On the number of points on a
plane algebraic curve over GF(q)[t]/t"

Dirk Keppens Wim Mielants

ABSTRACT. A general formula is obtained for the number of
points lying on a plane algebraic curve over the finite local ring
GF(q)[t]/t"(n > 1) whose equation has coefficients in GF(q)
and under the restriction that it has only simple and ordinary

singular points.

1. Preliminaries

Let C be an algebraic curve in PG(2, GF(q)((t)), GF(q)((t)) being the field
of Laurent series over GF(g), with minimal equation F(Xp, X1, X3) =0
whose coefficients are supposed to belong to GF(g).

The finite local ring GF(g)[t]/t" is denoted as R,, and the “projective
plane” over it (in fact a projective Hjelmslev plane) as PG(2, R,,).

Then C mod t" = {R},(xo, z1, 22)| R (z0, %1, 22) € PG(2, R,) and
F(zo, z1,22) = 0 (mod ¢™)} is an algebraic curve in PG(2, R,,). In partic-
ular C mod ¢ is an algebraic curve in PG(2, g).

The canonical epimorphism from PG(2, R;) onto PG(2, R;)(i > j7) is
denoted as IT. It is clear that TI°(C) (Reo = GF(g)((t))) is a subset of C
mod t™,

If p is & point of C mod ¢* then A}(p) = (IIF)~1(II*(p)) 1 <i<n—1)
is called the ith neighbourhood of p.

In this paper we shall calculate the number of points in the intersections
C mod t® N A}(p) for II?(p) a simple ordinary point of C mod t. .As
a consequence we obtain a general formula for the number of points on
C mod ¢™. It will turn out that |C mod ¢"| depends on |C mod ¢| (the
number of points on the canonical projection II?(C mod t")) and on the
intersection numbers |C mod t* N A}(p)|.
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2. The intersection numbers |C mod t" N A} (p)|

Suppose C had. degree m and write F(Xo, X1,X2) = Fo(X1,X2)X§+
Fi(X1,X2) X3! + ... 4+ Fu(X1, X2) where F; is a homogenous form of
degree i in X; and X2. Without loss of generality we may assume that
p=R%,(1,0,0) is a point of C. Then Fp =0.

An arbitrary point of A?(p) has coordinates of the form R3(1,¢'U, V)
with U,V € GF(g)[t}/t"*.

Hence, the coordinates of the points of C mod t™ N A} (p) satisfy

Fi(t'U, V) + F(t'U,t'V) + ... + Fu(t'U,£'V) = 0 mod t"
= tRUV)+2FRU,V)+...+ t™Fu(U,V) =0mod t"
= F(U,V)+tRUV)+...+ ™ DF,(U,V) =0 mod ¢~
(1)

2.1. Case I: p a simple point

We write U = wp+uit + ... + tn—i1t® "7l and V = v + mit + ... +
Vp—i—1t" ! with u;,v; € GF(g), 0<j<n—-i-1
Then we obtain from (1) the system (2):

( Fi(uo,u0) = 0
Fy(u,v1) =0 (coefficient of t)

Fy(ui-1,vi~1 =0 (coefficient of &*~1)
Fi(us,v;) + Fa(uo,v0) = 0 (coefficient of )

Fy(ugi-1,v2i-1) + f(uo, ... yui-1,%0,... ,%-1) =0
(coefficient of $2—1)

Fi(tn—i-1,Un-i-1) + f'(u0,- - , Un—2i-1,%0, ... ,Un—2i—1) =0
| (coefficient of t"—i~1)

It is clear that this system has g™~ solutions (ug,..., Un—i—1, %o,---,
Vn—i—1). So: |C mod t" N AF(p)| = ¢"* if p is a simple point.

2.2. Case II: p an ordinary singular point

Let p = R (1,0, 0) be an r-fold singular piont (2 <r <m—1) of C. Then
Fi=F=..=F_1=0#F,.
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The equation (1) becomes:
t-VE (U, V) + ...+t E, (U, V) =0 mod t**
U,V € GF(g)lt}/¢"™). 3

1 [z

Then (3) becomes: 0 =0 mod ¢™~*.
Hence, |C mod " N A?(p)| = ¢*™~*) in this case.

