Tripacking of Pairs by Quintuples The Case $v \equiv 2 \pmod{4}$

Ahmed H. Assaf
Department of Mathematics
Central Michigan University
Mt. Pleasant, Michigan
U.S.A. 48859

L.P.S. Singh

Department of Computer Science Central Michigan University Mt. Pleasant, Michigan U.S.A. 48859

ABSTRACT. Let V be a finite set of order ν . A (ν, κ, λ) packing design of index λ and block size κ is a collection of k-element subsets, called blocks, such that every 2-subset of V occurs in at most λ blocks. The packing problem is to determine the maximum number of blocks, $\sigma(\nu, \kappa, \lambda)$, in a packing design. It is well known that $\sigma(\nu, \kappa, \lambda) \leq \left[\frac{\nu}{\kappa} \left[\frac{\nu-1}{\kappa-1}\lambda\right]\right] = \psi(\nu, \kappa, \lambda)$, where [x] is the largest integer satisfying $x \geq [x]$. It is shown here that if $\nu \equiv 2 \pmod{4}$ and $\nu \geq 6$ then $\sigma(\nu, 5, 3) = \psi(\nu, 5, 3)$ with the possible exception of $\nu = 38$.

1. Introduction

A (ν, κ, λ) packing design of order ν , block size κ , and index λ is a collection β of κ -element subsets, of a ν -set V such that every 2-subset of V occurs in at most λ blocks. Let $\sigma(\nu, \kappa, \lambda)$ denote the maximum number of blocks in a (ν, κ, λ) packing design. A (ν, κ, λ) packing design with $|\beta| = \sigma(\nu, \kappa, \lambda)$ will be called a maximum packing design. It is well known, [15], that

$$\sigma(\nu,\kappa,\lambda) \leq \left[\frac{\nu}{\kappa} \left[\frac{\nu-1}{\kappa-1}\lambda\right]\right] = \psi(\nu,\kappa,\lambda)$$

where [x] is the largest integer satisfying $x \ge [x]$.

When $\sigma(\nu, \kappa, \lambda) = \psi(\nu, \kappa, \lambda)$ the packing design is called an optimal packing design.

Many researchers have been involved in determining the packing numbers $\sigma(\nu, \kappa, \lambda)$ known to date (see bibliography). Our interest here is in the case $\kappa = 5$, $\lambda = 3$ and $\nu \equiv 2 \pmod{4}$. Such packing is called tripacking of pairs by quintuples. Our goal is to prove the following.

Theorem 1.1. For all positive integers $\nu \ge 6$ and $\nu \equiv 2 \pmod{4}$, we have $\sigma(\nu, 5, 3) = \psi(\nu, 5, 3)$ with the possible exception of $\nu = 38$.

2. Recursive Constructions of Packing Designs

In this section we require several other types of combinatorial configuration. A balanced incomplete block design, $B[\nu, \kappa, \lambda]$, is a (ν, κ, λ) packing design where every 2-subset of points is contained in exactly λ blocks. If a $B[\nu, \kappa, \lambda]$ exists then it is clear that $\sigma(\nu, \kappa, \lambda) = \lambda \nu(\nu - 1)/\kappa(\kappa - 1) = \psi(\nu, \kappa, \lambda)$, and Hanani [11] has proved the following existence theorem for $B[\nu, 5, \lambda]$.

Theorem 2.1. Necessary and sufficient conditions for the existence of a $B[\nu, 5, \lambda]$ are that $\lambda(\nu - 1) \equiv 0 \pmod{4}$ and $\lambda\nu(\nu - 1) \equiv 0 \pmod{20}$ and $(\nu, \lambda) \neq (15, 2)$.

If from a $B[\nu, 5, 1]$ we delete a point and all the blocks containing this point we have the following.

Theorem 2.2. If $\nu \equiv 0$ or 4 (mod 20) then $\sigma(\nu, 5, 1) = \psi(\nu, 5, 1)$.

A (ν, κ, λ) packing design with a hole of size h is a triple (V, H, β) where V is a ν -set, H is a subset of V of cardinality h; and β is a collection of κ -element subsets, called blocks, of V such that

- 1. no 2-subset of H appears in any block
- 2. every other 2-subset of V appears in at most λ blocks
- 3. $|\beta| = \psi(\nu, \kappa, \lambda) \psi(h, \kappa, \lambda)$.

