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ABSTRACT. Let V be a finite set of order v. A (v, k, X) packing
design of index )\ and block size x is a collection of k-element
subsets, called blocks, such that every 2-subset of V occurs in
at most )\ blocks. The packing problem is to determine the
maximum number of blocks, o(v, &, \), in a packing design. It
is well known that o(v,,A) < [% [&=3)]] = ¥(v, %, A), where
[z] is the largest integer satisfying z > [z]. It is shown here that
if v =2 (mod 4) and v > 6 then o(v,5,3) = ¥(v, 5,3) with the
possible exception of v = 38.

1. Introduction

A (v, &, \) packing design of order v, block size , and index A is a collection
B of x-element subsets, of a v-set V such that every 2-subset of V occurs in
at most X blocks. Let o(v, k,A) denote the maximum number of blocks in
a (v,k, A) packing design. A (v,x, ) packing design with |8| = o(v, &, )
will be called a maximum packing design. It is well known, [15], that

v-1
k-1

o(v,k,A) < [% [ )\” = P(y, 5, A)

where [z] is the largest integer satisfying = > [z].

When o (v, 5, A) = ¥(v, &, A) the packing design is called an optimal pack-
ing design. '
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Many researchers have been involved in determining the packing numbers
a(v, &, A) known to date (see bibliography). Our interest here is in the case
k=5 A=3and v =2 (mod 4). Such packing is called tripacking of pairs
by quintuples. Our goal is to prove the following.

Theorem 1.1. For all positive integers v > 6 and v =2 (mod 4), we have
a(v,5,3) = ¥(v,5,3) with the possible exception of v = 38.

2. Recursive Constructions of Packing Designs

In this section we require several other types of combinatorial configuration.
A balanced incomplete block design, B[y, x, A}, is a (v, x, A) packing design
where every 2-subset of points is contained in exactly A blocks. If a By, k, A]
exists then it is clear that o (v, 8, \) = Av(v —1)/s(x — 1) = ¥(v, k, A), and
Hanani [11] has proved the following existence theorem for B[y, 5, A].

Theorem 2.1. Necessary and sufficient conditions for the existence of a
B|v,5, )] are that A(v — 1) = 0 (mod 4) and Av(v — 1) = 0 (mod 20) and
(v, A) # (15,2).

If from a By, 5, 1] we delete a point and all the blocks containing this
point we have the following.
Theorem 2.2. If v = 0 or 4 (mod 20) then o(v,5,1) = ¥(v,5,1).

A (v, &, ) packing design with a hole of size h is a triple (V, H, 8) where
V is a v-set, H is a subset of V of cardinality h; and 8 is a collection of
x-element subsets, called blocks, of V' such that

1. no 2-subset of H appears in any block

2. every other 2-subset of V' appears in at most A blocks

3. Iﬁl = 1/’(”1 K, ’\) - ¢(h) K, A)'

It is clear that if a (v, 5, A) packing design with a hole of size h exists and
a(h, K, A) = ¥(h, %, A) then o(y, &, A) = ¥(y, Kk, A).

Let x, )\, m and v be positive integers. A group divisible design GD|x, A,
m,v] is a triple (V,8,7) where V is a set of points with |[V| = v and
v = {G4,...,Gn} is a partition of V into n sets of size m, called groups.

The collection 3 consists of k-subsets of V, called blocks, with the following
properties

1. |BNG;|<1forall Be Band G; €7;

2. every 2-subset {z,y} of V such that z and y belong to distinct groups
is contained in exactly X blocks.
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A GD[x, A, m, km)] is called a transversal design and denoted by T(x, A, m).
It is well known that a T(x, A, m) is equivalent to x — 2 orthogonal Latin
squares of side m.

