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Abstract

The blocks of a balanced ternary design, BTD(V, B; oy, ps, R; K, A),
can be partitioned into two sets: the b, blocks that each contain no
repeated elements, and the b; = B - b, blocks containing repeated
elements. In this note, we address, and answer in some particular
cases, the following question. For which partitions of the integer
B as by + b; does there exist a BTD(V, B;py, pa, R; K,A)?

§1. Introduction

A balanced n-ary design (BnD) with parameters (V, B, R, K, A), said
by some to be proper and equireplicate, is an arrangement of V elements
into B multisets, called blocks, under the following stipulations. Letting
myp denote the multiplicity of the vth element in the bth block, we insist
that each block have cardinality K:

- |4
W< B, ) mu=K;

v=1

that any element appears at most # — 1 times in a block: myp < n; that
each element appears R times in the design:

B
Vo<, Z my = R;
b=1
and that every pair of distinct elements appears A times:
B
Vv, w < V,v #w, Em.,bmwb =A.

b=1

When n = 3, such a design is called a balanced ternary design, or BTD,
and in this case one can show that all elements appear with multiplicity
one in a constant number of blocks, say p,, and with multiplicity two in a
constant number of blocks, say p;. Customarily, one lists the paranieters
of a BTD as

(1.1) (V,B; p1,p2, R; K, A).
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The existing work on BTDs is extensive, beginning with the intro-
duction of n-ary designs by Tocher [24]. Saha [17] proved that, in a
BTD, Y, m?, is independent of v. For a general introduction to n-ary
and ternary designs, see Billington’s 1], [2], and Billington and Robin-
son’s [7], which lists parameters of BTDs whose existence or nonexistence
is known, or whose existence could not be ruled out at that time. Since its
publication, new designs have been constructed; see, for instance, Dillon
and Wertheimer [8] as well as Sinha [21]. An upcoming paper of Billing-
ton will include an improved list. Billington [3] has completely settled the
question of existence of ternary designs with block size three, and Dona-
van has obtained several families of BTDs with block size four. By using
Bhaskar Rao designs, Sarvate and Seberry [20] have constructed certain
designs not isomorphic to those listed in [7]. Many authors, for example
Billington, Dey, Francel, Hoffman, Khodkar, Mahmoodian, Mathur, Misra,
Nigam, Patwardhan, Saha, Sarvate, Sharma, Sinha (see bibliography), have
studied partially balanced and balanced ternary designs. See Vartak and
Diwanji [25] for constructions of column-regular BTDs.

Motivated by a comment of Professor D.A. Preece at Billington’s talk
[4], we consider designs with a prescribed number of blocks each having
at least one repeated element. Specifically, define a balanced part n-ary
design with parameters ’

(1.2) (Vi;b1,b2y...,bn—1,B; R; K, A)
to be a BaD(V, B; R; K, A) such that exactly by blocks satisfy
minmy; = k.
Obviously, by +:+- + by—1 = B.
We focus in this paper on the case n = 3, referring to the design as a
balanced part ternary design and listing its parameters as

(1'3) (V;bl9b21B;Php2)R;K,A)

From the definition, every BTD is a BPTD for some choice of b; and
b2, and conversely. However, the parameters (1.1) need not determine b;
and b;. For example,

11122311
111223 22
2 343 4433
2 3 43 4 4 4 4
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and

11122311
1112 23 2 2
23 434433
2 4 444433

are both BTDs with parameters (4, 8; 2, 3, 8; 4, 6), but the first has b, = 2,
bz = 6 and the second has b, = 0, b, = 8. This raises the question, “Given
a BTD with parameters (1.1), for which b, and b, in (1.3) does a BPTD
exist?”. We provide partial answers to this general question and analyze
completely some particular cases.

One can easily generalize this question for n-ary designs: for which
partition of B into by + bz + -+ + by—1 does a BPnD with parameters (1.2)
exist?

Many existing constructions of BTDs are equally useful as BPTD con-
structions, in the sense that they provide ternary designs with specific val-
ues of the parameters b; and b,. As examples, we restate four results from
[7] (their Theorem 1.1 and Results 1.2, 1.3, 1.4) from a BPTD point of

view.

Theorem 1.4:  If there exists a BPTD with parameters (V;by,b;,V;V —
4,1,V —2;V - 2,V — 4), then a BPTD with parameters (V + 4;b;,b2 +
4,V+4V,1,V+2;V +2,V) exists.

