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Abstract. Letn > 1 be an integer and let G be a graph of order p. A set I,, of vertices
of G is n-independent if the distance between every two vertices of I, is atleast n+ 1.

Furthermore, I, is defined to be an n-independent dominating set of G if I, is an n-

independent set in G and every vertex in V(G) — I, is at distance at most 1 from
some vertex in I. The n-independent domination number, $,(G), is the minimum
cardinality among all n-independent dominating setsof G. Hences; (G) = i(G) where
1(G) is the independent domination number of G. We establish the existence of a
connected graph G every spanning tree T of which is such that i4(T) < in(G). For
n € {1,2} we show that, for any tree T and any tree T* obtained from T by joining a
new vertex to some vertex of T, we have i, (T") > i,(T"). However we show that this
isnot true forn > 3. We show that the decision problem comresponding to the problem
of computing i,(G) is NP-complete, even when restricted to bipartite graphs. Finally,
we obtain a sharp lower bound on i,(G) for a graph G.

1. Introduction

For graph theory terminology not presented here we follow [15]. Specifically,
p(G) and ¢(G) will denote, respectively, the number of vertices (order) and edges
(size) of a graph G with vertex set V(G) and edge set E(G). If S is a set of
vertices of G and v is a vertex of G, then the distance from v to S, denoted by
dg(v, S) or simply d(v, S), is the shortest distance from v to some vertex in S.

The theory of domination in graphs was formalised by Ore [53] and Berge [5]
in 1958. A set D of vertices in a graph G is defined to be a dominating set of
vertices of G if every vertex of V(G) — D is adjacent to a vertex of D. The
fact that every maximal independent set of vertices in a graph is also a minimal
dominating set motivated Cockayne and Hedetniemi [18] in 1974 to initiate the
study of “independent domination” in graphs. A dominating set of vertices in a
graph that is also an independent set is called an independent dominating set. The
minimum cardinality among all independent dominating sets of a graph G is called
the independent domination number of G and is denoted by i(G) . The parameter
i#(G) has received considerable attention in the literature (see, for instance, [1, 2,
6,8,9, 16, 17, 19-34, 38, 39, 4649, 52, 56, 57, 59]).

In [41] and [44] a generalization of independent dominating sets and the inde-
pendent domination number of a graph is considered. Let n > 1 be an integer
and let G be a graph. A set D of vertices in G is defined to be an n-dominating
set of G if every vertex of V(G) — D is within distance n from some vertex of
D. A set I of vertices of a graph G is defined to be n-independent in G if every
vertex of I is at distance at least n+ 1 from every other vertex of I in G. It follows
easily that every maximal n-independent set is also minimal n-dominating. A set
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I is defined to be an n-independent dominating set of G if I is n-independent
and n-dominating in G. The n-independent domination number i,(G) of G is
the minimum cardinality among all n-indepndent dominating sets of G. Hence
11(G) = i(G) and 1-independent dominating sets of G are independent dom-
inating sets of G. Results on the concept of n-domination in graphs have been
presented by, among others, Bacsé and Tuza (3, 4], Bondy and Fan (7], Chang
{10, 11}, Chang and Nemhauser [12, 13, 14], Fink and Jacobson [385, 36], Fraisse
[37], Henning, Oellermann and Swart [40—44), Jacobson and Peters [45], Meir
and Moon [50], Mo and Williams [51], Slater [55], Topp and Volkmann [58] and
He and Yesha [60].

There are potential applications of n-independent dominating sets to emergency
aid centre location problems. Suppose a graph G is used to model a street system
where vertices of G correspond to intersections and edges of G link vertices cor-
responding to adjacent intersections. A number of emergency aid centres are to be
built at various points in the city so that each person living in the city is within n
blocks of one of these centres. Furthermore, to avoid congestion in a crisis situa-
tion, these facilities are to be built in such a way that they are at least n+ 1 blocks
apart. The problem of finding such a collection of potential sites for emergency
aid centres amounts to finding a n-independent dominating set of vertices in G
and an optimal solution has cardinality 1,(G).