It is clear that if a (ν, κ, λ) packing design with a hole of size h exists and $\sigma(h, \kappa, \lambda) = \psi(h, \kappa, \lambda)$ then $\sigma(\nu, \kappa, \lambda) = \psi(\nu, \kappa, \lambda)$.

Let κ, λ, m and ν be positive integers. A group divisible design $\mathrm{GD}[\kappa, \lambda, m, \nu]$ is a triple (V, β, γ) where V is a set of points with |V| = v and $\gamma = \{G_1, \ldots, G_n\}$ is a partition of V into n sets of size m, called groups. The collection β consists of κ -subsets of V, called blocks, with the following properties

- 1. $|B \cap G_i| \le 1$ for all $B \in \beta$ and $G_i \in \gamma$;
- 2. every 2-subset $\{x,y\}$ of V such that x and y belong to distinct groups is contained in exactly λ blocks.

A GD[κ , λ , m, κm] is called a transversal design and denoted by T(κ , λ , m). It is well known that a T(κ , λ , m) is equivalent to $\kappa - 2$ orthogonal Latin squares of side m.

Let m, κ, λ and ν be positive integers. A modified group divisible design $\mathrm{MGD}[\kappa, \lambda, m, \nu]$ is a triple (V, β, γ) where V is a set of points of size ν , and $\gamma = \{G_1, \ldots, G_n\}$ is a partition of V into n sets of size m, called groups. The collection β consists of κ -subsets of V, called blocks, with the following properties

- 1. $|B \cap G_i| \leq 1$ for all $B \in \beta$ and $G_i \in \gamma$,
- 2. every 2-subset $\{x,y\}$ of V such that x and y are neither in the same group nor in the same row is contained in exactly λ blocks of β . (We may look at the points of V as the points of an array of size $m \times n$ and then the groups of (V, β, γ) are precisely the columns of A).
- 3. a block can contain at most one element from any given row.

A resolvable modified group divisible design RMGD[κ , λ , m, ν] is a modified group divisible design where its blocks can be partitioned into parallel classes.

The following theorems are in the form most useful to us and may be found in [1].

Theorem 2.3. There exists a RMGD[5, 1, 5, 5m] for all $m \neq 2, 3, 4, 6$ and the possible exceptions of $m \in \{10, 14, 18, 22, 26, 28, 30, 34, 38, 42, 44, 52\}.$

Theorem 2.4. If there exists a (1) RMGD[5, 1, 5, 5m] (2) a GD[5, 1, $\{4, s*\}$, 4m + s] where * means there is exactly one group of size s and (3) a (20+h, 5, 3) packing design with a hole of size h, then there exists a (20m+4u+h+s, 5, 3) packing design with a hole of size 4u+h+s where $0 \le u \le m-1$.

To apply the previous theorem we require the existence of GD[5, 1, $\{4, s*\}$, 4m+s]. We observe that we may choose s=0 if $m \equiv 1 \pmod{5}$; s=4 if $m \equiv 0$ or 4 (mod 5); and $s=\frac{4(m-1)}{3}$ if $m \equiv 1 \pmod{3}$. For other cases of m the following theorem [10], is in the form most useful to us.

Theorem 2.5. There exists a $GD[5, 1, \{4, 8*\}, 4m + 8]$ for all $m \equiv 0$ or 2 (mod 5), $m \ge 7$ with the possible exception of m = 10.

The following is our last recursive construction.

Theorem 2.6. If there exists a (1) GD[6,3,5,5n] (2) a (20 + h,5,3) tripacking design with a hole of size h (3) $\sigma(4u+h,5,3) = \psi(4u+h,5,3)$ where $0 \le u \le 5$ then $\sigma(20(n-1)+4u+h,5,3) = \psi(20(n-1)+4u+h,5,3)$.

<u>Proof:</u> Take a GD[6,3,5,5n] and delete 5-u points from the last group. Inflate this design by a factor of 4. On the blocks of size 5 and 6 construct

a GD[5, 1, 4, 20] and GD[5, 1, 4, 24] respectively. Add h points to the groups and on the first (n-1) groups construct a (20+h,5,3) tripacking design with a hole of size h. Then the h points with the last group are the hole of a (20(n-1)+4u+h,5,3) tripacking with a hole of size 4u+h. It is easily checked that if $\sigma(4u+h,5,3)=\psi(4u+h,5,3)$ then $\sigma(20(n-1)+4u+h,5,3)=\psi(20(n-1)+4u+h,5,3)$.

To apply the above theorem we require the existence of GD[6, 3, 5, 5n]. Our authority for that is the following.