Result 1.5:  From a BIBD with parameters (v, b, r,k,A), where k = v,
a BPTD with parametersV =v,by = L, by =b,B=b+L,py=L,p2 =,
R=L+2r, K=2k=uv, and A = 4\ + L can be constructed for every
nonnegative integer L.

Result 1.6:  From a BIBD with parameters (v,b,r,k,A), where k =

3(v - 1), a BPTD with parameters V = v, b, = v, b, = b, B=b+ v,
nr=v=1,pp=r, R=v-142r, K=2k=v—-1,andA =4\ +v -2
can be constructed.

Result 1.7: From a BPTD with pa.rameters (V;b1,b2, B; p1,p2, R; K, A)
and a BIBD with parameters (V,b,r, 3K, )), one can construct a BPTD
with parameters (V;by,by + b, B + b;p1,p2 + 7, R+ 2r; K, A + 4)).

We give a simple generalization of 1.5 and 1.6 in section 2. In section
3, we derive some necessary conditions on (1.3). Section 4 covers the case
min(K,A) < 3. In sections 5 and 6, we find all possible values of b; and b,
for certain BPTDs satisfying K = A.

§2. Constructions of BPTDs.

The constructions in Results 1.5 and 1.6 produce BPTDs by doubling
the block size of a given BIBD by writing the elements of each block twice
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and appending a suitable design. In 1.5, the second design consists of L
complete blocks, and, in (1.6), it consists of all blocks generated by the
initial block {1,2,...,v — 1} modulo v. In general, it is not necessary
to require more of the second design than that its parameters be related
correctly ‘to the first’s. One can also use s copies of the first design and ¢
copies of the second, where s and ¢ are nonnegative integers, to produce
the final BPTD. The resulting BPTD, like those constructed in 1.5 and 1.6,
has the property that any block containing repeated elements contains no
single elements. We summarize this construction in the following result.

Theorem 2.1:  If there exists a BIBD with parameters (V, by, p1, K, A1)
and a BIBD with parameters (V, bz, p2, %,)\2), then one can construct a
BPTD with parameters (V; sby,tbs, B; sp1,tp2, R; K, 8\ + 4t);) for any
nonnegative integers s and t. In the resulting BPTD, no block with repeated
elements contains single elements.

For example, there exist BIBDs with parameters (16, 30, 15, 8, 7)
and (16, 20, 5, 4, 1) ([14]), from which we can construct a BPTD with
parameters (16; 30, 20, 50; 15, 5, 25; 8, 11). Observe that the second BIBD
is of a form different from that in results 1.5 or 1.6.

Finally, the BPTD(8;16,4,20;8,1,10;4,4)

1357111111112222222:2
1 35 73333 444433334444
2 46 855665566556 6 5 5 6 6
2 46 87 87 8787878787878

demonstrates that there exist BPTDs not arising from (2.1) but still having
the property that no block with repeated elements contains single elements.

§3. Necessary Conditions

In a BPTD(V;b1,b2, B; p1,p2, R; K,A), there occurs at least one re-
peated element in each of the by blocks. Thus by < Vs, the total number
of such occurrences. At the same time, b, cannot exceed B.

Let M be the maximum number of repeated elements in any single
block of a BPTD. Then Vp; < Mb,;. Combining this with the upper
bound yields

V2

(3.1) 2 S b2 < min(Vps, B).
Since 2M < K, we also have
(3.2) VP2 4, < min(Vpa, B).

2]
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Let ¢; be the number of blocks with ! repeated elements (and, conse-
quently, K — 21 single elements). For instance, ¢o = b; and

M

(3.3) D a=b,.

Furthermore, the total number of repeated elements is
M

(3.4) Y al=Vp,.
=1

As usual, we say that the pair (z,y) occurs singly within a block that
contains both z and y with multiplicity one. Let a; be the number of pairs
that appear singly ¢ times in the design. Since each element appears in p;
blocks with multiplicity one, and no pair appears singly more than A times,
a¢ = 0 for ¢ > min(p;,A). Thus

(3.5) mi%ma. = (‘2’)

t=0

In a block with [ repeated elements, (K ;2') pairs occur singly. Thus the
total number of single occurrences of pairs is

min(/\,pl) M (K - 21)’

(3.6) 2 agt = Z al” 4

t=1 =0

In a ternary design, every multiple occurrence of a pair contributes an even
number of its total occurrences. Thus, each pair must occur singly an odd
number of times if A is odd, and an even number of times if A is even. That
is, a; = 0if t and A have different parity.