Let m, k, A and v be positive integers.. A modified group divisible design
MGD|x, A\, m,v] is a triple (V, 8,v) where V is a set of points of size v, and
v = {G1,...,Gn} is a partition of V into n sets of size m, called groups.
The collection 8 consists of k-subsets of V', called blocks, with the following
properties

1. |[BNG;| <1forall Be BandG;Ee€9,

2. every 2-subset {z,y} of V' such that z and y are neither in the same
group nor in the same row is contained in exactly A blocks of 8. (We
may look at the points of V' as the points of an array of size m x n
and then the groups of (V, 8,v) are precisely the columns of A).

3. a block can contain at most one element from any given row.

A resolvable modified group divisible design RMGD|[k, A, m, V] is a mod-
ified group divisible design where its blocks can be partitioned into parallel
classes. ' '

The following theorems are in the form most useful to us and may be
found in [1].

Theorem 2.3. There exists a RMGD[5, 1,5, 5m] for all m # 2,3,4,6 and
the possible exceptions of m € {10, 14, 18,22, 26, 28, 30, 34, 38,42, 44, 52}.

Theorem 2.4. If there exists a (I) RMGDJ[5,1, 5, 5m] (2) a GD[5, 1, {4, s*},
4m + 8] where * means there is exactly one group of size s and (3) a
(20+ h, 5, 3) packing design with a hole of size k, then there exists a (20m+
4u+h+s, 5, 3) packing design with a hole of size 4u+h+s where 0<u<m—1.

To apply the previous theorem we require the existence of GD[5, 1, {4, s*},
4m + s]. We observe that we may choose s =0if m =1 (mod 5); s =4 if
m=0or 4 (mod 5); and s = 51";,—'—11 if m =1 (mod 3). For other cases of
m the following theorem [10), is in the form most useful to us.

Theorem 2.5. There exists a GD[5,1, {4,8%},4m + 8] for all m =0 or 2
(mod 8), m > 7 with the possible exception of m = 10.

The following is our last recursive construction.

Theorem 2.6. If there exists a (1) GD[6,3,5,5n] (2) a (20 + h,5,3) tri-
packing design with a hole of size h (3) o(4u+h, 5,3) = ¥(4u+h,5,3) where
0 <u <5 then o(20(n — 1) + 4u + h, 5,3) = ¥(20(n — 1) + 4u + h, 5, 3).

Proof: Take a GD[6, 3,5, 5n] and delete 5 — u points from the last group.
Inflate this design by a factor of 4. On the blocks of size 5 and 6 construct
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a GD[5, 1,4, 20] and GDI[5, 1, 4, 24] respectively. Add k points to the groups
and on the first (n — 1) groups construct a (20 + k, 5, 3) tripacking design
with a hole of size h. Then the h points with the last group are the hole
of a (20(n — 1) + 4u + h,5,3) tripacking with a hole of size 4u + h. It is
easily checked that if o(4u + h,5,3) = ¥(4u + h,5, 3) then o(20(n — 1) +
4u+ h,5,3) = $(20(n — 1) + 4u + h, 5, 3).

To apply the above theorem we require the existence of GD[6, 3,5, 5.
Our authority for that is the following.

Lemma 2.1. ([11]) There exists a GD[6, 3, 5, 35].
3. Tripacking of order v =2 (mod 20)

The following construction combines other known designs to construct tri-
packing.

Theorem 3.1. If v > 22 and v =2 (mod 20), then o(v, 5, 3) = ¥(v, 5, 3).
Furthermore these designs have a hole of size two.

Proof: For all v = 2 (mod 20), v > 22, a (v,5,3) packing design with
¥(v, 5, 3) blocks may be constructed as follows

1. take a B[v —1,5,2];

2. take a (v+2,5,1) optimal packing design. This design is constructed
from a B[v+3, 5, 1] by deleting one point and all the blocks containing
this point. So without loss of generality we may assume that the pairs
of {r—1,v,v41,v+2} do not appear in the blocks of the (v+2,5,1)
optimal packing design. Now change both v+ 1 and v+ 2 to v. Then
the blocks constructed in (1) and (2) yield the blocks of the required
tripacking, and these designs have a hole of size 2.

