_0,v_{i-2}) = 0 \\ u_i\frac{\partial F_r}{\partial u_0} + v_i\frac{\partial F_r}{\partial v_0} + f_i(u_0,\ldots,u_{i-1},v_0,\ldots,v_{i-1}) \\ + F_{r+1}(u_0,v_0) = 0 \\ u_{i+1}\frac{\partial F_r}{\partial u_0} + v_{i+1}\frac{\partial F_r}{\partial v_0} + f_{i+1}(u_0,\ldots,u_i,v_0,\ldots,v_i) + u_1\frac{\partial F_{r+1}}{\partial u_0} \\ + v_1\frac{\partial F_{r+1}}{\partial v_0} = 0 \\ \vdots \\ u_{2i-1}\frac{\partial F_r}{\partial u_0} + v_{2i-1}\frac{\partial F_r}{\partial v_0} + f_{2i-1}(\ldots) + u_{i-1}\frac{\partial F_{r+1}}{\partial u_0} \\ + v_{i-1}\frac{\partial F_{r+1}}{\partial v_0} + f'_{i-1}(\ldots) = 0 \\ \vdots \\ u_{(s-r)i}\frac{\partial F_r}{\partial u_0} + v_{(s-r)i}\frac{\partial F_r}{\partial v_0} + f_{hi}(\ldots) + u_{(s-r-1)i}\frac{\partial F_{r+1}}{\partial u_0} \\ + v_{(s-r-1)i}\frac{\partial F_{r+1}}{\partial v_0} + f'_{(s-r-1)i}(\ldots) + \ldots + F_s(u_0,v_0) = 0 \\ \vdots \\ u_{n-ri-1}\frac{\partial F_r}{\partial u_0} + v_{n-ri-1}\frac{\partial F_r}{\partial v_0} + \ldots + u_{n-si-1}\frac{\partial F_s}{\partial u_0} + v_{n-si-1}\frac{\partial F_s}{\partial v_0} \\ + g(\ldots) = 0 \end{cases}$$
 It is clear that this system has the same number of solutions as

It is clear that this system has the same number of solutions as the corresponding system for the case h = 0.

Hence, the formula obtained in case (i) is valid for $1 \le i < \frac{n}{r}$.

3. The number of points on $C \mod t^n$

By using the previous section we obtain a formula for the number of points on $C \mod t^n$. Let n_1 be the number of simple points and n_r the number of r-fold singular points on $C \mod t$.

We then have that $|C \mod t^n| = n_1 q^{n-1} + \sum_r n_r \delta_1$ where $\delta_1(r, q, n) = |C \mod t^n \cap \Delta_1^n|$.

In particular, if C has only simple points, then $|C \mod t^n| = q^{n-1}|C \mod t|$.

If moreover $C \mod t$ is absolutely irreduceble over GF(q) then we have by the Hasse-Weil bound: $q^{n-1}.(q+1-2g\sqrt{q}) \leq |C \mod t^n| \leq q^{n-1}(q+1-2g\sqrt{q})$

 $1 + 2g\sqrt{q}$) where g is the genus of C mod t.

EXAMPLE: Cubic curves over $GF(q)[t]/t^n$

Assume that $C \mod t^n$ is a cubic curve over $GF(q)[t]/t^n$ such that $C \mod t$ is absolutely irreducible. There are four possibilities for $C \mod t$:

- 1. $C \mod t$ is a non-singular cubic. By the Hasse-Weil bound one has $(\sqrt{q}-1)^2 \le |C \mod t| \le (\sqrt{q}+1)^2$
- 2. $C \mod t$ is a cubic with a node (i.e. a double point with two distinct "real" tangents). Such a cubic has q points.
- 3. $C \mod t$ is a cubic with an isolated double point (i.e. a double point with two distinct "complex conjugated" tangents). Such a cubic has q+2 points.
- 4. $C \mod t$ is a cubic with a cusp (i.e. a double point with coinciding tangents). Such a cubic has q + 1 points.

We now calculate the number of points on the cubic curve $C \mod t^n$.