Lemma 3.7:  If K equals 4 or 5, and if A is odd, then a necessary
condition for a BPTD to exist is that

(3.7) 4b; < B(I;) - (‘;) - Vp, (K 2‘ 2).

Proof:  There can be at most 2 repeated elements per block, so (3.3)
and (3.4) become a 2 x 2 linear system in ¢; and ¢, from which we find that
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c1 = 2by — V. Because A is odd, we need sum only over the odd integers
in (3.5) and (3.6). Consequently,

1%
o) =m1tastast--

<ay+3a3+5a5+---
_ K + K-2 + K-4
=clz) A 2 2\ 2

K K-2
=(B—b2)(2)+(2b2—Vp2)( 2 ).

Because (¥) — 2(¥;?) = 4, the above simplifies to (3.7). O

This condition is not sufficient, as we will see in a later section.

In a private communication, Professor Billington has told the authors
that (3.7) is part of a result appearing in her upcoming paper.

As a further application of (3.3), (3.4), (3.5), and (3.6), we have the
following result (which can be stated without reference to the concept of a
BPTD).

Lemma 3.8: Let K equal 4 or 5. The following conditions are necessary
for the existence of a BPTD, or, for that matter, a BTD.

(3.8.a) If A is even, then Vp, is even.

(3.8.b) If A is odd, then Vp, (K ; 2) + ‘2, is even.

Proof: As in the proof of (3.7), ¢ = 2ba — Vpa, regardless of the
parity of A.
If A is even, we need sum only over the even integers in (3.6):

K K-2
2a2+4a4+6a3+---=(B—bg)(z)+(2b2—Vp2)( )

2
K K-2
—3(2)—Vp2( D) )—4b2.

Because the left side of the above is even, because B(%) and 4b, are even,

and because (¥;?) is odd, we conclude that Vp, must be even.
If A is odd, we sum over the odd integers in (3.5) and (3.6):

\4
g1 +a3+ag+---= 9

K-2
a1 +3a3+5a5+o~=B(I2{) —sz( 9 )—4b2.
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By subtracting equations and repeating the arguments used when A is even,
one obtains the desired result. O

The following lemma is given here, as it shortens the proofs of some
later results.

Lemma 3.9: If A equals 6 or 7, and if, within two blocks of a BPTD,
there appear {z,z,y,y} and {z,z,y}, then it is necessary that
(3.9) 2(p1+p2) —A+4< B.

Proof: Since A < 8, the multiplicity with which y appears within
the second block must be one. Among the other B —2 blocks there must be
p1 single occurrences of z and p; — 1 single occurrences of y. Furthermore,
the pair {z,y} must occur singly in exactly A — 6 of these blocks. There
must also appear among these B — 2 blocks p, — 2 double occurrences of =
and p2 — 1 double occurrences of y. Hence

20 -1-(A-6)+20,-3<B-2,

which, after simplifying, yields the desired result. 0O
The following well-known fact ([7], equation 1.6) is so useful for our
purposes that we state it here as a theorem.

Theorem 3.10:  There exists a BPTD with parameters
(3.10.a) (V; b1, b2, B; p1, p2, R; V, A)

if and only if there exists one with parameters

(3.10.b) (V;0,b3,b33 p1 — b1, p2, R — by; V, A — by).

Proof: Since the block size is V, any block without repeated elements
must be a complete block. Given a BPTD with parameters (3.10.a) or
(3.10.b), one can construct a BPTD with the other parameters by adding
or deleting b; complete blocks. O

§4. BPTDs with min(K,A) <3
As an immediate application of (3.2), we prove the following theorem.

Theorem 4.1: Let min(K,A) < 3. Then there exists a BPTD with
parameters
(V; blsb2aB;plap2sR; Ka A)

iff by = Vpy and a BTD exists with parameters

(V,B; p1,p2, B; K, A).
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Proof: Assume first that the BPTD exists.

For any A, when K = 3, (3.2) implies that b; = Vp,.

For any K, when A < 3, each of the b2 blocks must have exactly one
repeated element, so again by = Vp,.

The converse is immediate. O

Since theorem (4.1) completely covers the possible values of b, and b
when neither K nor A exceeds 3, we next investigate designs for which at
least one of these is greater or equal to 4.

§5. Some BPTDs with K=V =4o0r 5§ and A >4

In this section, we deal with BPTDs for which K = V. In view of
theorem 3.10, we first limit ourselves to the case b; = 0.

