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ABSTRACT. A dominating function for a graph is a function
from its vertex set into the unit interval so that the sum of
function values taken over the closed neighbourhood of each
vertex is at least one. We prove that any graph has a positive
minimal dominating function and begin an investigation of the
question: When are convex combinations of minimal dominat-
ing functions themselves minimal dominating?

1 Introduction

A dominating function (DF) of a graph G = (V,E) is a function
f:V —[0,1] such that for each vertex v € V, f[v] =3 enpy f(0) 21,
where N[v] denotes the closed neighbourhood of the vertex v. The concept
extends the idea of a dominating set of a graph: For subsets A and B of
V, we say A dominates B and write A > B if every vertex in B — A is
adjacent to a vertex in A. If A > V , then A is a dominating set of G.
If A > B = {u}, we also write A > u for simplicity. If each value f(u)
of a DF f is integral (i.e. f(u) € {0,1}),then S = {v | f(v) =1} isa
dominating set of G. .

Dominating functions also arise as solutions to the linear programming
relaxation of the following 0 — 1 integer program (P):

s.t. Nz>1
z; € {0,1}, :c=(:cl,... ,:L'u).

Here, N denotes a neighbourhood matrix of the n-vertex graph G,
i.e. N = A+ I where A is an adjacency matrix of G and I is the n x n

ARS COMBINATORIA 41(1995), pp. 107-115



identity matrix. The question of when a solution to the linear program-
ming relaxation of (P) where z; > 0, yields an optimal solution to the
0-1 integer program (P) defined above, was first studied by Farber in 1984
[8]. However, the first definition and study of the fractional dominating
number ~;(G), (i.e. the minimum value of 3°._, z; in a solution z to the
linear programming relaxation) was done by Hedetniemi, Hedetniemi and
Wimer in 1987 [17]. Since then a considerable amount of work has been
done on dominating functions and fractional domination numbers of graphs
(¢f [1-7, 9-16, 18]).

In this paper there are two principal topics. In Section 2 we prove that
every graph has a minimal dominating function (M DF), all of whose values
are positive and in the following section we begin an investigation of the
following question: When are convex combinations of M DF's themselves
MDFs?

2 Existence of Positive Minimal Dominating Functions

For DFs f, g of G, we write f < g ifforallv eV, f(v) < g(v). Further,
we write f < g if f < g and for some v € V, f(v) < g(v). A DF g of
G is minimal if for all functions f : V — [0,1] such that f < g, f is not
dominating. For a DF f, we define the boundary of f, denoted by By,
to equal {v | f[v] = 1} and the positive set of f, denoted by Py, to equal
{v|f(v) >0}

Proposition 1. A DFf of G is an MDF if and only if By » Py.

Proof: Let f be an MDF of G with v € P, and suppose, to the contrary,
that By ¥ v. Then N[v] N By = ¢ which implies that f[u] > 1 for each
u € N[v]. Choose € > 0 in such a way that e < minyenp){f[u] — 1} and
define g : V — [0, 1] by

g(v) = f(v) —¢
and
g(z) = f(z) forx e V — {v}.

Foreach u € N[, g[ul] = fluy—€e>1 and for z € V — N[v],
glz] = f[z] =2 1; hence g is a DF. But g < f, contradicting the minimality
of f.

Conversely, suppose By > Py and let g : V — [0, 1] satisfy g < f; say
g(v) < f(v) for some v € V. Then v € Py and so, by assumption, u € By
for some u € N[v]. Now
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gl= ) g(w)

wEN|[y]

=g@w)+ D g(w)

wEN[u]—{v}
<f@+ Y. fw)
weN[u]|-{v}
= f[u]
=1.

Hence g is not a DF and it follows that f is an M DF. O

The main result of this section asserts, for any graph G, the existence
of an M DF whose function values are positive on all vertices of G. This
result is often used in subsequent work (see [3]) and sometimes the specific
function as defined in the proof is needed. Notice that while the statement
of the theorem might be as expected, a similar result does not hold for total
dominating functions (which are defined similar to D Fs by considering open
neighbourhoods instead of closed - see [4]).

Theorem 2. Any graph G = (V, E) has an M DF f satisfying Py =V.

Proof: Among all maximum independent sets of G, choose S such that the

sum of the degrees of vertices in S is a minimum. For each s € S, define
Z,={ze V-S| N(z)nS={s}}

and let

Z=UsESZo
T={teV -S| |N({t)nS|> 2}

Since S is maximal independent, every vertex in V-S is adjacent to at least
one vertex in S and hence V = SUT U Z (disjoint union). Note that if
z € Z, for some s € S, then (S — {s}) U {2} is a maximum independent set
of G so that, by the choice of S, deg(z) > deg(s).

