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Abstract. In this paper we obtain some new relations on generalized exponents of
primitive matrices. Hence the multiexponent of primitive toumnament matrices are eval-
uated.

1. Introduction

The directed graph I" defined by a(0, 1) matrix M consists of nvertices 1,2,...,n
such that an arc 13 goes from { to j if and only if the (4, j) entry of M is one. Let
X,Y be two vertex sets. X is called a dommaung set for Y if for every vertex
j of Y there is a vertex 1 in X such that § ] For some Y, its domonated set with
minimum cardinality is called the minimum dominated setof Y.

A tournament T is a directed graph I', such that each pair of distinct vertices ¢
and j is joined by exactly one of the arcs ijor 71 and no vertex is joined to itself
by an arc. For convenience we also denote a matrix which defines a tournament
by T.

A (0, 1) matrix M, is primitive if there exists some positive integer k such that
M,’,‘ > 0. The least k is called the exponent of M, denoted by exp(M,,) It is well
known (see [1]) that a tournament T}, is primitive if and only if n > 4 and T, is
irreducible (i.e. strongly connected). For any tournament matrix Ty, it is known
([1]) that exp(T3) < n+ 2. '

In [2], we introduced some new parameters related to the exponent as follows.

Let M be a primitive n x n matrix and k be an integer with 1 < k < n. Then
exp (k) is the smallest power of M for which there are k rows with no zero
entry. The smallest power of M for which there are k rows having no column of
all zeros is called the kth M for which no set of k rows has a column of all zeros
is called the kth upper multiexponent of M, denoted by F(M, k).

We let

ezp(m, k) : = MAX(exp,, (k)
f(n k) : = MAXu(f(M, k))
F(n,k) : = MAXy(F(M,k))

where the maximum is taken over all primitive n x n matrices.
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For all primitive tournaments, corresponding multiexponents are denoted by
expT(n, k), fT(n, k), FT(n, k) respectively. Clearly

expT(n,m) =n+2  (see(l])
In [3] we have obtained
expT(nk)=k+2,n>6 (1.1)

In this paper, we obtain some new relations on f(n, k) and F(m, k) for primi-
tive matrices and derive f7(n, k) and FT(n, k).

2. The Relations Between f(n, k) and F(n, k)

First of all, we give a derivation of multiexponents as follows.

Let k be an integer with 1 < k < nand let X .be a set of k vertices of the
primitive digraph I". We define the exponent of the set X to be expr(X) := the
smallest integer p such that for each vertex i of I" there exists a walk from at least
one vertex in X to i of length p (and hence of each length greater than p).

Then

f(T', k) := MIN {expr(X)}

where the minimum is taken over all subsets X of k vertices of T, and
F(r,k) := MAX,{expr(X)}

where the maximum is taken over all subset X of k vertices of I" .
Let M be a matrix that defines a digraph I". Clearly,

f(M,k) = f(T', k)
F(M,k) = (T ,k)

Thus
f(nk) = MAXy(f(M,k)) = MAXr(f(T,k))

F(n,k) = MAXu(f(M,k)) = MAXr(F(M, k))

where the maximum is taken over all primitive digraphs I' with n vertices.
According to the definitions we establish the following lemmas easily.

Lemma 1. f(n,1) = exp(n,1).

Lemma2. f(n,1) > f(n2) 2--- 2> f(mm) = 0.
Lemma3. F(n,1) > F(n,2) > :--> F(n,m) =0.
Theorem 4. F(n, k) > f(n, ) where k and x satisfy

{0)-(2)
n\r z
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Proof: Suppose that A is an n x » primitive matrix and that F(A, k) =r. Then
A" has no set of k rows which has a column of all zeros. In particular, the number
of zeros in each column of A" is less than or equal to k — 1.

We now prove that there is a set of z rows to have no column of all zeros. If
not, each set of x rows has a column of all zeros. Then the zero-columns appear
() times at least. There is a column to appear . (7) times at least. Hence there is
a column, the jith say, such that there are at least L (%) sets of z rows of A" having
column j as an all zero column. But column j has at most k — 1 zeros in it, so
there are atmost (") sets of  rows having column j as an all zero column. Thus

2= (7))
n\r T
contrary to the hypothesis. Hence there is a set of z rows to have no column of all
zero. By the definitions of F'(n, k) and f(n, k),
F(n,k) 2 f(n,2).
|
It is difficult to obtain the explicit solution of (2.1). But we know that when
z>k—1,exceptk=nandz=n—1,1(%) > (¥;!). Thus we have
Corollary 4.1. F(n k) > f(n,z) if z >k —1exceptk=nand z=n—1.
Lemma 5. F(n,k) < exp(n,n—k+1).