Lemma 5.1:  There do not exist BPTDs with the following parameters:

(5.1.a) (4;0,7,7;1,3,7;4,5)
(5.1.b) (5;0,6,6;2,2,6;5,5)
(5.1.c) (5;0,7,7;3,2,7;5,6)
(5.1.d) (5;0,8,8;4,2,8;5,7)

Proof of (5.1.a) and (5.1.b): Both (5.1.a) and (5.1.b) fail to satisfy
lemma 3.7, so there cannot exist BPTDs with these parameters. 0O

Proof of (5.1.c): Assume that there exists a BPTD with parameters
(5.1.c). Then we must have three blocks each with two repeated elements,
and among these three blocks, there must be two having a repeated element
in common. Without loss of generality (WLOG), we let two blocks contain
{1,1,2,2} and {1,1,3,3}, and the third contains either {2,2,3,3} (case 1),
{2,2,4,4} (case 2), or {4,4,5,5} (case 3).

Assume case 1. The four remaining blocks must contain the double
occurrences of 4 and 5, and, to satisfy A = 6, they must also contain {1,2},
{1,3}, {2,3}, and {1,2,3}. WLOG, we have the following partial structure:

112 4455
112 4455
2331121
2332332

3

There is only one way to complete the fourth, fifth, and sixth blocks:

112 4 45 5
112 4455
2331121
2 33 2332

5 56 4 3
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But now the pair {2,5} cannot appear 6 times. Case 1 is therefore impos-
sible.

Assume case 2. The blocks containing {3,3} and {4, 4} are determined

—

. by lemma 3.9:

1123 45 5
1123 455
2 3 4 21
2 3 4 43
5 b
But then the pair {2,5} cannot appear 6 times. Case 2 is therefore impos-

sible.
Assume case 3. Then the remaining blocks are likewise determined by

lemma 3.9:
114 2 3 45
1142 3 45
2353 211
2 35 4 4 2 2
5 5§ 5 4

Again, the pair {2,5} cannot appear 6 times. Case 3 is therefore impossible.

Proof of (5.1.d):  Assume that a BPTD exists with parameters
(5.1.d). Then there must be exactly two blocks with two repeated ele-
ments. WLOG, one of these contains {1,1,2,2}, and the other contains
either {1,1,3,3} (case 1) or {3,3,4,4} (case 2).

Assume case 1. The blocks containing {2,2} and {3,3} are determined
by lemma 3.9:

2 3 4 45 5
2 4 4 5 5
3
4

R
IO KRS
o B 0O

5

But now the pair {4,5} cannot appear 7 times, so case 1 is impossible.
Assume case 2. Then, by lemma 3.9, the remaining blocks must be of
the form
2 3 45 5

5 5

NN
oo W oW
Gt O =

2
31
4
5

(-]
SN = b

This violates p; = 3, so case 2 is impossible. O
Note that (5.1.c) and (5.1.d) both satisfy (3.7), so (3.7) is not sufficient
for the existence of a BPTD.

137



Theorem 5.2:  There exists a BPTD(4;6 + L — ba,b2,6 + L; L,3,6 +
L;4,4+ L) for L a nonnegative integer iff b, is one of {6,8,9,10,11,12}
and6+L—-0b; >0.

Theorem 5.3:  There exists a BPTD(5;5+ L — by, b2,5+ L; 1+ L,2,5+
L;5,4+ L) for L a nonnegative integer iff b is one of {5,9,10} and 5+ L —
by 2 0.

Proof of (5.2) and (5.3): For the existence a BPTD with parameters
(4,6 + L - by,b2,6 + L;L,3,6 + L;4,4 + L) it is necessary by (3.2) that
6 < by < 12; for the existence a BPTD with parameters (5; 5+ L —bs, b2, 5+
L;1+ L,2,5+ L;5,4 + L) it is necessary by (3.2) that 5 < b, < 10. The
proof is completed by the examples in the appendix and by Lemmas 3.10
and 5.1. O

Note that the condition K =V =4 or 5 and A > 4 do not determine
that B must be A + 2. For example, if K =V = A = 4, then BTDs exist
with B = 4 (take 4 complete blocks) or 6 (see appendix).