:

Then (3) becomes: F(U,V) + t*Fry1 +... + t(™"¥F,(U,V) = 0 mod
t=ri (U, V € GF(g)lt)/t~).

PtU=U+U'andV=V+V' with0U,V e GF(q)[t]/t" " and U’ =
Up ™™ ri .Uy ltn-i—»l and V' = v, _pt"~ r +...+v—i1 gn—i-l,

Then |C mod t* N A%(p)| = ¢*"~1) times the number of solutions of

F (U, VY4 8 Fy(0,V)+ ...+t F (T,V) =0mod t* " (4)

One can see that the original problem is reduced to the problem of finding
the numbers of points (U, V) € GF(q)[t]/t"* ™ x GF(q)[t]/t"~" on the
curve over GF(q)[t]/t"~™ with equation (4).

CASE(i)ﬁTskg

(4) becomes:
F.(U,V)=0mod t" ™ T (B)
or equivalently (6):
( Fr(ug,v0) =0
r =0
Uiz
8F,. OF;

auO +‘vzav +f2(u01ul)00ivl) =

O ok
Up—ri—1 Fuo n—ri—1 Fvo
\ +frri-1(¥0, - - , Un—ri—2,V0s -+« ,Un_ri—2) =0

From now on we assume that the r-fold singular point p is an ondinary
singular point (i.e. all tangents in p are distinct) with real indez r” (i.e.
there are r” distinct “real” tangents (with coefficients of their equation in
GF(q)) (cfr. 1])).
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o If (uo, o) # (0,0) is a solution of F, v(uo,%0) = 0 then (8=, §&) #
(0,0) since p is ordinary and singular. Hence, in (6) we have for each
solution (ug, vo) # (0,0) of Fy.(uo,v0) = 0, ¢ solutions (uy, 1), g solu-
tions (uz,vz),..., ¢ solutions (un_n_l,v,._,.,..l) so that the number
of solutions (U, V) of (5) with (uo, vo) # (0,0) equals g"~"~1.r"(g —

1.

o Consider the solution (ug,v) = (0,0) of Fy(uo,v0) = 0. The first
equations in (6) become: 0 = 0.

a) If n —ri < r, then all equations in (6) become trivial (0 = 0)
and consequently the number of solutions ({7, V) of (5) with

(uo,0) = (0, 0) equals g2»~7-1),
b) If n — i > r then the system (6) reduces to (7):
( Fr(ul,‘vl) =30
r Fr _
U9 au =0

aF, 3F
usau +v 36 z +fé(u01u1)u2)00)vltv2) =0

_oR,. R
Un—ri-r dur n—ri—r By
\ +f"l—7‘i—1'(uOv voe yUn—ri-3,Y0,-.- ,'Un—ri—a) =0

- If (ul,vl) # SO ,0) is a solution of Fy-(u1,v1) = 0 then we obtain
n—ri—r—1 g2(r—1) 1(q_1) solutions (7, V') of (5) with (uo, vo) =
(0,0) # (ux.vn)
— For the solution (uj,v1) = (0,0) of Fr(uy,v;) = 0 the first =
equations in (7) are 0 =0.
(a) If n — ri < 2r then all equations become trivial and the
number of solutions (I, V') of (5) with (uo,vo) = (u1,v1) =
(0,0) is qz(n—n—z)
(b) If n—7ri>2r the system reduces to (8):
( F; (‘uz,‘vz)
3F,
a— +v3

8‘02_0

¥ Bun

F; oF,
Up—ri—(2r-1)7 Bug + Vn—ri—(2r-1) dvz
\ +fn—n—(2i‘-l)(u0a « 3y Un—ri4, 20, - vn—n—4)=0
As above we obtain that (5) has ¢g" "~ 2r—1 g22r=2) o (q —
1) solutions (I, V) with (uo,v0) = (u1,v1) = (0, 0) # (ug,v2)
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and gX"~"-3) solutions (U, V) with (uo,v0) = (u1,v1) =
(u2,v2) = (0,0) in the case where n — ri < 3r and another
system (with first equation F,.(ug,vs) = 0) for the solution
(u2,v2) = (0,0) in the case where n — ri > 3r.