Lemma 2.1. ([11]) There exists a GD[6, 3, 5, 35].

3. Tripacking of order $\nu \equiv 2 \pmod{20}$

The following construction combines other known designs to construct tripacking.

Theorem 3.1. If $\nu \geq 22$ and $\nu \equiv 2 \pmod{20}$, then $\sigma(\nu, 5, 3) = \psi(\nu, 5, 3)$. Furthermore these designs have a hole of size two.

<u>Proof:</u> For all $\nu \equiv 2 \pmod{20}$, $\nu \geq 22$, a $(\nu, 5, 3)$ packing design with $\psi(\nu, 5, 3)$ blocks may be constructed as follows

- 1. take a $B[\nu 1, 5, 2]$;
- 2. take a $(\nu+2,5,1)$ optimal packing design. This design is constructed from a $B[\nu+3,5,1]$ by deleting one point and all the blocks containing this point. So without loss of generality we may assume that the pairs of $\{\nu-1,\nu,\nu+1,\nu+2\}$ do not appear in the blocks of the $(\nu+2,5,1)$ optimal packing design. Now change both $\nu+1$ and $\nu+2$ to ν . Then the blocks constructed in (1) and (2) yield the blocks of the required tripacking, and these designs have a hole of size 2.

4. Tripacking of order $\nu \equiv 14 \pmod{20}$

Before giving an induction proof of this case we require the following constructions of tripacking, some with holes. In our constructions the following notations are used: A block $\langle k, k+m, k+n, k+j, f(k) \rangle$ (mod ν) where f(k) = a if k is even and f(k) = b if k is odd is denoted by $\langle 0, m, n, j \rangle \cup \{a, b\}$; and a block $\langle k, k+m, k+n, k+j, f(k) \rangle$ (mod ν) where $f(k) = h_i$ if $k \equiv i \pmod{4}$ is denoted by $\langle 0, m, n, j \rangle \cup \{h_i\}_{i=1}^4$. Similarly a block $\langle (0, \kappa)(0, \kappa+m)(1, \kappa+n)(1, \kappa+j)f(\kappa) \rangle$, $\kappa = 0, \ldots, \nu-1$ where $f(\kappa) = a$ if κ is even and $f(\kappa) = b$ if κ is odd is denoted by $\langle (0, 0)(0, m)(1, n)(1, j) \rangle \cup \{a, b\}$ (mod $-, \nu$).

In the following lemma we give a table describing the constructions of a $(\nu, 5, 3)$ packing designs for v = 14, 74, 94. In general the constructions are as follows. Let $X = Z_2 \times Z_{\nu-n/2} \cup H_n$ or $X = Z_{\nu-n} \cup H_n$ where

 $H_n = \{h_1, \ldots, h_n\}$. The blocks are constructed by taking the orbit of the tabulated base block, $\pmod{\frac{\nu-n}{2}}$ or $\pmod{\nu-n}$ respectively unless it is otherwise specified.

Lemma 4.1. $\sigma(\nu, 5, 3) = \psi(\nu, 5, 3)$ for $\nu = 14, 34, 54, 74, 94$.

<u>Proof:</u> For $\nu = 14$ let $X = \{11, \dots, 14\}$ the blocks are

```
(2 6 9 12 14)
                                                      (2 7 9 10 13)
(1\ 2\ 8\ 11\ 14)
                                   (1\ 3\ 6\ 7\ 12)
                 (34569)
                                   (1 \ 3 \ 9 \ 10 \ 11)
                                                      (3 4 10 12 13)
(1\ 3\ 7\ 8\ 12)
(1 4 5 12 14)
                 (3 5 8 10 11)
                                   (1 4 6 7 11)
                                                      (4 6 8 13 14)
(1 4 8 9 10)
                 (4 7 8 9 14)
                                   (1 5 10 13 14)
                                                      (5 7 8 11 13)
                                   (2 3 5 7 14)
                                                      (9 11 12 13 14)
(2 3 4 11 13)
                 (6 7 10 11 14)
                                   (2 4 7 10 12)
                                                      (256810)
                 (1\ 5\ 6\ 9\ 13)
(2 3 6 8 13)
(2 5 9 11 12)
```

For $\nu = 34,54$ the construction is as follows.