4. Tripacking of order v = 14 (mod 20)

Before giving an induction proof of this case we require the following con-
structions of tripacking, some with holes. In our constructions the fol-
lowing notations are used: A block (k,k + m,k + n,k + j, f(k)) (mod v)
where f(k) = a if k is even and f(k) = b if k is odd is denoted by
(0, m, n, ) U {a, b}; and a block {k, k+m,k+n,k+ 3, f(k)) (mod v) where
f(k) = h; if kK = i (mod 4) is denoted by (0,m,n,5) U {h;}i,. Simi-
larly a block < (0, %)(0,x +m)(1,x+n)(1,x+7)f(x) >, x=0,...,v =1
where f(k) = a if & is even and f(k) = b if s is odd is denoted by
((0,0)(0, m)(1,n)(1,5)) U {a, b} (mod —,v). _

In the following lemma we give a table describing the constructions of
a (v, 5,3) packing designs for v = 14,74,94. In general the constructions
are as follows. Let X = Z; x Z,_n,/pUH, or X = Z,_, U H, where

281



n = {B1,-..,hn}. The blocks are constructed by taking the orbit of the
tabulated base block, (mod “32) or (mod v —n) respectively unless it is
otherwise specified.

Lemma 4.1. o(y, 5,3) = ¥(v,5,3) for v = 14, 34,54,74,94.
Proof: For v =14 let X = {11,...,14} the blocks are

(1281114) (2691214) (136712) (2791013)
(137812) (345609) (1391011) (34101213)
(1451214) (3581011) (146711) (46813 14)
(148910) (478914) (15101314) (57811 13)
(2341113) (67101114) (235714) (9111213 14)
(236813) (156913) (2471012) (256810)
(2591112)

For v = 34, 54 the construction is as follows.

1. take a (v — 1, 5,2) optimal packing design [5]. This design has a hole
of size 3, say, {v —3,v - 2,v —1}.

2. take a (v+3,5, 1) packing design with a hole of size 9 and assume the
hole is {v — 5, — 4,...,v + 3}. These two designs exist by theorem
2.5. Delete the point v+ 3 and all the blocks through this point. In
all other blocks change v +1 and v+ 2 to v.

3. Add the blocks (v —4,v—3,v—2,v—1,v) (v—5,v—3,v=2,v—1,).

It is easily checked that the above construction yields a (v, 5, 3) optimal
packing design for v = 34, 54.

For v = 74,94, in the table below we construct a (v,5,3) tripacking
design with a hole of size 14 and since o(14,5,3) = (14,5, 3) it follows
that o(v, 5,3) = (v, 5,3) for v = 74, 94.

Theorem 4.1. o(v, 5, 3) = ¥(v,5,3) for all v =14 (mod 20).

Proof: For v < 94, the result follows from lemma 4.1.

For v > 114, v # 134, simple calculations show that v can be written in
the form v = 20m + 4u + h + s where m, u, k, and s are chosen so that the
following 4 conditions hold

1. there exists a RMGDJ[5,1, 5, 5m]

2. 4u+h+s5=14 (mod 20), 14 <4u+h+s< M4
3.0<u<m—-1,5s=0 (mod4)and h=2o0r 6
4. there exists a GD[5,1, {4, sx},Am + 5]
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v | Point Set

Base Blocks

74 | ZgoU Hyy

94 | ZgoU Hyy

On Zgo U Hy3 construct a (73, 5,1) packing with a
hole of size 13 and take the following blocks

(015 30 45 hig) +i,i€ Zss

(0 12 24 36 48) + 1, i € Z12, twice

(0281834) (013 6)U{h1,h2}

(0 4 11 19) U {hs, ha }{0 7 21 38) U {hs, he}

(0 9 18 37) U {hr, hs }{0 10 23 43) U {hg, h1o}

(0 11 25 38) U {hn, hm}(O 2021 25) U {hlg, h14}
On Zgo U H;3 construct a (93, 5,1) packing with a
hole of size 13, [14], and take the following blocks
(020 40 60 hya) +14, i € Z3o

