Symmetric and Skew Equivalence of
Hadamard Matrices of Order 28
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ABSTRACT. In this paper, we consider symmetric and skew
equivalence of Hadamard matrices of order 28 and present some
computational results and some applications.

1 Introduction

An Hadamard matriz of order n is an n by n matrix H with all elements
in {1, -1}, satisfying HHT = nl. It is well-known that if there is an
Hadamard matrix of order n, then n =1 or n = 2 or = is a multiple of 4.

Two Hadamard matrices are called Hadamard equivalent (or simply H-
equivalent) if one can be obtained from the other by a sequences of row and
column permutations and negations. ’

If H is an Hadamard matrix of order n, then HHT = nI implies that
H is a nonsingular and has an inverse n~'HT, whence HTH = nl, so HT
is also an Hadamard matrix. However it is not necessary for HT to be
Hadamard equivalent to H.

An Hadamard matrix H is symmetricif HT = H, and skewif H=S—-1
where ST = —8. We refer to this as a skew Hadamard matrix of type
I. Some authors use H = S + I, which we shall call a skew Hadamard
matrix of type II. (Clearly, type II can be obtained by negating type I, and
conversely.)

In [6], the following problem was considered: is a given Hada- mard ma-
trix equivalent to a symmetric or skew Hadamard matrix? We say such an
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Hadamard matrix is symmeiric equivalent or skew equivalent respectively.
This is often useful information because of the importance of symmetric
and skew Hadamard matrices in the construction of Hadamard matrices
of larger orders, of other designs, and of Hadamard tournaments (see, for
example, [8] and [1]). Also, symmetric and skew matrices require about
half the storage space of arbitrary Hadamard matrices.

In this paper, we consider symmetric and skew equivalence of Hadamard
matrices of order 28 and present some computational results and some
applications in the construction of weighing matrices and Hadamard tour-
nament matrices. Finally we consider the conjectures, presented in [6], on
symmetric and skew equivalence of Hadamard matrices.

2 Symmetric, skew and transpose equivalence

Usually, we consider the equivalence classes of Hadamard matrices under
Hadamard equivalence. A class is called symmetric if its members are
symmetric-equivalent. This implies that the class contains a member which
is symmetric. Skew classes are defined analogously.

The transpose class of an equivalence class is the set of transposes of
members of the class. Clearly this will be an equivalence class; if it equals
the original class, then the class is called transpose equivalent. Symmetric
classes are transpose-equivalent, but the converse is not obviously true (and
in fact it is sometimes false). HT is a symmetric equivalent Hadamard
matrix if and only if H is a symmetric equivalent Hadamard matrix, and HT
is a skew equivalent Hadamard matrix if and only if H is a skew equivalent
Hadamard matrix. Thus we do not fleed to determine symmetric and skew
equivalence of both a class and its transpose class.

In [7) Longyear gave three criteria to determine skew equivalence of a
given Hadamard matrix and computed the skew equivalence of Hadamard
matrices of order 16 and 20. In [6], we presented two theorems and corre-
sponding algorithms which improve the results in [7] on skew equivalence
and presented new result on symmetric equivalence, including computa-
tional results on symmetric and skew equivalence of Hadamard matrices of
orders 16, 20 and 24.

3 Hadamard matrices of order 28

Hall sets (see, for example, [3]) have been used to construct Hadamard
matrices of order 28, and 487 equivalence classes of Hadamard matrices
of order 28 have been presented in [2], [3], [4] and [5]. This is currently
best known partial result on constructing and classifying the equivalence
classes of Hadamard matrices of order 28. It is known that the Paley
type Hadamard matrix of order 28 does not contain Hall sets, and it was
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conjectured by H. Kimura that this is the only one containing no Hall set.
If this conjecture is true, then the classification of equivalence classes of
Hadamard matrices of order 28 will be complete. It is known [6] that the
Paley type Hadamard matrices of order (p" 4 1) with p prime are both
symmetric and skew equivalent. The 487 equivalence classes of Hadamard
matrices of order 28 with Hall sets plus the Paley type Hadamard matrix
of order 28 provide a larger set of data on symmetric and skew equivalence
of Hadamard matrices than those of orders 2, 4, 8, 12, 16, 20 and 24, so it
is interesting and useful to investigate symmetric and skew equivalence of
Hadamard matrices of order 28.

We carried out a computer search on a PC with 386 processor and 387
coprocessor running at 25 MHz. It took from about 1 minute to about
8 minutes to test an Hadamard matrix of order 28 for skew equivalence.
It took from about 3 minutes to about 60 minutes to test an Hadamard
matrix of order 28 for symmetric equivalence. We will follow the notation
for equivalence classes of Hadamard matrices of order 28 in [2], (3], [4] and
[5], so that H001 through H476 are from [4] and [5]. HOOA through H00C
are from [2] and HOOI through HOVI are from [3] where HOOAT # HG0A,
HO00BT = HO0B, HOOCT # HO00C, HOVI = HOIIT and HOIV = HIIIT.
We denote the Paley type Hadamard matrix of order 28 by HOOP. The
results of computation are as follows.