- 1. take a $(\nu 1, 5, 2)$ optimal packing design [5]. This design has a hole of size 3, say, $\{\nu 3, \nu 2, \nu 1\}$.
- 2. take a $(\nu+3,5,1)$ packing design with a hole of size 9 and assume the hole is $\{\nu-5,\nu-4,\ldots,\nu+3\}$. These two designs exist by theorem 2.5. Delete the point $\nu+3$ and all the blocks through this point. In all other blocks change $\nu+1$ and $\nu+2$ to ν .
- 3. Add the blocks $\langle \nu-4, \nu-3, \nu-2, \nu-1, \nu \rangle$ $\langle \nu-5, \nu-3, \nu-2, \nu-1, \nu \rangle$.

It is easily checked that the above construction yields a $(\nu, 5, 3)$ optimal packing design for $\nu = 34, 54$.

For $\nu=74,94$, in the table below we construct a $(\nu,5,3)$ tripacking design with a hole of size 14 and since $\sigma(14,5,3)=\psi(14,5,3)$ it follows that $\sigma(\nu,5,3)=(\nu,5,3)$ for $\nu=74,94$.

Theorem 4.1. $\sigma(\nu, 5, 3) = \psi(\nu, 5, 3)$ for all $\nu \equiv 14 \pmod{20}$.

<u>Proof:</u> For $\nu \leq 94$, the result follows from lemma 4.1.

For $\nu \ge 114$, $\nu \ne 134$, simple calculations show that ν can be written in the form $\nu = 20m + 4u + h + s$ where m, u, h, and s are chosen so that the following 4 conditions hold

- 1. there exists a RMGD[5, 1, 5, 5m]
- 2. $4u + h + s \equiv 14 \pmod{20}$, $14 \le 4u + h + s \le 94$
- 3. $0 \le u \le m-1$, $s \equiv 0 \pmod{4}$ and h=2 or 6
- 4. there exists a GD[5, 1, $\{4, s*\}$, 4m + s]

ν	Point Set	Base Blocks
74	$Z_{60} \cup H_{14}$	On $Z_{60} \cup H_{13}$ construct a (73, 5, 1) packing with a
ii i		hole of size 13 and take the following blocks
		$\langle 0 \ 15 \ 30 \ 45 \ h_{14} \rangle + i, \ i \in Z_{15}$
		$(0\ 12\ 24\ 36\ 48) + i,\ i \in Z_{12},\ \text{twice}$
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		$ \langle 0 \ 4 \ 11 \ 19 \rangle \cup \{h_3, h_4\} \langle 0 \ 7 \ 21 \ 38 \rangle \cup \{h_5, h_6\} $
1		$\langle 0 \ 9 \ 18 \ 37 \rangle \cup \{h_7, h_8\} \langle 0 \ 10 \ 23 \ 43 \rangle \cup \{h_9, h_{10}\}$
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
94	$Z_{80} \cup H_{14}$	On $Z_{80} \cup H_{13}$ construct a (93, 5, 1) packing with a
		hole of size 13, [14], and take the following blocks
		$(0\ 20\ 40\ 60\ h_{14})+i,\ i\in Z_{20}$
		$(0\ 16\ 32\ 48\ 64) + i,\ i \in Z_{16},\ \text{twice}$
		(0 2 8 26 38) (0 3 7 21 34)
		$(0\ 22\ 27\ 28\ 37)\ (0\ 22\ 25\ 39) \cup \{h_1, h_2\}$
		$(0\ 1\ 5\ 12) \cup \{h_3, h_4\}\ (0\ 2\ 11\ 45) \cup \{h_5, h_6\}$
		$(0\ 8\ 31\ 55) \cup \{h_7, h_8\}\ (0\ 10\ 29\ 57) \cup \{h_9, h_{10}\}$
		$\langle 0 \ 13 \ 30 \ 51 \rangle \cup \{h_{11}, h_{12}\} \ \langle 0 \ 15 \ 35 \ 54 \rangle \cup \{h_{13}, h_{14}\}$

Now apply theorem 2.4 and the result follows

For $\nu = 134$ apply theorem 2.6 with h = 6, n = 7, and u = 2.

See lemma 6.1 for a (26,5,3) packing design with a hole of size 6.

5. Tripacking of order $\nu \equiv 18 \pmod{20}$

The following construction combines other designs to construct tripacking. Lemma 5.1. $\sigma(\nu, 5, 3) = \psi(\nu, 5, 3)$ for $\nu = 18, 58, 78, 98$.

