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Abstract. We show that if a graph G has n non-isomorphic 2-vertex
deleted subgraphs then G has at most n distinct degrees. In addition we
prove that if G has 3 non-isomorphic 3-vertex deleted subgraphs then G
has at most 3 different degrees.

By a graph we shall mean an undirected graph with no loops or multiple
edges. Let G be a graph and let G, be the subgraph of G obtained by deleting
vertex v and all its incident edges. A graph H is said to be a reconstruction of G if
V(G)=V(H)and G, ~ H, forallv € V(G). If G ~ H for ali reconstructions
H, then G is said to be reconstructible. The reconstruction (Ulam’s) conjecture
states that any finite simple graph on three or more vertices is reconstructible.
Though the conjecture is yet to be settled, surveys of progress can be found in [1]
and [5].

An immediate but useful result relating vertex-deleted subgraphs to their
supergraph is the following.

Fact. If a graph G has n non-isomorphic vertex-deleted subgraphs, then G
has at most n distinct degrees.

Various generalizations of reconstructability have been put forward, including
the possible reconstruction of graphs from their n-vertex-deleted subgraphs per
Kelly’s conjecture in [4]. Giles [2] showed that trees can be reconstructed from
their 2-vertex-deleted subgraphs and McAvaney [6, 7] has offered evidence that
cartesian product graphs may be so reconstructible.

First we prove the analogous fact for the 2-vertex-deleted subgraphs of a graph
G.

Theorem 1. Let G be a graph on p + 2 vertices, p > 3, which has n non-
isomorphic subgraphs on p vertices. Then G has at most n different degrees.

Note that when n = 1 the statement clearly holds and Theorem 2 of [3)
states that if a graph G with order p + 2 has 2 subgraphs of order p then G or its
complement mustbe one of Kp 42 —e, K 41 243, *’*2'—1 KoUK, K, , orastrongly
regular graph thus covering the case n = 2, so henceforward n > 3.

Proof. The proof will consist of threce lemmas.
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Lemma 1.1, Let G be a graph with p + 2 vertices. If G contains vertices
with degrees c,a + 1,a + 2,...,a + n, for any «, then G has more than n
non-isomorphic subgraphs on p vertices.

Proof. Suppose G contains vertices with the given degrees and has at most n
subgraphs on p vertices. Then by deleting vertices with all possible pairs of distinct
degrees we have deleted total degrees of 2o+ ¢, fori = 1,2,3,...,2n— 1. When
an edge exists between u and v, the two vertices deleted, the actual number of
edges deleted is clearly deg(u) + deg(v) — 1. Then G must contain the necessary
edges so that these 2n — 1 totals reduce to at most n different numbers of actual
edges deleted. These n values must be of the form 2« + 7, fori = 1,3,5,...,5 —
1,7,7+2,...,2n -2, where 0 < j < 2n is even.

If j > n+2thenalleventotalst < n+2 must be reduced tot — 1. (Note that
there can be only one vertex of degree «, else we could delete two of these giving
another total of ¢ = 0, whence j = 0.) Thus the vertex of degree « is adjacent to
all vertices of degree a + k, for all even k, and no others. The vertices of degree
o + 2 must also be adjacent to all vertices of degree o + k including others of
degree a + 2 and no others. Let [a + k| denote the number of vertices of degree
a + k, thus we have

a=|a+2|+|a+4+...
a+2=|a|+|a+2|-1+|a+4]+...
=l4+]a+2|-1+|a+4|+...
= a,a contradiction.

Similarly, if 7 < n — 2, there is a single vertex of degree « + n. That vertex,
along with all vertices of degree « +n — 2 must be adjacent to all vertices of degree
« + k, where £ has parity opposite that of n. Now we find the contradiction that
at+n—2=a+n.