In Section 2, for each integer n > 1, we establish the existence of a connected
graph G every spanning tree T' of which is such that i,(T) < i,(G). Forn €
{1,2} we show that, for any tree T and any tree T" obtained from T by adding
a new vertex and joining this vertex with an edge to some vertex of T', we have
i2(T) < ia(T"). However we show that this is not true forn > 3. In Section 3 we
investigate the computational complexity of n-independent domination. We show
that the decision problem corresponding to the problem of computing i,(G) is
NP-complete, even when restricted to bipartite graphs. In Section 4 we investigate
lower bounds on i,(G).

2, Spanning trees and subgraphs

We begin this section by establishing, for each integer » > 1, the existence of a
connected graph G, every spanning tree T' of which satisfies {,(T) < i,(G). For
k alarge integer, let H be the graph obtained from K (1, k) by subdividing each
edgen— 1 times. Let Hy, Ha, ..., Hna ben+ 2 disjoint copies of H and let v;
denote the vertex of H;(1 < i < n+ 2) of degree k. Further let Gy, be the graph
obtained from (J™*2 by adding the edge v; v, and the edges vy, for all § with
1 < i < n+ 1. (The graph G, is depicted in Figure 1.) Then every spanning
tree T of G, is isomorphic to G, — vjvz. Hence it is not difficult to verify that
in(T) = i(Gn — v1v2) = nk+2 < (n+ Dk+1=1i,(Gn).

Proposition 1. For n € {1,2}, the tree T' obtained from a tree T' by joining a
new vertex to some vertex of T, satisfies i,(T") > in(T).
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Figure 1. The graph G,,
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Proof: Let v be the new vertex added to T to produce the tree T/ = TU{v}U{uv}
where u € V(T). Forn € {1,2}, we show that i,(T") > i,(T). Let I, be an
n-independent dominating set of T/ with |I,| = i,(T"). If v ¢ I,, then I, is an
n-independent dominating set of 7" and 50 i,(T") < |I,| = i.(T"). Hence in what
follows we may assume that v € I, for otherwise there is nothing left to prove.

Since v € I, d(v, I — {v}) > n+ 1l andsod(u, I, — {v}) > n. Ifd(u, I, -
{v}) > m, then (I, — {v}) U {u} is an n-independent dominating set of 7" and
of T, and 50 i,(T) < |Is| = #.(T"). If on the other hand d(u, I, — {v}) = n,
then for n = 1 this implies that I; — {v} is an independent dominating set of T
with 4, (T) < |I) — {v}| < 41(T"). It remains for us to consider the case where
d(u, I, — {v}) =nandn=2.

If I — {v} is a 2-independent dominating set of T', then i2(T") < i2(T").
Suppose that I —{v} is not a 2 -independent dominating set of T". Let S denote the
setof all vertices of T that are at distance at least 3 from every vertex of I — {v}.
Since I is a 2-dominating set of T”, each vertex of S is at distance at most 2
from v in 7. Furthermore, since d(u, I — {v}) = 2, it follows that § C N(u).
In particular, we observe, therefore, that each vertex of S is at distance at most 2
from every other vertex of S in T'. This implies that, for any vertex w € S, the set
(I2 —{v})U{w} is a2-independent dominating set of 7" and of T'. Consequently,
12(T) < |I2| = 12(T"). This completes the proof of the proposition. [}

It is somewhat surprising that Proposition 1 is not true for n > 3. To see this,
consider the tree T;,(n > 3) constructed as follows. Let n > 3 be an integer,
and let k be a large integer. Let F* be the graph obtained from K(1,k + 1) by
subdividing each edge n — 1 times. Further, let Fi, F,...,Fo,3 be 2n—3
disjoint copies of F', and let u; and v;, respectively, denote the vertex of degree
k + 1 and an end-vertex of Fy(1 < i < 2n— 3). The tree T, is obtained from
W25 F; byadding two new vertices vo and v2,,—» and by adding the edges v;vie 1
forall 4 with 0 < 1 < 2n— 3. (The tree T, is shown in Figure 2.) Then it is
not difficult to verify that {u;, u,..., 42,3 }U{vo, v2,-2 } is an n-independent
dominating set of T, of cardinality i,(7%) = 2n—1. However the tree T, obtained
from T, by adding a new vertex v and joining v with an edge to v, is such
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that i,(T!) = 2n—2 < iu(Tn). (The set {u1,u2,...,u223} U {v} is an
n-independent dominating set of T}, of cardinality 2n—2.)

n | [} 1 [ . . . . n
veartices i + vertices
Y Yn.2 Ya.1 Yn uzn,3

..,

venlces ; E E E veartices
. j_i_i_ 1
e 2n- 2%
Yo Va Y2n-3
Figure 2. The tree Ty

(The set of all darkened vertices form an
n-independent dominating set of cardinality i,(T) = 2n—1.)