Proof: Letexp 4(n—k+ 1) = e. By the definition of exp 4(n—k+ 1), the matrix
A° has n— k + 1 rows of all ones,the set of which is denoted by Ry—+1. Take
any k rows from A°, denoted by Ry; then there is at least one row r € Rak+1-
Thus R, has no column of all zeros. By the definitions,

F(Ak) <expy(n—k+1)

Thus :
F(n k) < exp(n,n—k+1)
|
Lemma 6. ([2]) exp(n,k) =72 —3n+ k+2.
Here we obtain a bound on F(n, k) depending only on k and n as follows.
Lemma7. F(n k) <n* —2n—k+3.
Proof: By Lemmas 5,6.
F(nk) <exp(nn—k+1)
= -3n+(n-k+1)+2
= —2n—k+3.
|

Note that there is a digraph " such that F(I", 1) = w2 —2n+2. (see [2]) From
Theorem 7, we have
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Corollary 7.1. ([2]) F(n,1) = w — 2n+ 2.

There may be some room for improvement in the bound of Theorem 7, since in
reference [2] it is shown that F(n,n— 1) = n.

3. fT(n, k) for Primitive Tournament
It is easy to see that Lemma 1,2 also hold for primitive tournaments.
According to Lemmas 1,2 and formula (1.1), we have

Lemma 8.
fF(nk) < fT(n,1) =expT(n,1) =3, n>6.

Let T, = (V, E) be a primitive tournament on = vertices (n > 6) whose set of
vertices is V and whose set of arcs is E. A vertex K is called a king if for every
vertex i # K in Ty, there is a path from K to 1 of length 1 or 2. We denote by
N;(v) the set of vertices of T}, that can be reached by a path of length i that begins
at v. Then v is a king if and only if N1 (v) UN2(v) U{v} = V.

It is well known (see [4], Theorem 4.6) that a tournament has at least one King.
If a tournament T}, has exactly one king then T, is not strongly connected. Thus
we have

Lemma9. If T, is a irreducible tournament, then T has at least two kings.
Lemma 10. fT(n,2)=2,n>4.

Proof: By Lemma 9, let K1, K2 be two kings of T, and V be the vertex set of
T,. Without loss of generality, suppose K2 K;. Then K3 ¢ Ni(K,). Since K,
isaking of T, K2 € N2( K1), ie,3z € V' = V\{K), K>} such that K, z and
K, . V' can be partitioned into four sets, Vy, V2, V3, Vs, where

Vi={v|veV and Kiv,vKz}

Vo ={v|v eV andvK;,vK>}

Vs ={v|veV and Kiv,Ksv}

Va={v|veV andvk,, Ksv}

Since
:EEVI.VI #¢’ (3'1) '

Case 1. V3 U Vs = ¢. In this case, Vo = ¢. If not, suppose that there is ' € V3
such that z' K, , %' K5 . Then there is no path of length 1 or 2 from K to z'. This
contradicts the fact that K, is a king,

Since n > 4, 311,22 € Vi, without loss of generality, suppose x1%2. Then
take X = {z1, K2},

No(X) = No(z1) UN2(K2) = {K), K2}uV! = V.
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Case2. V3UVs # 4.
Subcase 2.1. V4 # ¢. Then Ky € N2(K2). Wetake X = {Ky, K2},

Na(X) = N2 (K1) UN2(K2) = Na (K1) U{KG JUN1 (K1) = V. (since K2 K1)

Subcase 2.2. V3 = ¢. Then V3 # ¢. .
Subcase 2.2.1. V» # ¢. Then forany y € V2, yKi1,yK>. Since K is a king,
3z’ € V3 such that z'y. Thus we take X = {z', K> }.

N2(X) = No(z') U N2 (K2) = {K1, K2 }UV' = V.

Subcase2.2.2. V, = ¢. By 3.1), Vi # ¢. If || > 1, then Izy,72 € W,
K111, 21K, K1, 2, T2 K2 . Without loss of generality, suppose z1%2. We take
X= {Kz,xl}, then

N2(X) = No(X1) UN2(K2) = {K1, K2 YUV = V.

If [Vi| = 1,by 3.1), V1 = {z}, Kiz,zK>.
Since T, is irreducible, this is an z' € V3 such that z'z. We take X = {z, K1},

N2(X) = No(K1) UNa(2) = {K2,z} UV U{K1} = V.
Hence expq, (X) = 2.

f(n2) <2.
We can show a primitive tournament as follows.
0 1 1 1 1 041
0 0 1 1 .. .. 1/[2
T! = o 0 O ‘1 1
0 0
o ... 0 1 :
1 0 i
It is easy to verify that f(T%,2) = 2. Hence f(n,2) = 2. 1
By Lemmas 2,8,10, we have
Lemma 11,

3, k=1
fT(n,k){ 2, k=2
lor2, 3<k<n
Lemma 11 shows that if a primitive tournament matrix M has the property that
every set of k rows (k > 3) has a column of zeros then M 2 has k rows having no

column of all zeros.
We have the following further result.
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Lemma 12, Let T, = (V, E) beaprimitive tournament and let r be the maximal
outdegree in T,, (the maximal row sum of matrix T, ). Then