For $\nu = 18$, [16], let $X = \{1, 2, ..., 18\}$ then the required blocks are

(1 2 3 5 14)	(3 4 7 8 12)	(1 2 7 8 10)	(3 4 7 10 12)
(1 3 6 12 14)	(3 5 6 10 18)	(1 3 11 17 18)	(3 6 9 10 16)
(1 4 5 15 16)	(3 7 9 17 18)	(1 5 6 7 11)	(3 8 9 13 15)
(1 6 8 9 13)	(3 11 13 14 16)	(1 7 13 16 18)	(4 6 8 16 17)
(1 8 15 17 18)	(4 6 13 14 15)	(1 10 11 12 15)	(4 7 9 14 17)
(1 10 13 16 17)	(4 8 10 11 18)	(2 3 11 15 16)	(4 10 14 16 18)
(2 4 5 9 11)	(5 7 8 11 16)	(2 4 9 11 13)	(5 7 12 13 15)
(2 4 12 13 18)	(5 8 9 10 14)	(2 5 8 14 18)	(5 9 12 16 18)
(2 6 7 13 18)	(5 10 12 13 17)	(2 6 8 12 16)	(6 7 11 14 15)
(2 6 10 15 17)	(6 9 11 12 17)	(2 7 9 10 15)	(8 11 13 14 17)
(2 12 14 16 17)	(9 12 14 15 18)	(3 4 5 15 17)	

For $\nu = 58,78,98$ we first show that there exists a $(\nu - 1,5,2)$ packing

with a hole of size 7.

```
For \nu = 57 see [13].
```

For $\nu = 77$ let $X = Z_2 \times Z_{35} \cup H_7$, then the required blocks are

```
\langle (0,0) (0,7) (0,14) (0,21) (0,28) \rangle + (-,i), i \in \mathbb{Z}_7, twice
\langle (1,0) (1,7) (1,14) (1,21) (1,28) \rangle + (-,i), i \in \mathbb{Z}_7,
\langle (0,0) (0,2) (0,12) (0,20) (0,31) \rangle \pmod{-35}
\langle (1,0) (1,2) (1,11) (1,19) (1,31) \rangle \pmod{-,35}
\langle (0,0) (0,3) (0,13) (1,29) (1,34) \rangle \pmod{-,35}
\langle (0,0) (0,2) (1,0) (1,1) (1,4) \rangle \pmod{-35}
\langle (0,0) (0,5) (0,9) (1,17) (1,33) \rangle \pmod{-35}
\langle (0,0) \ (0,8) \ (1,5) \ (1,14) \ (1,27) \rangle \ (\text{mod } -,35)
\langle (0,0) (0,1) (0,16) (1,11) (1,23) \rangle \pmod{-35}
((0,0),(0,12),(1,15),(1,25),(1,32)) (mod -,35)
((0,0) (0,1) (1,1) (1,3) (1,6)) \pmod{-35}
\langle (0,0) (0,3) (1,14) (1,29)h_1 \rangle \pmod{-35}
\langle (0,0) \ (0,5) \ (1,23) \ (1,24)h_2 \rangle \ (\text{mod} \ -,35)
\langle (0,0) (0,6) (1,18) (1,28)h_3 \rangle \pmod{-35}
\langle (0,0) (0,9) (1,17) (1,25)h_4 \rangle \pmod{-35}
\langle (0,0) (0,11) (1,15) (1,21) h_5 \rangle \pmod{-,35}
\langle (0,0) (0,13) (1,9) (1,20) h_6 \rangle \pmod{-35}
\langle (0,0) (0,17) (1,9) (1,30) h_7 \rangle \pmod{-35}
```

For $\nu=97$ take a RMGD[5, 1, 5, 45] and inflate this design by a factor of 2. To two parallel classes of quintuples add two points to each and replace their blocks by the blocks of a GD[5, 2, 2, 12], [11]. On the remaining parallel classes of quintuples construct a GD[5, 2, 2, 10], [11]. To the parallel class of block size 9 add two points and construct a GD[5, 2, 2, 20], [5]. Finally add to the groups a new point and on each group construct a B[11, 5, 2].

It is clear that this construction yields a (97,5,2) packing design with a hole of size 7.

We now construct a $(\nu, 5, 3)$ optimal packing design for $\nu = 58, 78, 98$ as follows

- 1. take a $(\nu-1,5,2)$ packing design with $\psi(\nu-1,5,2)-1$ blocks. For $\nu=58,78,98$ there is a $(\nu-1,5,2)$ packing design with a hole of size 7. But careful inspection of the (7,5,2) packing design (notice that $\sigma(7,5,2)=\psi(7,5,2)-1$) shows that there are four pairs, each appears only once, through the same point, say, (1,2) (1,3) (1,4) (1,5). Hence the $(\nu-1,5,2)$ packing design, $\nu=58,78,98$, has 4 pairs through the same point say (1,2) (1,3) (1,4) (1,5) such that each of these pair appears only once.
- 2. take a $(\nu + 2, 5, 1)$ optimal packing design, theorem 2.2, and assume

that $\{\nu, \nu+1, \nu+2\}$ and $\{2, 3, 4, 5\}$ are missing from this design. Now change both points $\nu+1$ and $\nu+2$ to ν .