3. Complexity

From a computational point of view the problem of finding i,(G) appears to
be very difficult. In fact, there is no known efficient algorithm for solving this
problem. Let us consider the following decision problem corresponding to the
problem of computing i,(G) for any fixed integer n > 2.

DISTANCE n-INDEPENDENT DOMINATING SET (DID)
Instance. Graph G=(V,E), positive integer k< |V]|.
Question. 1Is there an n-independent dominating set of
cardinality k or less? '

The purpose of this section is to establish the following result.
Theorem 1. DID is NP-complete when restricted (o bipartite graphs.

Proof: Itis obvious that DID is a member of NP since we can, in polynomial time,
guess at a subset of vertices, verify that its cardinality is at most k, and then verify
that it is an n-independent dominating set. To show that DID is an NP-complete
problem, we will establish a polynomial transformation from the well-known NP-
complete problem 3SAT. Let I be an instance of 3SAT consisting of the (finite)
set C = {c1,...,cm} Of three-literal clauses in the k-variables z1,...,z¢. We
transform I to the instance (G, k) of DID in which Gy is the bipartite graph
constructed as follows.
Let H be the graph obtained from a 4-cycle by attaching a path of length n— 1

to each of two nonadjacent vertices of the 4-cycle. Let Hy, ..., H be k disjoint
copies of H. Corresponding to each variable x; we associate the graph H;. Let
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x; and T; be the names of the two special vertices of H; of degree 2 that are at
distance n from the two end-vertices of H;. Corresponding to each clause ¢; we
associate a special vertex named ¢;. The construction of our instance of DID is
completed by joining the vertex c; to the three special vertices that name the three

_literals in the clause c; and then subdividing each of these three edges n— 2 times.
The resulting graph G is depicted in Figure 3.

n
vertices

n
vartices

-o—o
o—---—0—@

NN,

e 8 s Y s . ne2

" .b ! . " [varticas
V., Y

m

Figure 3. The graph G resulting from 3SAT instance I.

It is easy to see how the construction can be accomplished in polynomial time.
All that remains to be shown is that I has a satisfying truth assignment if and only
if in( GI ) S k.

First suppose I has a satisfying truth assignment. Let D be the set of k special
vertices of G'1 that correspond to literals which have the value T (in the instance I).
We verify that D is an n-independent dominating set of G of cardinality k. Since
d(z;,T;) = 2, the only vertices whose n-domination by D gives any doubt are the
vertices c;. But these vertices are n-dominated by D because I has a satisfying
truth assignment. This shows that i,(G1) < |D| = k.

Conversely assume that ,(Gr) < k. Let D be an n-independent dominating
set of G with | D] = i,(G). Since the end-vertices of H; are at distance n from
both z; and 7;, it follows from our construction of G'; that D contains a vertex of
H; foralli(1 < i < k). This shows that |D| > k. Hence i,(G) = |D| = k and
D consists of precisely one vertex from each H; namely z; or ;. However, since
D is an n-dominating set of G/, this implies that each vertex c; is within distance
n from some vertex of D in G;. Thus we can use D to obtain a truth assignment
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t: {z1,...,z} — {T, F}. We merely sett(z;) = T if 3; € Dand t(z;) = F
if z; ¢ D. Since this truth assignment satisfies each of the clauses of C,I hasa
satisfying truth assignment. [ |

4, Bounds on i,,(G) for a graph G

Since the problem of computing i,(G) appears to be a difficult one, it is desir-
able to find good upper bounds on this parameter. Before proceeding further we
introduce some notation.