If n is even we consider the cases j = n,n + 2. If j = n, the vertex of
degree « is adjacent to all vertices of degree a + &, for all even k, except possibly
the vertex of degree a + n. The vertices of degree o + 2 are also adjacent to all
vertices of degree « + k, for all even &, except possibly those of degrece a + n — 2
and « + n. Thus

a=|a+2|+|a+4|+...+|a+n—2|+{(1) (1)

a+2=|a+2l+|a+4|++ﬂ|0‘+"_2|+{0’ (2)

where # < 1. Then (2) — (1) yields
1
24+ (1=Bla+n~-2|= {0
-1
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However, since # < 1,2 4 (1 — f)|a + n — 2| > 2, a contradiction.

Now suppose j = n+2. Then the vertex of degree o is adjacent to all vertices
of degree a + k, for all even k, and the vertices of degree a + 2 are adjacent to
all vertices of degree « + k, for all even k, except possibly the vertex of degree
o+ n. So a + 2 < a, a contradiction.

. If n is odd we consider the cases j = n—1,n+ 1. If § = n — 1 then the
vertex of degree o + n is adjacent to all vertices of degree « + k, for all even k,
and the vertices of degree a + n — 2 are adjacent to all vertices of degree o + k,
for all even k, except the one of degree . Then

at+n=1+4+|a+2|+|a+4|+...and
a+n—2=|a+2|+|a+4|+...,a contradiction.

Finally, if j = n + 1, the vertex of degree « is adjacent to all vertices of
degree a + k, k even, and all vertices of degree « + 2 are adjacent to all vertices
of degree a + k except k = n — 1. Then we have a similar contradiction where
a = o+ 2. Thus the lemma is proved. I

Lemma 1.2. Let G be a graph on p + 2 vertices which has three non-
isomorphic subgraphs on p vertices. Then G has at most three different degrees.

Proof. Suppose G has four degrees: «,a + m;,a + my, o + mg, where
0 < m; < mz < mg3. Then in deleting two vertices of distinct degrees there are
total deleted degrees of 2« +¢, for i = my, mo, mg, my +ma, m; +ma, ma+ ms.
These must be reduced to at most three totals of actual edges deleted.

Assume first that there are only five totals, i.e. my + my = m3. If my #
my+1,then ma+m3 = m, +ma-+1 which implies ms = m; +1, a contradiction.
Using ma = m; + 1 then the five values are 2« + ¢, fori = m;,m, +1,2m, +
1,3m; 4+ 1,3m; + 2. So the three numbers of edges must be 2o + 7, where
i=my,2m; + 1,3m; + 1. Then in G the vertices of degree o + m; cannot be
adjacent to vertices of any other degree and two vertices of degree « + m; cannot
be adjacent to each other since 2m; — 1 = m, implies that m; = 1 and the degrees
are o, a+1,a+2, a+3, and we apply the previous lemma. Butthen a+m; = 0.

Assuming second that there are six totals, m; + ms = m3 + 1. As before,
mg = m;+1. If m;+my = mz+1thenthesix valuesare my, my+1,2m;,2m; +
1,3m;,3m,; + 1. Any vertex of degree a or a + 2m, is adjacent 10 no vertex
of degree a or  + m; or a + 2m; and is adjacent to every vertex of degree
a + m; + 1 so the number of vertices of degree o + m; + 1 equals both «
and o + 2m,, a contradiction. If m; + my = mg — 1, then the six values are
my,m + 1,2m; + 1,2my + 2,3m; + 2,3m; + 3. Then in G the vertices of
degree o + m, cannot be adjacent to any other vertex, a contradiction. I
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Lemma 1.3. Let G be a graph on p + 2 vertices which has n > 4 non-
isomorphic subgraphs on p vertices. Then G has at most n different degrees.