(0 16 32 48 64) +1i, i € Zy6, twice

(02826 38) (03721 34)

(0 22 27 28 37) (0 22 25 39) U {hy, ho}

(015 12) U {ha, he} (02 11 45) U {hs, he}

(0 8 31 55) U {hz, hg} (0 10 29 57) U {ho, h1o}

{0 13 30 51) U {hy1, h12} (0 15 35 54) U {h;3, hia}

Now apply theorem 2.4 and the result follows

For v = 134 apply theorem 2.6 with h=6,n=7, and u = 2.

See lemma 6.1 for a (26, 5, 3) packing design with a hole of size 6.
5. Tripacking of order v = 18 (mod 20)
The following construction combines other designs to construct tripacking.
Lemma 5.1. o(y,5,3) = ¥(v,5,3) for v =18, 58,78,98.

For v =18, [16], let X = {1,2,...,18} then the required blocks are

(123514)
(13612 14)
(14515 16)
(168913)
(181517 18)
(11013 16 17)
(245911)
(241213 18)
(26713 18)
(261015 17)
(21214 16 17)

(347812) (1278 10) (3471012)
(3561018) (13111718) (36910 16)
3791718)  (156711) (38913 15)
(311131416) (17131618) (46816 17)
46131415 (110111215) (47914 17)
(48101118) (23111516) (410 14 16 18)
(5781116) (2491113) (571213 15)
(5891014) (2581418) (591216 18)
(510121317) (2681216) (67 11 14 15)
69111217) (2791015) (81113 1417)
(9121415 18) (3451517)

For v = 58, 78,98 we first show that there exists a (v — 1,5,2) packing
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with a hole of size 7.
For v = 57 see [13].
For v =T77let X = Z; x Z3s U H7, then the required blocks are

«ot 0) (0! 7) (01 14) (01 21) (01 28)) + (—: i)si € Zq, twice
((110) (13 7) (1: 14) (1v21) (1’ 28)) + (_s 1):' € Z’h
((1,0) (1,2) (1,11) (1,19) (1,31)) (mod —,35)
((01 0) (0) 3) (03 13) (1129) (1’ 34)) (mOd ™ 35)
((01 0) (01 5) (01 9) (1)17) (1a33)) (mOd T 35)
((07 0) (01 8) (1’5) (1)14) (1a27)) (mOd B 35)
((0’ 0) (0, 1) (0,16) (1)11) (1:23)) (mOd T 35)
((0,0) (0,12) (1,15) (1,25) (1,32)) (mod —,35)
((01 0) (011) (1;1) (1’3) (1)6)) (mOd _:35)
{(0,0) (0,6) (1,18) (1,28)hs) (mod —,35)

«01 0) (0, 9) (11 17) (1:25)h4) (mOd _$35)

((0’ 0) (0)11) (1’ 15) (1’21)’7'5) (mOd ™ 35)
((0,0 (0,13) (1,9) (1,20)he) (mod —,35)

For v = 97 take a RMGD|[5, 1, 5,45] and inflate this design by a factor of
2. To two parallel classes of quintuples add two points to each and replace
their blocks by the blocks of a GD[5, 2,2,12], [11]. On the remaining parallel
classes of quintuples construct a GDI[5,2,2,10], [11]. To the parallel class
of block size 9 add two points and construct a GD[5,2,2,20], [5]. Finally
add to the groups a new point and on each group construct a B[11,5,2].

It is clear that this construction yields a (97,5, 2) packing design with a
hole of size 7.

We now construct a (v, 5,3) optimal packing design for v = 58, 78,98 as
follows

1. take a (v — 1,5, 2) packing design with ¢¥(v —1,5,2) — 1 blocks. For
v = 58,78,98 there is a (v — 1,5,2) packing design with a hole of
size 7. But careful inspection of the (7,5,2) packing design (notice
that ¢(7,5,2) = 9¥(7,5,2) — 1) shows that there are four pairs, each
appears only once, through the same point, say, (1,2) (1,3) (1,4)
(1,5). Hence the (v — 1,5,2) packing design, v = 58, 78,98, has 4
pairs through the same point say (1,2) (1,3) (1,4) (1,5) such that
each of these pair appears only once.