This procedure stops after a finite number of steps. Indeed,
there is a non-negative integer k such that n — ri > kr and
n—-ri<(k+1)r.

Ifrlnthenk:n—m—la.ndifr,{'nthenk=

r
So after a finite number of steps we obtain the system (9):
Fr(uk,v) =
oF, OF,
uk+la + Vpp1— B 0

n—ri

dF, dF,
un—ri-(kr—k+1)a_u: + ”n—n'-(kr—m)# +9(...)=0

o If (ug,vx) # (0,0) is a solution of Fy.(ux,vx) = O then the number
of solutions (U, V) with (uo,vp) = (u,,'vl) = = (ug—1,Vk—1) =
(0,0) # (uk,vx) equals gn—i-kr—1 gZ(kr—k) 7‘"(‘1 1).

e For (u,vx) = (0, 0) all equations in (9) become 0 =0 (since n —ri —
kr < r). Hence, there are q"’("""”“‘l) solutions (U, V) of (5) with
(w0, m0) = ... = (uk, v) = (0,0).

We conclude that F,.(T, V) =0 mod "~ with U, V € GF(q)[t)/t"

has r”(q l)q" —-ri—-1 +1.n(q l)q —ri (Z - qu-—2J—1)+q2(n—ﬂ—k 1)
solutions (the second term does not occur 1f k=0).

Since we had the number of solutions (U, V') of (3) is ¢%("~ 1) times the

number of solutions (T, V') of (5) we finally get: |C mod t"NAM p)|=

r(q—1)gm KDL (14( L, ¢D5))+¢(+*1 if p is an ordinary

n ._n
<t -
r+1~ ~r

r-fold singular point with real index r” and if

CASE (i) - h+1 <i< r:h (he{l,...,n—r—1})

The case h 0 has already been treated in Case (i).
(4) becomes: Fo(U, V) + tiFpy (T, V) + ...+t F,(T,V) = 0 mod
t" " withs=r+hifh <m—rand s—mlfh> ™ — T, or equivalently:
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[ Fr(up,v0) =0
BF

dF,
3 =0
JOF, OF,
w1 5—+vi—1 =+ fi—1(n0, . . . , Bi—2,%0, ¥i—2)=0
Oug A,
OF, oF,

uia +v ia +ft(u0v B $ui—livo"--’”t'—l)
+Fr+1('uo,vo) =

oF, OF,
Yit1 g +v.+18 +f.+1(uo,---,us,vo,- ) +u au?
+v ——8F"+1 0
! dvg =
<
dF, dF, OFi1

uzi-150 +'U2:—16 + faic1(e.. ) F Ui —4— B

aFr+1 _
+vl—1 avo +fl'—l("')—

OF, oF,

dF,
Us—r)ig dug + Y(s-r)ig — vo + f'“( ) + U(s—r—1)i Tl

dF, Ouo
H0o—r-1i gt + famrotile+) -+ Foluo, 00) =0

R, oF,, oF, ,  OF,
Up—yi—1 (3140) VUn—ri-17— 3vo Up—si—1 3‘u.0 Un—si—1 o

It is clear that this system has the same number of solutions as the
corresponding system for the case h = 0.

Hence, the formula obtained in case (i) is valid for 1 <i < 1:—

3. The number of points on C mod ¢

By using the previous section we obtain a formula for the number of points
on C mod t*. Let n; be the number of simple points and n, the number
of r-fold singular points on C mod t.

We then have that |C mod t"| = nig"~! + X, n,6, where 6;(r,q,n) =
|C mod t™ N AT.

In particular, if C has only simple points, then |C mod t"|=¢™*|C mod
t).