Proof. Letthe degreesbe a, a +my, a4+ my, ..., a+m,, where0 < m; <
my < ... < m,. If we delete in turn all possible pairs of vertices with different
degrees, we have total degrees of deleted pairs 2« + 7, where i € {m; : 1 <
j<n}u{m; + m : 1 < j < k < n}. This contains at least 2n — 1 distinct
values, namely the increasing sequence A = {m;, ma, my + ma, m; +mz, ma +
m3,ma+ my,..., My_2+ My_1, Mp_2 + My, My + M, }, but no more than
2n distinct values. These reduce to at most n numbers of edges, so A must contain
n — 1 pairs =, z + 1 and one unpaired number. The unpaired term may be the first
the last, or an intermediate term, but in each case it follows that m), m2, ..., m,_
are consecutive integers.

If my > 1and m, > my,_1 + 1 then consider the increasing sequence

{m;, ma, m3, (gap) m; + maz, m +my,...,my + mq_1,(gap) m, + m,,mz +
Mmy,...,Mpy_1+my,}if niseven,or {m;, my, m3, (gap) m;+ms, ma+m3, ma+
Mmy,...,Ma+m,_1,(gap) ma+m,, ma+my,,...,m,_1+m,}ifnisodd. In

either case, the sequence contains 2n — 1 terms, yet consists of three subsequences
of consecutive terms, each subsequence of odd length. Therefore there cannot be
n — 1 pairs z,z + 1 soeitherm; =1lorm, =m,_; + 1.

If m, > mn_; + 2, consider the increasing sequence {m1,ma,...,mp_1,
my + Mp_1, M2 + Mp_1,Mp, My + Mn,...,Mu_1 +my} and if m; > 2, con-
sider the increasing sequence {m;,ma, ..., Mp, My +Mu_2, My +My_1, M1 +
My, mg + my,...,m,_1 +m,}. In either case, the number of total degrees of
deleted pairs is at least 2n + 1, a contradiction.

Consider the case m; = jforj = 1,...,n— 1and m, = n + 1. The sums
of pairs of degrees are 1,2, ... ,2n and the number of deleted edges must always
be odd. Vertices of degrees « and « + 2 are adjacent to precisely those vertices of
degree o + k where k is even, hence o = o + 2.

Finally, consider the case m; = j + 1 for j = 1,2,...,n. Then the set of
degree totals is 2, 3, .. ., 2n + 1 and the number of deleted edges must always be
even. Vertices of degrees « and « + 2 are adjacent to preciscly those vertices of
degrees a + k, k odd, hence again o = « + 2, and this contradiction completes
the proof.

Theorem 2. Let |G| = p+ 3 and suppose G has exactly three nonisomorphic
subgraphs of order p. Then G has at most three different degrees.

We will also prove this theorem with a series of lemmas.

Lemma 2.1. Let |G| = p+ 3 and suppose G has at least four distinct degrees,
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a,b,c,d,whereb—a,c—b,d—careall > 2. Then G has more than three subgraphs
of order p.

Proof. Choose one vertex A, B, C, D, of each of the four degrees a, b, ¢, d
and one other vertex K of degree k, where k may or may not be one of a, b, c, d.
We delete K along with the six pairs in tum in {A, B, C, D}. Then the numbers
of edges deleted are

() a+b+k—ca—ep—eas,
(2) atct+k—es4—€ec—¢€sc,
B) a+d+k—es—€p—eap,
@) b+c+k—ep—ec—epe,
(5) b+d+k—ep—ep—epp,
6) c+d+k—cc—e€p—cecp,

where ex = 1 or 0 as there is or is not an edge between K and X andexy = 1 or
0 as there is or is not an edge between X and Y.

Suppose that there are exactly three subgraphs of order p. Then there must be
at least three pairs of equal expressions among the above six. It is clear that (1) #

G M#@, ME£EG), M#E6), D#G). #©) B)#(6), 4)#O).

Possible equalities have implications as follows.

MD=@)=>c=0+2, ec=€sc=1, eg=€cap=0.
2=@)=>d=c+2, ep=€ap=1, ec=€4c=0.
@Q=@=>b=a+2, eg=epc=1 ec=¢€ac=0.

(3) = (4) gives no additional information.

B)=@)=>b=a+2, eg=epp=1, €4=€4p=0.
@=0G)=>d=c+2, ep=¢€pp=1, ec =¢€pc=0.