F(Ta, k) = 1 whenever k > [”; 'J +2.
Proof: Let v be the vertex with maximal outdegree r in T, i.e. d*(v) = r. We
have known (see [4] Theorem 4.6) that v is a king of T},. Let Vi = V\({v} U
Ni(v)). Then |Vi| = n— 1 — 7. Let T} be the subtournament with vertex set V)
and let v; be a vertex with the maximal outdegree ry in T}, i.e. df, (v1) = r1. Let
N, (n) =u|viv,u €T}
Clearly

> ('Z")/nm: ("";")/(n- 1-1) = -;—(n—'r—Z) (3.2)

(exactly 7y > [3(n—r1—2)]).
Since T, is a strongly connected graph, there is a minimum dominated set V'
of Vi\Nz, (v1), V| Vi|-m=n—r-1-m.
We take X = {v}U {v;}UV'. Then
N(X)=NMwu{y}un =V 3.3
X|<l+l4mn—r—1-m
=n+l—-r—mn

<n+l-7r-— %(n— r —2){(by (3.2))

n—r

+2. 34

By Lemma 2 and (3.3),

n—r

2

f(Tw, k) =1 wheneverk > | | +2.

1
Note that for any primitive tournament Tp, r > (3)/n = $(n— 1) (exactly
r > [$(n— 1)]). According to (3.4), we have
1X] £ —;—(n— r+2

< 1 (n— %-(n— l)) +2

Hence we have
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Lemma 13. fT(n, k) = 1 whenever k > 2+ |}(n+ 1)].

By Lemmas 11,13, we have

Theorem 14,
3 k=1
2 k=2(n>6)
T -
Fmk) = lor2 3<k<2+ [Hn+1)]
1 k>2+|3n+ D).

We conjecture that Theorem 14 can be improved as follows.

3 k=1
fF(nk) = { 2 k=2(n>6)
1 k>3

4. FT(=n, k) for Primitive Tournaments

Lemma 15,
FT(nk)<n—k+3 =n>6.

Proof: By Lemma 5
FT(n k) <exp(mn—k+1).
" For primitive tournaments, by (1.1),
expT(nk)=k+2. =n>6
Thus
FT(n,k) < exp(n,n—k+ 1)
=(n—k+1)+2
=n—k+3.
|

Lemma 16. (see [1)) Each vertex of a strongly connected tournament with n
vertices is contained in a circuit of length r, forr = 3,4,...,n.

Theorem 17.
n—k+3 k=12
FT(n k) = { n>6

n—k+2 3<k<n-1
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Proof: Consider the tournaments T,; defined on the nodes 1,2, ..., nas follows.
Thearcs 1 m,nn—1,...,32,2i arein T* and the arcs not yet specified are all
oriented toward the node with the larger subscript. This tournament contains a
simple cycle of length = so it is irreducible and hence primitive.

Take X = {n,n—1,...,n— k+ 1}\{n— k+ 3}. Itis easy to verify that there
is no walk from any vertex in X to 1 of length n — k + 2. (If the reader sketches
the tournament T;, the reason for this and subsequent statements should become
apparent).

If k=1,2,then |X| = k and since F(T,k) > n—k+ 3, we have

FT(nk)>n—k+3.

By Lemma 15
FT(n,k)=n—k+3.

If3<k<n-1,|X|=k-1,then

FTnk—=1) >n—k+3

4.1
ieFT(nk) >n—k+2 @D
We now prove FT(n, k) < n— k + 2 for primitive tournaments, k& > 3. That
is, we will show that for any set X of k vertices of a primitive tournament T}, and
each vertex { of T, there exists a walk from at least one vertex in X to 1 of length
n—k+2.

Suppose that there is a vertex j € X such that the distance d(j, ?) from j to i
isless than n— k, i.e.
d(j,%) <n—k. 4.2

According to Lemma 16 j is contained in a circuit of length r, r = 3,4,...,n
Thus there exists a walk from j to 1 of length d(j,1) +r,7 = 3,4,...,n Itfollow
from (4.2) that there is a walk from j to i of length n— k + 2.

Now suppose that for all j € X, d(j,i) > n— k, then, by Lemma 16, all
vertices of T}, are on a Hamilton cycle denoted by {v1,v2,...v,}, where vi ¥y,
UnVp-1,..., V3V, v2 ;. Without loss of generality, let { = v;.

Since d(j,1) > n—k,Vj € X, X = {vn,Vn-1,-..,Vnke1} k > 3. Thus
there is a walk from v, _+3 to v, of length n— k + 2. Hence, by the definition

FT(nk)<n—k+2,k>3 @.3)

By (4.1) and (4.3)
FT(nk)y=n—k+2,k>3.
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