If moreover C mod t is absolutely irreduceble over GF(q) then we have
by the Hasse-Weil bound: ¢"~!.(g +1 — 29,/g) < |C mod t*| < ¢"~}(q +
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1+ 2g,/q) where g is the genus of C mod ¢.

EXAMPLE: Cubic curves over GF(q)[t]/t"

Assume that C mod t" is a cubic curve over GF(g)[t]/t" such that C mod
t is absolutely irreducible. There are four possibilities for C mod t:

1. C mod ¢ is a non-singular cubic. By the Hasse-Weil bound one has
(V-1 <|Cmod | < (v7+1)

2. C mod t is a cubic with a node (i.e. a double point with two distinct
“real” tangents). Such a cubic has q points.

3. C mod ¢ is a cubic with an isolated double point (i.e. a double point
with two distinct “complex conjugated” tangents). Such a cubic has
g + 2 points.

4. C mod t is a cubic with a cusp (i.e. a double point with coinciding
tangents). Such a cubic has ¢ + 1 points.

We now calculate the number of points on the cubic curve C mod t».

1. If C mod ¢t is non-singular then we have |C mod t"| = ¢"~.|C mod
t| and consequently (/g —1)%.¢"~! < |C mod ¢*| < (,/g+1)%.g""".

2. If C mod t has a node then we canh use the formula obtained in this
paper. So with r = r” = 2 we obtain;
|C mod t*| = ¢" (g — 1) + 2(g — 1)g* (1 + k) + ¢*("~*-2) with

k=%—2ifniseven and k=n—;—ifnisodd.
Hence, |C mod t"| = ¢"~!(ng —n+1) for all n.

3. If C mod ¢ has an isolated double point, then the formula in this
paper remains valid. With » = 2,7 = 0 and k as in the previous
case, we obtain that |C mod t"| = (g + 2)g™ if n is even and that |C
mod t*| = (g + 2)¢"~! if n is odd.

4. Finally, let C mod ¢ be a cubic curve with a cusp. In [1] it is shown
that there are one or two projectively distinct curves of this type in
PG(2,q) according as (g,3) = 1 or 3 and they have the following
canonical forms:

e (,3)=1: F(Xo, X1, X2) = Xo X} + X3
e (¢,3)=3: F(Xo, X1, X2) = XoX? + X3
and F'(Xo, X1, X2) = XoX? + X1 X2 + X3
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The number of points on C mod t™ equals ¢"~*(|C mod t| - 1) +61
q" +6;. Fu'st assume that (g,3) = 1. Then §; is equal to gifn=
and to q times the number of solutions ({7, V) of U2 4+ tV3 = 0 mod
t"=2 (U,V € GF(q)[t}/t*~%) if n > 3. One can easily check that
U2 +tV3 = 0 mod "2 has ¢ solutions for n = 3 (resp. ¢%,¢° and ¢°
solutions for n = 4,5 and 6).

For n = 7 the equation 2 + tV3 = 0 mod ¢"~2 is equivalent to the
system:

ud=0

2uouy + 'vo =0

2ugug + ul + 3‘01'00 =0

2ugug + 2ujus + 3'vov2 + 31101)1 0

Qugug + 2ujus + 43 + v} + 3vfvs =0

We get ug = vp = u3 = 0 and u3 = —v} while v1, V2, U3, V3, uq_and
vy are arbitrary in GF(q). Hence, the number of solutions (U V)
is equal to ¢® times the number of solutions up € GF(q) of u3 =
—v3 with v; running in GF(g). The number of non-zero values —v}

with d = (6,¢ — 1). There

correspond two values of ug with each of them. Consequently there
q- 2(g - 1))

which are a square in GF(q) equals -

are 2( )+1 values for up. We conclude that there are g5(

solutions (0,V), 0 6, = qs(g(idl)).
Next assume that (g,3) = 3. For both F(Xp, X1,Xs) = 0 and
F'(Xo, X1, X2) = 0 one obtains the same value for 6;.

In the situation above (n = 7) the number of sixth powers in GF(q)
is needed to be known in order to calculate the number of points on
C mod t7. For higher values of n higher powers in GF(q) come in.
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