3. add the block (1, 2, 3, 4, 5).

It is easily checked that the above three steps yield a $(\nu, 5, 3)$ optimal packing design for $\nu = 58, 78, 98$.

Theorem 5.1. For all $\nu \equiv 18 \pmod{20}$ we have $\sigma(\nu, 5, 3) = \psi(\nu, 5, 3)$ with the possible exception of $\nu = 38$.

<u>Proof:</u> For $\nu=18, 58, 78, 98$ the result follows from lemma 5.1. For $\nu\geq 118$, $\nu\neq 138, 178, 218$ simple calculations show that ν can be written in the form $\nu=20m+4u+h+s$ where m,u,h and s are chosen so that the following 4 conditions hold

- 1. there exists a RMGD[5, 1, 5, 5m]
- 2. $4u + h + s \equiv 18 \pmod{20}$, $18 \le 4u + h + s \le 98$, $4u + h + s \ne 38$
- 3. $0 \le u \le m-1$, $s \equiv 0 \pmod{4}$ and h=2 or 6
- 4. there exists a GD[5, 1, $\{4, s*\}$, 4m + s]

Now apply theorem 2.4 and the result follows.

For $\nu = 138$ apply theorem 2.6 with h = 6, n = 7 and u = 3.

For $\nu=178$ take a RMGD[5, 1, 5, 40] and inflate this design by 4. To 3 parallel classes of quintuples add 4 points to each one and replace their blocks by the blocks of a GD[5, 3, 4, 24]. On the remaining parallel classes of quintuples construct a GD[5, 3, 4, 20]. To the parallel class of block size 8, after inflating by 4, add 4 points to the last group and construct a GD[5, 3, {4, 8*}, 36]. Finally add 2 points to the groups and on the first 7 groups construct a (22, 5, 3) tripacking design with a hole of size 2 and on the last group construct a (26, 5, 3) tripacking design with a hole of size 6. (See lemma 6.1 for the existence of this design). It is easy to check that the above construction yields a (178, 5, 3) tripacking design with a hole of size 18. But $\sigma(18, 5, 3) = \psi(18, 5, 3)$ hence $\sigma(178, 5, 3) = \psi(178, 5, 3)$.

For $\nu=218$ take a T(6,3,10), [11], and delete 7 points from last group. Inflate the resultant design by a factor of 4, that is, replace all blocks of size 6 and 5 by the blocks of GD[5,1,4,24] and GD[5,1,4,20] respectively. To the groups add 6 new points and on the first 5 groups construct a (46,5,3) tripacking design with a hole of size 6 (see lemma 6.1). Take these 6 points with the last group of size 12 to be the hole of a (218,5,3) tripacking design with a hole of size 18. But $\sigma(18,5,3)=\psi(18,5,3)$ hence $\sigma(218,5,3)=\psi(218,5,3)$.