Let v be a vertex of G. The set of all vertices of G different from v and at
distance at most n from v in G is defined in [37] as the open n-neighborhood
of v in G and is denoted by N,(v). The closed n-neighorhood of v is the set
N,.[v] = Na(v) U {v}. The n-degree, deg,v, of v in G is given by |Na(v)].
Hence Nj(v) = N(v) and deg v = degv. The maximum n-degree among all
the vertices of G is denoted by A, (G) s0 A1 (G) = A(G). Letv be a vertex with
deg v = A,(G) and S be amaximal n-independent (and therefore n-independent
dominating) set which contains v. Since SN Ny(v) = 0,|S| <p— A (G) and
we have proved the following result.

Proposition 2. Forn > 1, if G is agraph of order p, then in(G) < p— A (G).

To see that the above bound for i,(G) is best possible, consider the graph G
obtained from a star K x k > 2, by subdividing k — 1 of the edges n times and
one edge n— 1 times. Theni,(G) = k,p= p(G) = (n+ 1)k and A, (G) = nk;
consequently, i,(G) = p — As(G).

Next we present a lower bound on 4,(G) in terms of the maximum n-degree

Au(G).

Theorem 2. For n > 1, if G is a graph of order p and maximum n-degree
Ap > 2n, then
. 14
(@) 2 %_T‘:Tl
Furthermore, i,(G) = p/[(%})A, — 1] if and only if all components of G
are either paths or cycleson I =0 (mod 2n+ 1) vertices, or have order exactly
2n+ 1.

Proof: Let X be a minimum n-independent dominating setof G. Let A be the set
of vertices of V(G) — X that are within distance n from exactly one vertex of X
and B the set of vertices of V(G) — X that are within distance n from at least
two vertices of X. Note that {X, A, B} is a partition of V(G). For z € X, set
A; = {u | u € Aand d(u,z) < n}. By definitionof A, 71 # 22 implies that
Az, N Az, = 0. We note that

|Az] < Aqforallz € X. n

38



Forz € X,set B; = {u | u € B and d(u,z) < n}. We note that

IBzISAn—IAzl forallz € X. (2)
_ By definition of B, each vertex of B belongs to at least two sets B;. We deduce
that
21B|< ) 1B
z€X
and hence, using (2), that
1
BI< Y (8 = 14:)). ©)
zeX
Using (1) and (3) we have
p=|X]|+|A]+|B|
1 .
<IX[+ 3 [Asl+ ) 5(Ba— A (using (3))
z€X zeX
1
=y 7(8at |4z +2)
z€X
<Y (A +1)  (using (1)
z€X
<y [(”—*—l) Ao 1] (since A, > 21)
n
z€X
+1
= |X|- [("n )An—l]. @
so that p
(@) = |X| 2 EDa -1

We now determine the connected extremal graphs G (the disconnected graphs
are easily deduced). If G is extremal, then we have equality throughout in (4). In
particular, this means that A, = 2%, 50 $,(G) = p/(2n+ 1). If i,(G) = 1, then
G has order 2n+ 1. Assume, then, that 1,(G) > 1. We show that G is either a
pathoracycleonZ=0 (mod 2n+ 1) vertices. If n=1,thenA(G) = A1 =2
and i(G) = 11(G) = p/3. This occurs if and only if G is either a path or a cycle
onf =0 (mod 3) vertices. Assume, then, thatn > 2.

Let v be a vertex with deg,v = A, = 2n. Fori = 0,1,...,m = e(v), let
D; = {u € V(G) | d(u,v) = i}. Since $,(G) > 1, we know thatp > 2n+ 1.
Since deg,v = 27, we have e(v) > n+ 1. Letv,, € D, and consider a shortest
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v-um path P : v = vg,v1,...,vm. Necessarily, v; € D; (0 < 1 < m). Let P
be the vg-v, subpath of P and consider the vertex vy. If Np[v] C Nu[w1], then
degav; > [(Nulv]l = {v1}) U {van1 }| = 2n+ 1 > A, which is impossible.
It follows that there exists a vertex w, € D, at distance n+ 1 from v;. Let
Q : v,w,...,w, bea shortest v-w, path. Necessarily, V(P) N V(Q) = {v},
s0 N.[v] = V(P") UV(Q). Further, w; € D; and, since d(vi, ws) = n+ 1,
there is no edge of the form vw (1 < i < n) or yw;i(1 < 4 < n— 1).
Moreover, there is no edge of the form v;w;_1 (2 < i < n), forotherwise V(P')U
V(Q)U{vne1} C Nolw;1]1,504, <2n+1 < deg ,w;_;, which is impossible.
Thus there is no edge joining V(P') — {v} and V(Q) — {v}. That is to say,
(Nulv]) & Pani1. Necessarily, vqe is the only vertex of D,.1 that is adjacent
with v,, for otherwise, deg ,u1 > A,. We consider two possibilities.