2. take a (v + 2,5, 1) optimal packing design, theorem 2.2, and assume
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that {v,v+1,v+2} and {2, 3,4, 5} are missing from this design. Now
change both points »+ 1 and v+ 2 to v.

3. add the block (1,2,3,4, 5).

It is easily checked that the above three steps yield a (v,5,3) optimal
packing design for v = 58, 78, 98.

Theorem 5.1. For all v = 18 (mod 20) we have o (v, 5,3) = ¥(v, 5, 3) with
the possible exception of v = 38.

Proof: For v = 18, 58, 78, 98 the result follows from lemma 5.1. For v > 118,
v # 138, 178, 218 simple calculations show that v can be written in the
form v = 20m + 4u + h + s where m,u, h and s are chosen so that the
following 4 conditions hold

1. there exists a RMGDI[5, 1, 5, 5m]

2. 4u+h+5=18 (mod 20), 18 <4u+h+5<98,4u+h+ s #38
3.0<u<m-1,8s=0 (mod4)and h=2o0r 6

4. there exists a GD[5, 1, {4, sx},4m + s

‘Now apply theorem 2.4 and the result follows.

For v = 138 apply theorem 2.6 with h=6,n =7 and u = 3.

For v = 178 take a RMGD|[5, 1, 5,40] and inflate this design by 4. To
3 parallel classes of quintuples add 4 points to each one and replace their
blocks by the blocks of a GDI[5, 3,4,24]. On the remaining parallel classes
of quintuples construct a GDJ[5, 3,4, 20]. To the parallel class of block size
8, after inflating by 4, add 4 points to the last group and construct a
GDJ[5, 3, {4,8%}, 36]. Finally add 2 points to the groups and on the first 7
groups construct a (22, 5, 3) tripacking design with a hole of size 2 and on
the last group construct a (26, 5, 3) tripacking design with a hole of size 6.
(See lemma 6.1 for the existence of this design). It is easy to check that
the above construction yields a (178, 5,3) tripacking design with a hole of
size 18. But ¢(18,5,3) = (18,5, 3) hence ¢(178, 5, 3) = ¥(178, 5, 3).

For v = 218 take a T(6, 3,10), [11], and delete 7 points from last group.
Inflate the resultant design by a factor of 4, that is, replace all blocks of
size 6 and 5 by the blocks of GD[5, 1,4, 24] and GD|5, 1, 4, 20] respectively.
To the groups add 6 new points and on the first 5 groups construct a
(46,5,38) tripacking design with a hole of size 6 (see lemma 6.1). Take
these 6 points with the last group of size 12 to be the hole of a (218, 5, 3)
tripacking design with a hole of size 18. But (18,5, 3) = (18, 5,3) hence
o(218,5,3) = (218, 5,3).
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v Point Set Base Blocks 1l

6 Zg (01234) 3 times

10 Z10 (02468)+14,i€ Z2(01245)

26 | ZgxZ10UHg | ((0,0)(0, 2)(0,3)(0, 5))U(h1,h2} {(1,0)(1,2)(1,3)(1,5))U{h1, ha}
{(0,0)(0, 1)(1,0)(1, 3)) U {h1, A2} ((0,0)(0,2)(1,4)(1,8)h3)
((0:0)(0, 4)(1,5)(1, 9)"4) {(0,0)(0, 4)(1,5)(1, 7)hs)
{(0,0)(0, 4)(1,0)(1, 4)"6) ((0,0)(0, 1)(1,7)(1,8)h5) U {h3, ha}
{(0,0)(0, 3)(1.1)(1 2 {h »he}

30 Z30 {0612 18 24) +

(01237)(028 13 22)(0 310 17 21){0 3 11 15 20)