ועו	Point Set	Base Blocks
6	Z_6	(0 1 2 3 4) 3 times
10	\overline{z}_{10}^{-0}	$(0\ 2\ 4\ 6\ 8)+i,\ i\in Z_2(0\ 1\ 2\ 4\ 5)$
26	$Z_2 \times Z_{10} \cup H_6$	$((0,0)(0,2)(0,3)(0,5)) \cup \{h_1,h_2\} ((1,0)(1,2)(1,3)(1,5)) \cup \{h_1,h_2\}$
II - I		$((0,0)(0,1)(1,0)(1,3)) \cup \{h_1,h_2\} ((0,0)(0,2)(1,4)(1,8)h_3)$
11 1		$\langle (0,0)(0,4)(1,5)(1,9)h_4 \rangle \langle (0,0)(0,4)(1,5)(1,7)h_5 \rangle$
11 I		$((0,0)(0,4)(1,0)(1,4)h_6)$ $((0,0)(0,1)(1,7)(1,8)h_5) \cup \{h_3,h_4\}$
11 1		$((0,0)(0,3)(1,1)(1,2)) \cup \{h_5,h_6\}$
30	Z_{30}	$(0\ 6\ 12\ 18\ 24)+i,\ i\in Z_6$
11 1		(0 1 2 3 7) (0 2 8 13 22) (0 3 10 17 21) (0 3 11 15 20)
46	$Z_{40} \cup H_6$	$(0.5.20.25) \cup \{h_1, h_2\}$ half orbit
11 1		(0 1 3 15 19)(0 1 2 4 8)(0 5 11 19 33)
il I		$(0\ 8\ 17\ 27) \cup \{h_1, h_2\}\ (0\ 3\ 13\ 30) \cup \{h_3, h_4\}$
11 1		$(0\ 7\ 16\ 31) \cup \{h_5, h_6\}\ (0\ 5\ 11\ 22) \cup \{h_i\}_{i=3}^{6}$
50	$Z_{48} \cup H_2$	$(0\ 13\ 24\ 37) \cup \{h_1, h_2\}, \text{ half orbit}$
		(0 2 7 17 23) (0 8 9 12 22) (0 3 19 23 37)
11		(0 1 2 4 10) (0 5 16 28 33) (0 6 18 27 35)
1	· · • •	$ \begin{array}{c} (0.7.22.29) \cup \{h_1, h_2\} \\ (0.12.29) \cup (h_1, h_2) \\ (0.12.29) \cup$
66	$Z_{60} \cup H_6$	$(0.13.30.43) \cup \{h_1, h_2\}, \text{ half orbit } (0.1.5.12.26) (0.3.13.23.41)$
		$(0\ 1\ 3\ 7\ 23)(0\ 5\ 16\ 34\ 48)(0\ 1\ 3\ 13\ 41)(0\ 2\ 8\ 33\ 44)$ $(0\ 8\ 27\ 35)\cup\{h_1,h_2\}\ (0\ 9\ 24\ 45)\cup\{h_3,h_4\}$
11		1
	_	$ \begin{array}{c} (0\ 4\ 9\ 43) \cup \{h_5, h_6\} \ (0\ 6\ 15\ 29) \cup \{h_i\}_{i=3}^{0} \\ (0\ 14\ 98\ 49\ 16) \ (0\ 6\ 7) \end{array} $
70	Z_{70}	$(0\ 14\ 28\ 42\ 56) + i, i \in Z_{14}$ $(0\ 3\ 11\ 27\ 40) (0\ 1\ 5\ 23\ 43) (0\ 2\ 12\ 31\ 38) (0\ 6\ 21\ 37\ 46)$
0 1		(0 1 4 9 26) (0 2 15 35 49) (0 6 17 24 36) (0 1 3 8 21)
11		(0 4 14 23 45) (0 6 16 44 59)
86	$Z_{80} \cup H_6$	$(\kappa, \kappa + 14, \kappa + 40, \kappa + 54, f(\kappa))$ half orbit where $f(\kappa) = h_1$ if $\kappa \equiv 0$
~	200 - 10	or 1 (mod 4) and $f(\kappa) = h_2$ if $\kappa \equiv 2$ or 3 (mod 4).
		(0 3 11 27 41) (0 5 15 33 51) (0 2 9 22 41) (0 21 25 37 38)
		(0 1 3 7 49) (0 5 15 35 59) (0 8 33 43 54) (0 9 24 37 60)
1		$(0\ 1\ 3\ 7\ 19)(0\ 6\ 17\ 29)\cup\{h_1,h_2\}\ (0\ 8\ 27\ 55)\cup\{h_3,h_4\}$
		$(0.5.22.53) \cup \{h_5, h_6\} (0.14.23.45) \cup \{h_i\}_{i=3}^6$
90	Z_{90}	$(0.18.36.54.72) + i, i \in Z_{18}$
	-30	(0 1 3 12 50) (0 4 28 43 60) (0 5 34 40 59) (0 7 27 48 64)
1		(0 1 3 7 49)(0 5 15 26 38)(0 8 21 66 76)(0 9 25 53 72)
1		(0 8 22 39 52) (0 1 3 11 28) (0 4 16 23 36) (0 5 14 34 64)
1		(0 6 24 39 61)
		(0 8 22 39 52) (0 1 3 11 28) (0 4 16 23 36) (0 5 14 34 64)

6. Tripacking of orders $\nu \equiv 6$ or 10 (mod 20)

In this section we first require the existence of small tripacking designs.

Lemma 6.1. For all $6 \le \nu \le 90$, $\nu \equiv 6$ or 10 (mod 20), $\sigma(\nu, 5, 3) = \psi(\nu, 5, 3)$.