B)=@)=>c=b+2, ecc=ecp=1, ep=¢€pp=0.

Suppose (2) = (3). Then (1) # (2), (3) # (4), (3) # (5), and (5) # (6).
But we may have (2) = (4) and/or (4) = (5). In fact we must have both of these
equalities in order to reduce to at most three numbers of edges. But then (3) = (5),
a contradiction.
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If (2) = (4) then (1) # (2) and (5) # (6) so we must have (2) = (3) = (4) = (5)
but again this requires (2) = (3) and (3) = (5). We have the same situation if (4) =
(5) or (3)=(5)sothe only remaining possible set of equalities is (1)=(2), (3)
= (4), and (5) = (6).

Thus for any vertex V that we choose to delete along with some pair in
{A, B,C, D}, the same equalities must hold, so, C must be adjacent o every
vertex except possibly B. Then ¢ > p+ 1 and thus d > p + 3, a contradiction. I

Lemma 2.2. Let |G| = p+ 3 and suppose G has at least four distinct degrees,
a,b, c,d, where at least one of the differencesb—a, ¢ —b, d—c,is > 2. ThenG
has more than three subgraphs of order p.

Outline of Proof: The cases to be considered are
Mb—a>2, ¢c—b>2 d-c=1
@ b-—a>2 c—-b=1 d—-c>2
BYb—a=1, ¢c—-b>2 d—-c=1
@Db—a=1 c—-b=1 d-—c>2.

Each of these is easily proved using the same technique as in the proof of Lemma
2.1. Case (4) requircs more subcases, but the technique still works. The other
possibilitics,

5) b—a=1, ¢c—-b6>2, d=c2>2
©6) b—a>2, c—-b=1 d-c=1,

are the complements of cases (1) and (4). I

When all of the differences between degrees are exactly one, the proof is not
nearly so compact. In fact there are enough cases that computer support was used
for the proof of the next lemma.

Lemma 2.3. Let |G| = p + 3 and suppose G has the four degrees, a,a + 1,
a+2,a+ 3, for some a. Then G has more than three subgraphs of order p.

Outline of Proof: Suppose G has at most three subgraphs of order p. If we
delete any veriex v from G, the remaining vertices can havedegreesa—1,a,a+1,
a+2,a+ 3. G — v has at most three subgraphs of order p, so by Lemma 1.2
G — v can have at most three degrees. We assume for now that there are at least
two vertices of each degree in G. The possible degreesinG —vare (1) a—1,a,
a+2;, 2 a-l,a+1,a+2;, 3)a—-1l,a+1,a+3; @) a,a+1,a+3; (5
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a,a+1,a+2; (6) a,a+2,a+3; (7) a,a+2. Sowe will say that the vertex
visoftype 1,2,...,7, depending on the degrees which exist in G — v. In particular,
if we choose one vertex of each of the four degrees in G, there are seven choices
of type for each one and thus 74 total cases.

To deal with these cases in a reasonable manner, we consider a number of
consequences of the above. The deletion of v from G of course deletes deg(v) edges
from G. The two other vertices u, , uz deleted from G — v result in degg.—., (u; )+
degg-v(uz) ordegg_,(u1)+ degg—o (u2)—1 moreedges being deleted depending
on the existence of a non-edge or edge between u; and u,. So we consider
all the sums degg_v(u1)+ dege—v(u2)+ degg(v). When considering in turn
vo, V1, V2, v3, where degg(v;) = a + i, we find a number of different sums. If
this set of sums is sufficiently spread, then the effect of potentially subtracting one
from some of them will not be enough to reduce the number of different numbers
of edges deleted to three.

If a vertex v; is of type j then v; must be adjacent to all vertices of certain
degrees and non-adjacent to certain others. This information is summarized as
follows.