Skew equivalence classes of order 28:

{HO002, H028, HO042, H043, H113, H177, H178, H179, H180, H181, H182,
H201, H204, H205, H224, H225, H265, H266, H303, H304, H311, H312,
H326, H327, H328, H329, H355, H356, H359, H371, H372, H391, H392,
H396, H397, H401, H405, H409, H410, H412, H419, H440, H441, H444,
H452, H454, H458, H461, H466, H471, HOII, HOOV, HOVI, HOOP}.

Symmetric equivalence classes of order 28: )

{H001, H002, HO10, HO23, H024, H027, H028, H033, H050, H061, H062,
HO077, H096, H113, H114, H137, H146, H149, H150, H153, H154, H157,
H158, H159, H201, H206, H207, H208, H209, H210, H213, H220, H221,
H226, H251, H260, H287, H300, H301, H302, H305, H306, H316, H317,
H320, H321, H352, H353, H359, H368, H375, H388, H393, H401, H404,
H405, H406, H411, H412, H413, H418, H419, H421, H422, H423, H435,
H436, H437, H440, H441, H444, H445, H450, H451, H452, H454, H457,
H458, H459, H460, H461, H462, H463, H466, H470, H471, H476, HOOB,
HOOV, HOOP}.

Therefore equivalence classes of Hadamard matrices of order 28 from [2],
[3], [4] and [5] can be classified as four sets as follows.

Both symmetric and skew equivalence classes:

{H002, H028, H113, H201, H359, H401, H405, H412, H419, H440, H441,
H444, H452, H454, H458, H461, H466, H471, HOOV, HOOP};
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Symmetric but not skew equivalence classes:

{Hoo01, HO10, H023, H024, H027, H033, HO050, HO61, H062, HO77, HO096,
H114, H137, H146, H149, H150, H153, H154, H157, H158, H159, H206,
H207, H208, H209, H210, H213, H220, H221, H226, H251, H260, H287,
H300, H301, H302, H305, H306, H316, H317, H320, H321, H352, H353,
H368, H375, H388, H393, H404, H406, H411, H413, H418, H421, H422,
H423, H435, H436, H437, H445, H450, H451, H457, H459, H460, H462,
H463, H470, H476, HCOB};

Skew but not symmetric equivalence classes:
{Ho042, HO43, H177, H178, H179, H180, H181, H182, H204, H205, H224,
H225, H265, H266, H303, H304, H311, H312, H326, H327, H328, H329,
H355, H356, H371, H372, H391, H392, H396, H397, H409, H410, HOII,
HOVI};

Neither symmetric nor skew equivalence classes:
{H003, HC04, H005, H006, H007, HO08, H009, HO11, HO12, HO13, HO14,
Ho015, HO16, HO17, HO18, HO19, H020, HO021, H022, HO025, H026, H029,
H030, HO031, H032, H034, H035, H036, H037, H038, H039, H040, HO41,
HO044, H045, H046, H047, H048, H049, HO51, H052, H053, H054, HO55,
HO056, H057, HO58, HO059, H060, H063, H064, H065, H066, H067, HO68,
H069, HO70, HO71, HO72, H073, HO74, HO75, HO76, HO78, HO79, HO80,
HO81, H082, H083, H084, H085, H086, HO87, HO88, H089, H090, HO91,
H092, H093, H094, H095, H097, H098, H099, H100, H101, H102, H103,
H104, H105, H106, H107, H108, H109, H110,-H111, H112, H115, H116,
H117, H118, H119, H120, H121, H122, H123, H124, H125, H126, H127,
H128, H129, H130, H131, H132, H133, H134, H135, H136, H138, H139,
H140, H141, H142, H143, H144, H145, H147, H148, H151, H152, H155,
H156, H160, H161, H162, H163, H164, H165, H166, H167, H168, H169,
H170, H171, H172, H173, H174, H175, H176, H183, H184, H185, H186,
H187, H188, H189, H190, H191, H192, H193, H194, H195, H196, H197,
H198, H199, H200, H202, H203, H211, H212, H214, H215, H216, H217,
H218, H219, H222, H223, H227, H228, H229, H230, H231, H232, H233,
H234, H235, H236, H237, H238, H239, H240, H241, H242, H243, H244,
H245, H246, H247, H248, H249, H250, H252, H253, H254, H255, H256,
H257, H258, H259, H261, H262, H263, H264, H267, H268, H269, H270,
H271, H272, H273, H274, H275, H276, H277, H278, H279, H280, H281,
H282, H283, H284, H285, H286, H288, H289, H290, H291, H292, H293,
H294, H295, H296, H297, H298, H299, H307, H308, H309, H310, H313,
H314, H315, H318, H319, H322, H323, H324, H325, H330, H331, H332,
H333, H334, H335, H336, H337, H338, H339, H340, H341, H342, H343,
H344, H345, H346, H347, H348, H349, H350, H351, H354, H357, H358,
H360, H361, H362, H363, H364, H365, H366, H367, H369, H370, H373,
H374, H376, H377, H378, H379, H380, H381, H382, H383, H384, H385,
H386, H387, H389, H390, H394, H395, H398, H399, H400, H402, H403,
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H407, H408, H414, H415, H416, H417, H420, H424, H425, H426, H427,
H428, H429, H430, H431, H432, H433, H434, H438, H439, H442, H443,
H446, H447, H448, H449, H453, H455, H456, H464, H465, H467, H468,
H469, H472, H473, H474, H475, HOOA, HOOAT, HOOC, HOOCT, HO01, HIII,
HOIV}. '

Obviously, the matrices previously listed as being symmetric and transpose-
equivalent.