<u>Proof:</u> The required constructions are given in the following table. For $\nu=26,\ 46,\ 50,\ 86$ we actually construct a $(\nu,5,3)$ packing design with a hole of size 2 or 6. But $\sigma(h,5,3)=\psi(h,5,3)$ for $h=2,\ 6$ hence $\sigma(\nu,5,3)=\psi(\nu,5,3)$ for $\nu=26,\ 46,\ 50,\ 86$.

Theorem 6.1. For all positive integers ν , $\nu \equiv 6$ or 10 (mod 20) we have $\sigma(\nu, 5, 3) = \psi(\nu, 5, 3)$.

<u>F:</u>or $6 \le \nu \le 90$, and $\nu \equiv 6$ or 10 (mod 20) the result follows from lemma 6.1. For $\nu \ge 106$, and $\nu \equiv 6$ or 10 (mod 20), $\nu \ne 130$, 146 simple calcula-

tions show that ν can be written in the form $\nu = 20m + 4u + h + s$ where m, u, h and s are chosen so that the following 4 conditions hold

- 1. there exists a RMGD[5, 1, 5, 5m]
- 2. $4u + h + s \equiv 6 \text{ or } 10 \pmod{20} \text{ and } 6 \le 4u + h + s \le 90$
- 3. $0 \le u \le m-1$, $s \equiv 0 \pmod{4}$ and h=2 or 6
- 4. there exists a GD[5, 1, $\{4, s*\}, 4m + s$]

Now apply theorem 2.4 and the result follows.

For $\nu=130$, 146 apply theorem 2.6 with h=6, n=7 and u=1,5 respectively.

7. Conclusion

We have shown that if $\nu \equiv 2 \pmod{4}$, $\nu \geq 6$ then $\sigma(\nu, 5, 3) = \psi(\nu, 5, 3)$ with the possible exception of $\nu = 38$, which proves our theorem.

References

- [1] A. M. Assaf, Two more covering designs with block size 5 and index 4. Utilitas Math. 39 (1991) 210-214.
- [2] A. M. Assaf, On the packing of pair's by quadruples. Discrete Math. 90 (1991) 221-231.
- [3] A. M. Assaf, N. Shalaby, L. P. S. Singh, Packing designs with block size 5 and index 2: the case ν even. J. Comb. Theory, Series A, vol. 63, (1993) 43-54.
- [4] A. M. Assaf, L. P. S. Singh, Packing pairs by quintuples: ν odd, $\nu \not\equiv 13$ (mod 20). Discrete Math., accepted.
- [5] A. M. Assaf, Bipacking pairs by quintuples: the case $\nu \equiv 13 \pmod{20}$. Discrete Math., accepted.
- [6] A. M. Assaf, A. Hartman, On packing designs with block size 5 and index 4. Discrete Math. 79 (1989/90) 111-121.
- [7] M. R. Best, A. E. Brouwer, F. J. MacWilliams, A. M. Odlyzko, N. J. A. Sloane, Bounds for binary codes of length less than 25. IEEE Trans. Inform. Theory 24 (1978).
- [8] E. J. Billington, R. G. Stanton, D. R. Stinson, On λ-packing with block size 4. Ars. Combinat. 17A (1984) 73-84.

- [9] A. E. Brouwer, Optimal packings of $K_{4's}$ into a K_n . J. Combinatorial Theory A 26 (1979) 278-297.
- [10] A. M. Hamel, W. H. Mills, R. C. Mullin R. Rees, D. R. Stinson, Jianxing Yin, The Spectrum of PBD($\{5, \kappa*\}, \nu$) for $\kappa = 9, 13$.
- [11] H. Hanani, Balanced incomplete block designs and related designs. Discrete Math. 11 (1975) 225-369.
- [12] A. Hartman, On small packing and covering designs with block size 4. Discrete Math. 59 (1986) 275-281.
- [13] W. H. Mills, R. C. Mullin, On bicovers of pairs by quintuples: ν odd $\nu \not\equiv 3 \pmod{10}$, Ars Combinatoria 31 (1991) 3-19.
- [14] E. R. Lamken, W. H. Mills, R. M. Wilson, Four pairwise balanced designs, Designs Codes and Cryptography, 1 (1991), 63-68.
- [15] J. Schoenheim, On maximal systems of k-tuples. Studia Sci. Math. Hugar. 1 (1966) 363-368.
- [16] N. Shalaby, Personal communication.