Let |V| = n, set ¢ = 1/2n and define f : V — [0,1] as follows: For
v € V — S, define f(v) = € and for s € S define f(s) such that f[s] = 1.
Note that

1= f[s] = f(s) + Z J@) < f(8)+(n—-1)/2n

u€N(s)

and hence f(s) > 0. Therefore Py =V.
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We show that f is a DF. Firstly, let z € Z, for some s € S. Then
deg(z) > deg(s) and z is not adjacent to any vertex in S — {s}. Also,
N(s) CV —S. Hence

flA=f@+ Y, f)

vEN[z]—{s}
2 f)+ Y, f@)
vEN(s)
= fls]
=1.

Now let ¢t € T and recall that ¢ is adjacent to at least two vertices, say s
and &', of S. Then

fltl = f(s) + )+ F)>1.

Thus f is a DF. Since Bf 2 S> Py =V, fisan MDF. a

We observe that the maximum property of S is not essential for the
assignment of function values performed in Theorem 2, which constructed
a positive M DF. The same construction may be performed provided that
S satisfies the following conditions:

(i) S is maximal independent.
(i) If X, = {z € Z,| deg(x) < deg(s)}, then Uses X, = ¢.

A set S with these two properties can easily be constructed in polynomial
time and thus, for any graph, a positive M DF may be found in polynomial
time. A linear algorithm for producing a positive M DF for an arbitrary
tree is given in [2].

8 Convexity of Minimal Dominating Functions

The aggregate of a DF f of G is defined to be ) .y f(u). The work of
this section was motivated by the following interpolation question: Given
MDFs f, g of G with aggregates ¢y, ¢, respectively and any ¢ satisfying .
t1 <t < tg, does there exist an M DF of G with aggregate t? A. Majumdar
[19] noticed that in some cases convex combinations are suitable.

Suppose that f and g are DFs of G. For X € (0,1), define hy : V — [0,1]
by

ha(v) = Af(v) + (1 = N)g(v) for each v € V. (5)

Using (5) it is elementary to show that hy is a DF of G and that if f, g
have aggregates ¢;, to respectively and ¢; < ¢ < t2, by a suitable choice of
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X € (0,1), hy has aggregate t. However, if f, g are M DFs, h; is not always
minimal. We are thus led to study the relation R on the set F of MDF's
of G, defined by: fRg if and only if hy is an MDF for all A € (0,1). The
remainder of the section begins this investigation.

Theorem 3. For MDFs f, g of G, f Rg if and only if BfN By > PsUP,.

Proof: We prove that B,, = By N By and P, = Py U P,. The
result is then immediate from Proposition 1. If v ¢ Py U F,, then
f(v) = g(») = ha(v) = 0. If, say, v € Py, then hy(v) > Af(v) > 0. Thus
Phx = Pf U Pg. .

Suppose v € By N By. Then

halv] = Affv] + (1 - A)gl]

A similar calculation shows hy[v] >1 for v ¢ By N B, and hence
Bn, =By N By . [}

We now consider the question of existence of M DF's which relate in R
to every other MDF. The MDF g of G is called a universal M DF if for
all fe Fandall A€ (0,1), ks € F. The following proposition enables us
to obtain classes of graphs which have universal M DF's.

Proposition 4. If the MDF g satisfies By =V and forall f € ¥, By -V,
then g is a universal MDF.

Proof: For f € F, B;N By = By which dominates V 2 Py U Py. The
result follows from Theorem 3. (]

Theorem 5. The path P, (n > 1), the cycle Ca(n > 3), the complete
bipartite graph Kpn (m,n > 1), the n-vertex wheel W,, (n > 4) and the
complete graph K, (n > 5) all have universal M DF's.