- 1. If $C \mod t$ is non-singular then we have $|C \mod t^n| = q^{n-1}.|C \mod t|$ and consequently $(\sqrt{q}-1)^2.q^{n-1} \le |C \mod t^n| \le (\sqrt{q}+1)^2.q^{n-1}$.
- 2. If $C \mod t$ has a node then we can use the formula obtained in this paper. So with r = r'' = 2 we obtain:

$$|C \mod t^n| = q^{n-1}(q-1) + 2(q-1)q^{n-1}(1+k) + q^{2(n-k-2)}$$
 with $k = \frac{n}{2} - 2$ if n is even and $k = \frac{n-3}{2}$ if n is odd.

Hence, $|C \mod t^n| = q^{n-1}(nq-n+1)$ for all n.

- 3. If $C \mod t$ has an isolated double point, then the formula in this paper remains valid. With r=2, r''=0 and k as in the previous case, we obtain that $|C \mod t^n|=(q+2)q^n$ if n is even and that $|C \mod t^n|=(q+2)q^{n-1}$ if n is odd.
- 4. Finally, let $C \mod t$ be a cubic curve with a cusp. In [1] it is shown that there are one or two projectively distinct curves of this type in PG(2,q) according as (q,3)=1 or 3 and they have the following canonical forms:
 - $(q,3) = 1 : F(X_0, X_1, X_2) = X_0 X_1^2 + X_2^3$
 - $(q,3) = 3 : F(X_0, X_1, X_2) = X_0 X_1^2 + X_2^3$ and $F'(X_0, X_1, X_2) = X_0 X_1^2 + X_1 X_2^2 + X_2^3$

The number of points on $C \mod t^n$ equals $q^{n-1}(|C \mod t|-1) + \delta_1 = q^n + \delta_1$. First assume that (q,3) = 1. Then δ_1 is equal to q^2 if n = 2 and to q^2 times the number of solutions (\tilde{U}, \tilde{V}) of $\tilde{U}^2 + t\tilde{V}^3 = 0 \mod t^{n-2}$ $(\tilde{U}, \tilde{V} \in GF(q)[t]/t^{n-2})$ if $n \geq 3$. One can easily check that $\tilde{U}^2 + t\tilde{V}^3 = 0 \mod t^{n-2}$ has q solutions for n = 3 (resp. q^2, q^3 and q^5 solutions for n = 4, 5 and 6).

For n = 7 the equation $\tilde{U}^2 + t\tilde{V}^3 = 0 \mod t^{n-2}$ is equivalent to the system:

$$\begin{cases} u_0^2 = 0 \\ 2u_0u_1 + v_0^3 = 0 \\ 2u_0u_2 + u_1^2 + 3v_1v_0^2 = 0 \\ 2u_0u_3 + 2u_1u_2 + 3v_0^2v_2 + 3v_0v_1^2 = 0 \\ 2u_0u_4 + 2u_1u_3 + u_2^2 + v_1^3 + 3v_0^2v_3 = 0 \end{cases}$$

We get $u_0=v_0=u_1=0$ and $u_2^2=-v_1^3$ while v_1,v_2,u_3,v_3,u_4 and v_4 are arbitrary in GF(q). Hence, the number of solutions (\tilde{U},\tilde{V}) is equal to q^6 times the number of solutions $u_2\in GF(q)$ of $u_2^2=-v_1^3$ with v_1 running in GF(q). The number of non-zero values $-v_1^3$ which are a square in GF(q) equals $\frac{q-1}{d}$ with d=(6,q-1). There correspond two values of u_2 with each of them. Consequently there are $2(\frac{q-1}{d})+1$ values for u_2 . We conclude that there are $q^6(\frac{2(q-1)}{d})$ solutions (\tilde{U},\tilde{V}) , so $\delta_1=q^8(\frac{2(q-1)}{d})$.

Next assume that (q,3)=3. For both $F(X_0,X_1,X_2)=0$ and $F'(X_0,X_1,X_2)=0$ one obtains the same value for δ_1 .

In the situation above (n = 7) the number of sixth powers in GF(q) is needed to be known in order to calculate the number of points on $C \mod t^7$. For higher values of n higher powers in GF(q) come in.

References

- [1] J.W.P. Hirschfeld, *Projective geometries over finite fields*, Clarendon Press, Oxford (1979)
- [2] D. Keppens, Polarities in n-uniform projective Hjelmslev planes, Geom. Dedicata, 26 (1988), p. 185-214.
- [3] D. Keppens, Polarities in 2-uniform projective Hjelmslev planes, Geom. Dedicata, 24 (1987), p. 51-76.