Case 1. Suppose that degw, = 1. Then Dy, = {vne1 }. Sincepisa multiple of
2nt+1,and |2 Dif = 2n+2, weknow thatm > n+2. Letn+1 < k < mand

assume that Dy, = {v;} forall i withn+ 1 < 1 < k. Weshow that D = {vis1}.
Ifk >2n—1,then

2n= A, > degavi-m1

= |{Vkeny Vkorm1 s+ - o) V2001 } + [{Vh=m2 s, v} + | D]
=2n—-14+ IDfH‘llv

50 |Dgs1| < 1. Hence Disy = {vi + 1}. If, on the other hand, k£ < 2n— 1, then

2n= A, > degavk—n+1

= H{vo,v1,. .., ve=a}| + {w1,... y Wan-1-k H+
H{vkone2 s-- -, v} + | Dia1l

50 | Dg+1] < 1. Once again, Dy.1 = {v+1}. Hence, by induction, G is a path on
(m+n+1) =0 (mod 2n+ 1) vertices.
Case 2. Suppose that degw, > 1. Then w, is adjacent to exactly one vertex
in Dy , for otherwise, deg q,wy > Aq. If [Dnsr| = 1, then vy, is adjacent to
v, and to w,, and therefore is within distance n from A, vertices of PuqQ. 1t
follows that D2 = @, for otherwise, deg nun+1 > An. Thus G ¥ Cypi2, Which
contradicts the fact that p is a multiple of 2n+ 1. We deduce that | Dy | = 2.
Let Dpvt = {Var1, Woe1 } Where wo wy € E(G). If vpe1 woe1 € E(G), then
G = Ca.3 , ONce again contradicting the fact that p is a multiple of 2n+ 1. Hence
{Uro D) ¥ Prus. '
Letn+1 < j < m, and assume that D; = {v;, w;} foralli with1 <1< kand
that {J¥.o D;) ¥ Paxe1 (Where wiw;_; € E(G) for2 <i < k). Ifdegw =1,
then proceeding in a similar manner as in Case 1, we may conclude that Gisapath
on(m+k+1) =0 (mod 2n+ 1) vertices. Assume, then, thatdeg w; > 1. Then
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wy, is adjacent to exactly one vertex in Di.1, for otherwise, deg ywWi—n1 > An.
If | Dg+1| = 1, then vy, is adjacent to vi and to wg. It follows that Dy, = 9,
k+1=mand G ¥ Cm. If2m # 0 (mod 27+ 1), then this produces a
contradiction. Otherwise, G isacycleon2m =0 (mod 2n+ 1) vertices. ’
If | Dgs1| > 1, then, necessarily, | Di+1] = 2. Let Dgs1 = {vge1wke1 } Where
wieiwi € E(G). fvps1wis1 € E(G),thenm = k+1andG & Comsar. If
(2m+ 1) # 0 (mod 2n+ 1), then this produces a contradiction; otherwise,
Gisacycleon (2m+ 1) = 0 (mod 2n+ 1) vertices. On the other hand, if
Vie1Wee1 € E(G), theneitherm = k+1,inwhichcaseGisapathon(2m+1) =
0 (mod 2m+ 1) vertices, or m > k + 1,in which case (U0 Di) & Poeeryor.
Continuing in this way, we deduce that G is either a path oracycleon £ = 0
(mod 2n+ 1) vertices. This completes the necessity. The sufficiency is clear. i
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