Proof: It is easy to verify that for any =, the path P, has an MDF g
with B, = V by assigning to consecutive vertices in the path, suitable
consecutive elements from the sequence 100100100--- and it remains to
prove that for all f € F, By > V. Suppose this is false and for f € F,
By ¢ v where v € V. It is obvious that an end-vertex of a tree T is in the
boundary of any MDF of T. Therefore end-vertices and their neighbours
are dominated by the boundary of any M DF. It follows that P, contains
a subpath with vertex sequence vz, v1, v, 3, v4. Since By >~ Py, f(v)=0
and by the dominating property, say, f(vi) > 0. Vertex v; ¢ By (since
v is undominated), hence f(v,) + f(v2) > 1. But By > v, (€ Py) and so
vg € By, which implies the contradiction f(v;) + f(v2) < 1. Therefore g is
a universal M DF by Proposition 4.
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The function which assigns % to each vertex is an M DF g of C,, satisfying
By = V. A similar argument to that used for paths shows for all f € F,
By > V and hence g is a universal M DF.

Suppose that K,, n has defining independent sets {a;,...,am} and {b;,

. ybn}. Define the MDF g by g(a;) = (n—1)/(mn—1) for i=1,...,m
and g(b;) = (m —1)/(mn = 1) for j = 1,... ,n. This function satisfies
By = V. Without losing generality suppose f € F is such that By % b;.
Then f(b) = 0 and f[b1] = X0, f(as) > 1. Moreover, no a; € By
and hence some b; € By. This implies i, f(ai) <1, a contradiction.
Therefore By > V and g is a universal M DF by Proposition 4.

The proofs for W, and K,, are omitted. |

For S C V, let fs be defined by fs(u) =1 if u € S and fs(u) =0
otherwise.

Proposition 8. Let g be an MDF such that By ¥ v and let S be any
minimal dominating set containing v. Then gR fs.

Proof: Since v € S, fs(v) =1, i.e. v€ Pys C P, UPy, BN By, C By )L
v. Therefore , by Theorem 3, gR fs.

Corollary. If g is a universal MDF, then B, dominates V.

The next result enables us to demonstrate the existence of universal
M DFs whose boundaries do not contain all vertices (as required by Propo-
sition 4) and graphs, all of whose M DF's are universal, i.e. R =F x F.

Let u be a vertex of graph H. By a complete addition to H at u we mean
the identification of u and a vertex of some complete graph with at least
two vertices.

Proposition 7. Let H be any graph. Form G from H by making one or
more complete additions to H at u, for each vertex u of H. Then each
MDF of G is universal.

Proof: If a; € V(G)-V(H), then Nlay] = {ai,a,... ,an,u} where u €
V(H) and n > 1. Suppose f € F and a1 ¢ By. Then 3 ,enpq,) f(¥) =
S f(a) + f(u) > 1 and hence for some i, f(a;) > 0. But Nfa;] =
Nlay] for each j € 1,...,n and so a; ¢ By. Further, 3, ¢cnp f(v) 2
Y veN(ay) f(v) > 1 and so u ¢ By. Therefore By ¥ a; which implies (using
Proposition 1) that f is not minimal. We conclude V(G) - V(H) C B,
Thus, for any pair f, g € F, By N B, contains V(G) — V(H) which is a
dominating set of G and hence By N Bg >~ Py U P;. By Theorem 3, fRyg,
therefore each f € F is universal. o

Corollary. Any M DF of a tree whose end-vertices form & dominating set,
is universal.

The final result concerns non-existenqe of universal M DF's.
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Proposition 8. Let G be a graph which contains a vertex v such that for
every u € N|v] there exists an MDF f, such that By, ¥ wu. Then G
does not have a universal MDF.

Proof: Suppose g is a universal MDF of G and let v € V/(QG) satisfy
the hypothesis above. B, N By, ¥ v and hence g(v) = 0 (for otherwise
v € P, U Py,). Similarly, for eachu € Nv], B, N By, ¥ u and hence

g(u) = 0. But then
> g(w)=0,
u€N[v]
so that g is not a DF, a contradiction. a

Corollary. If G is vertex-transitive, then G has a universal iff for every
MDF f of G,By > V.

Proof: Let G be vertex-transitive; suppose G is r-regular. If By > V(G)
for every MDF f, then g = % is universal, for By =V, hence B, N By >
V(G) = P, U Py (Theorem 3).

Conversely, let f be an MDF of G such that By ¥ V(G); say By ¥ v.
Since G is vertex-transitive, there exists, for every u € V(G) and in
particular for every v € N[v], an MDF f, of G such that By, ¥ u. By
Proposition 8, G does not have a universal MDF. a

Let G be the circulant formed by adding edges {%,i+5} fori=1,...,5to
the cycle with vertex sequence 1,...,10. Then for example the function f
which is 1 on {1, 3, 6,8} and 0 elsewhere is an M DF with By = {4,5,9,10}
which does not dominate V. By the corollary G has no universal MDF.
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