Type 1 2 3 4 5 6 7
Adjacent to a+1 a a a+2 a+3 a+1 a+1
all v of degree a+3 a+3 a+2 a+3
Non-adjacent to a+2 a+1 a+1 a a a a
all v of degree a+3 a+3 a+2 | a+2
Table 1

From the data in Table 1 we see that there are many other cases which cannot
occur. For example, if v, and vz are both of type 1, v, must be adjacent to all
vertices of degree a + 3 but vz can be adjacent to no vertices of degree a + 2, a
contradiction. These contradictory results we summarize in Table 2. If two vertices -
are of types which appear in a single column, then we have a contradiction. With
the aid of a simple computer program, the 74 cases were reduced to 65 which were
not eliminated by one of these contradictions.

v | 16,7 23 34 16,7 34 | 1257

v 1,6,7 2313411257 34 4,5.6,7

vo | 2311671257 23 34 4,56.7

v3 1,6,7 23 |23]167]34 4,56,7
Table 2
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Each of these 65 cases was handled in a manner similar to the following
examples.

i) Let vy be of type 4, v, of type 2, v, of type 1, and v3 of type 4. The
sums degg_, (u1)+ degg_o(uz)+ degg(v) over all v chosen from {vy, ...,v3}
and then u; and u; chosen from different degrees of G — v depending on the type
of the v,are 3a + i fori = 1,2, 3,4,6, 7. The only way that these sums might be
reduced to three numbers of edges is if there exists an edge between any pair «;, u2
which gives a sum of 2, 4, or 7. For shorthand we write2 — 1, 4 - 3, 7T — 6. If
we delete vy, resulting in vertices of degrees a — 1, a+1, a+ 2, and then a vertex
of degree a — 1 and one of degree a + 2, we have a sum of 2. Thus every vertex of
degree a— 1 must be adjacent to every vertex of degree a+ 2. However, all vertices
of degree a (a + 3, resp.) in G have degree a — 1(a + 2, resp.) in G — v;, and vo
and v, are type 4. So vo cannot be adjacent to any vertices of degree a + 3 and v3
cannot be adjacent to any vertices of degree a, and so this case is eliminated.

ii) Letvo beoftype4, wv;oftype5, v of type 1,and v of type 4. The
sums are the same as in example (i),s02 — 1, 4 —3,and7 — 6. Asumof 1
occurs when we delete vo, and vertices u; and u; of degree aand a + 1 in G — vo,
so no edges can exist between u; and uz in G — vo. Now all vertices in G of
degree a+ 2 are of degree a+ 1in G — v 50  (A) vo must be the only vertex of
degree a which is adjacent to any vertices of degree @ + 2in G. (B) Also, none
of the vertices of degree a + 1 in G can be adjacent to v, else letting u; be sucha
vertex and deleting v, u;, vy gives 3a edges deleted, a contradiction. Now if we
delete v3 and u; and u; of degree a and a + 1 in G — v3, we have a sum of 4. If
degg(u1) = a and degg(uz2) = @ + 2, there must be an edge between them, i.e.
(C) each vertex of degree a is adjacent to each vertex of degree a + 2 in G. Facts
(A) and (C) contradict each other unless there is only one vertex of degree a. This
contradicts our assumption on the number of vertices of a given degree. So this
case is also eliminated.

Now if we consider the cases where there is exactly one vertex of given
degree(s) we can use the same sort of analysis as above, and similar computer
programs to reduce the number of cases to a more or less reasonable number to
work out by hand. Note that examples (i) and (ii) above do not depend on the
number of vertices of a given degree. Example (ii) appears to depend on the
assumption of more than one vertex of degree a, but actually this case cannot
occur by fact (B) if there is only one vertex of degree a. Since vy is of type 4, its
deletion requires vertices of degree a in G — vp. But since v is not adjacent to
any vertices of degree a + 1, G — v, has no vertices of degree a. Types of vertices
other than types 1,. .. 7 are introduced which cover the possibility of G — v having
only degrees a + 1 and e + 3 and other special cases where one veriex of some
degree exists. 1
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So Theorem 2 is proved. §
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