The following are transpose-equivalent but not symmetric:

{HO007, H162, H301, H313, H354, H398, H414, H415, H420, H426, H453,
H469, HOO0I}.

We have conjectured [6] that for every order (except order 16) there is
an Hadamard matrix which is both symmetric and skew equivalent. This
was shown in [6] to be true for orders up to 24. It was also known [6] that
the Paley matrix has this property, but we have now shown it for several
other matrices of order 28. It was also conjectured [6] that, for large =,
the majority of equivalence classes are neither symmetric nor skew. This is
true for orders 24 and 28.

4 Some results using symmetric and skew equivalence

iFrom (8], we know various ways in which we can use symmetric and skew
Hadamard matrices to construct symmetric and skew Hadamard matrices
of larger orders. \

A weighing matrix W(n,n — 1) of order n is an n by n matrix with all
elements in {-1,0,1}, satisfying WW7 = (n — 1)I. It is easy to show that
there exists a weighing matrix W(n,n — 1) if there is a skew Hadamard
matrix of order n by taking the matrix S from the skew Hadamard matrix
H = S—1 of order n where ST = —S. Therefore, there is exactly one class of
H-equivalent weighing matrices W(2,1), W(4, 3), W(8,7), and W(12,11),
respectively. There are exactly 2 classes of H-equivalent weighing matrices
W(16,15) and (20,19), respectively. There are exactly 16 classes of H-
equivalent weighing matrices W(24,23). There are at least 56 classes of -
H-equivalent weighing matrices W (28, 27).

In [1] Ito considers the Hadamard tournament matrix A which is a (0,1)
" matrix of order 4\ + 3 such that

AAT=A+1DI+M and A+AT+I=J

where J is the matrix of order 4\ + 3 with all elements +1. An Hadamard
matrix is called normalized if every element in its first row and column
is +1. An Hadamard matrix is called skew-normalized if every element
in its first column is -1 and every element but the first in its first row
is +1. Obviously, every Hadamard matrix is equivalent to one which is
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normalized and skew normalized. Thus if H is a skew-normalized skew
Hadamard matrix H = S — I of order n = 4t where ST = —8, then we
remove the first row and first column of S, change the elements from -1 to
1 and from 1 to 0 and get a (0,1) matrix B of order 4 — 1. It is easy to
verify that B is an Hadamard tournament matrix of order 4t —1. Therefore,
there is exactly one class of H-equivalent Hadamard tournament matrix of
orders 2,4,8 and 12 respectively. There are exactly 2 classes of H-equivalent
Hadamard tournament matrices of orders 16 and 20, respectively. There are
exactly 16 classes of H-equivalent Hadamard tournament matrices of order
24. There are at least 56 classes of H-equivalent Hadamard tournament
matrices of order 28.

5 Remark

The paper [6] contains an incomplete proof. For the purpose of complete-
ness, here we restate two theorems in [6] and give a complete proof for
Theorem 1, the proof for Theorem 2 is similar.

In the following two theorems, A is the set of permutation matrices and
U is the set of diagonal monomial matrices.

Theorem 1: A semi-normalized Hadamard matrix H is normalized sym-
metric equivalent if and only if there exists a normalized symmetric Hadamard
matrix Q such that PHN = Q, where P € A, N € U and N(1,1) = 1.

Proof: The sufficiency is cbvious, so we only prove the necessity. As-
sume there is normalized Hadamard matrix K equivalent to H. It suffices
to prove there is a normalized symmetric matrix @ = PN HN where P € A
and Ny, N € U. Without loss of generality, N(1,1) = 1 (otherwise negate
both N; and N); since H is semi-normalized, HN has first column all 1’s,
so N; = I and we have the resuit.

To construct Q;, observe that K = PN, H N3 P3 for some P, P3 € A and
Ny, N3 e U. So @, = P3KP:;'" = P3P,NyH N3 is a symmetric Hadamard
matrix.

If @:(1,1) = 1, find Ny in U such that @ = N4Q, Ny is normalized.
Then Q = (NyPsP,;) NyHN3Ny = (P*N*) N2HN3Ny for some P* € A
and N* € U, by Lemma 4 in [6]; putting P = P*, Ny = N*N3, N = N3N,
we have the required form. If Q;(1,1) = —1, we proceed similarly after
finding N4 such that @ = N4 (—Q1) N4 is normalized.

Theorem 2: A semi-skew-normalized Hadamard matrix H is skew-norm-

alized skew equivalent if and only if there exists a skew-normalized skew
Hadamard matrix Q = S — I with ST = —S such that PHN = Q, where
PeA NeUand N(1,1)=1.
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