46 Z4o U Hg {0 5 20 25) U {hy, ha} half orbit
{(0131519)(01248){0511 19 33)

(0817 27) U {hy, A3} (03 13 30) U {h3, ha}

(07 16 31) U {h5, hg} (05 11 22) U {h;}S 5

50 Z4g U Hy {0 13 24 37) U {hy, ha}, half orbit

{02717 23){0 8 9 12 22)(0 3 19 23 37)

{0124 10)(0 5 16 28 33){0 6 18 27 35)

{0 722 29) U {hy,h2}

66 Zgo U Hg {0 13 30 43) U {hl,hg}, half orbit (0 1 5 12 26)(0 3 13 23 41)
(013723)(0516 34 48)(0 1 3 13 41)(0 2 8 33 44)

(0 8 27 35) U {hy1,h2} (09 24 45) U {ha.h4}

(0 49 43) U {hs, he} (0 6 15 20) U {h;}5_5

70 Z70 (0 14 28 42 56) + 4, § € 24

(03112740)(01523 43)(0 2 12 31 38)(0 6 21 37 46)
{0149 26)(0 2 15 35 49)(0 6 17 24 36)(0 1 3 8 21)

(0 4 14 23 45)(0 6 16 44 59)

86 Zgo U Hg (x, < + 14, x + 40, x + 54, f(x)) half orbit where f(x) = h; if x =0
or 1 (mod 4) and f(x) = ha if x = 2 or 3 (mod 4).

(0311 27 41)(0 515 33 51)(0 2 9 22 41)(0 21 25 37 38)

(0 137 49)(0 5 15 35 59)(0 8 33 43 54)(0 9 24 37 60)

(0 137 19)(06 17 29) U {hy,ha} (0827 55) U {h3,hq}

{0 522 53) U {hs,hg} (0 14 23 45) U {h..}‘__,3

g0 Zg0 {0 183654 72) +14,i € Z18

(0 13 12 50)(0 4 28 43 60)(0 5 34 40 59)(0 7 27 48 64)

{0 137 49)(0 5 15 26 38)(0 8 21 66 76)(0 9 25 53 72) “

(082239 52)(013 11 28)(0 4 16 23 36){0 5 14 34 64)
{0 6 24 39 61)

6. Tripacking of orders v =6 or 10 (mod 20)

In this section we first require the existence of small tripacking designs.
Lemma 6.1. For all 6 < v < 90, v = 6 or 10 (mod 20), o(»,5,3) =
¥(v,5,3).

Proof: The required constructions are given in the following table. For
v = 26, 46, 50, 86 we actually construct a (v, 5,3) packing design with a
hole of size 2 or 6. But o(h, 5, 3) = ¥(h,5,3) for h =2, 6 hence o(»,5,3) =
¥(v,5,3) for v = 26, 46, 50, 86. -

Theorem 6.1. For all positive integers v, v = 6 or 10 (mod 20) we have
a(v,5,3) = ¥(v,5,3).

F:or 6 <v <90, and v = 6 or 10 (mod 20) the result follows from lemma
6.1. For v > 106, and v = 6 or 10 (mod 20), v # 130, 146 simple calcula-
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tions show that v can be written in the form v = 20m + 4u + h + s where
m,u, h and s are chosen so that the following 4 conditions hold

1. there exists a RMGD[5,1, 5, 5m]

2. 4u+h+s=6or 10 (mod 20) and6§4u+h+s <90
3.0<u<m-1,8=0 (mod4)and h=2o0r6

4. there exists a GD[5,1, {4, sx},4m + 3]

Now apply theorem 2.4 and the result follows.

For v = 130, 146 apply theorem 2.6 with h = 6, n = 7 and u = 1,5
respectively.

7. Conclusion

We have shown that if v = 2 (mod 4), v > 6 then o(,5,3) = ¥(v,5,3)
with the possible exception of v = 38, which proves our theorem.
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