In general, we can derive bounds on B from the conditions K =V =
4 or 5 and A > 4. By combining K = V with the standard BTD identities

VR = BK
n+2p2=R
PI(K=1)+2p2(K-2)=V(A-1),
we obtain
pz=(B—-A)(K-1)/2
p1=(K-1)A - (K - 2)B.

In the case V = K = 4, setting both p; and p2 > 0 implies

(5.4) A<BZ< gA;

and, in the case V = K = §, setting p, > 0 and Vp, > B (p, cannot equal
zero) yields

(5.5) A< B<2A

v o

In either case, for any A, the lower bounds are attained by the BPTD
consisting of A complete blocks (although it will simply be a complete
binary design). The upper bounds are attained by the BPTDs consisting of
t copies of either BPTD(4;0,6,6;0, 3, 6; 4,4) or BPTD(5;0, 5, 5; 1,2, 5; 5,4),
depending on the case. See the appendix for designs with these parameters.
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In a later paper, we will deal BPTDs with K =V and A > 4 in a more
general setting.
§6. BTD(2t + 1,2t +2;2,¢,2t + 2;2t + 1,2t + 1)

For some BTDs, there is only one choice of b; and b;. For instance, we
can prove the following result.

Theorem 6.1: There exists a BTD with parameters

(6.1.a) (2t +1,2t + 2;2,t,2t + 2;2t + 1,2t + 1)

if and only if there exists a BPTD with parameters

(6.1.b) (2t +1;1,2¢ + 1,26 + 2;2,¢,2t + 2;2t + 1,2t + 1).

Proof: By (3.2), the only possible values of b in a BTD with pa-
rameters (6.1.a) are 2t + 1 and 2t + 2. We will show that by = 2t + 2 is
impossible.

Suppose that b, = 2t + 2, so that every block in the design has at least
one repeated element. Letting c; be as in §3, we have that L < ¢, so (3.3)
and (3.4) become

i
(6.2) S a=2t+2.
=1
and
t
(6.3) Y al=(2t+1)
=1

Because A is odd and p; = 2, the only r for which a; is not zerois r = 1.
Consequently, (3.5) implies that a; = (‘2') Equation (3.6) then reads

X‘:c 2t+1—2l)_ 2t + 1
=0 ' 2 - 2 .

Combining this with (6.2) and (6.3), one finds

t
Dl = (2t + 1)
=1
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Because each ¢; is nonnegative,

t t
z ql? = (E cﬂ) t
=1 =1
implies that ¢; = 0 for I < ¢, but this is inconsistent with (6.2) and (6.3).
a
Saha and Dey [18] prove the existence of a BTD with parameters

1
(»*,p*%;1, §(p° -1),p%p%p* - 1)

where p is an odd prime. By adjoining a complete block to this design, one
can form a BTD as in (6.1.a), and therefore a BPTD as in (6.1.b).
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Appendix: Some BPTDs with K=V =4o0or 5 and A > 4.

(4;0,12,12;6,3,12;4,10) : (4;0,9,9;3,3,9;4,7) :
111222333 4 4 4 1112 2 3 3 4 4
1112 2 23 3344 4 1112 2 3 3 4 4
223113112112 23 4131212
3443442 44233 2 3 4 4 42 43 3
(4;0,10,10;4,3,10;4,8) : (4;0,11,11;5,3,11;4,9)
11122333 4 4 11122333 44 4
111223334 4 111223 3 3 44 4
2 333341111 22333111112
2 4 4 4 4 4 2 2 2 2 2 4 4 4 4 2 2 43 2 3
(4; 0,8,8;2,3,8;4, 6) : (4; 0,6,6;0,3,6; 4)4) : (5;0, 5,5;1,2,5;5, 4) :
11122333 1112 23 1 2 3 45
11122333 1112 23 21123
2 3 43 411 4 2 3 4 3 4 4 21123
2 4 4 4 4 2 2 4 2 3 43 4 4 3 45 5 4

3 4 5 5 4
(5;0,9,9;5,2,9;5,8) : (5;0,10,10;6,2,10;5,9) :
112 33 445 5 112 233 4425 5
11233 445 5 1122334455
23 3111112 2213121111
2 44222233 33 44 2 43223
5 5 5 5 43 5 4 4 4 5 5 5 495 5 5 3 4

Along with many useful suggestions, the referee has kindly supplied us

with the efficiency factor (VA/RK) of each of the designs above and in the
introduction. From left to right, top to bottom, they are: 2, 7, 4, &, 3,

2,4, %, and . Both designs on pages 2 and 3 have efficiency factor §.
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