ON GRAPHS WITH EQUAL DOMINATION AND EDGE
INDEPENDENCE NUMBERS

LUTZ VOLKMANN

ABSTRACT. Let G be a simple graph. A set D of vertices of G is
dominating if every vertex not in D is adjacent to some vertex in D.
A set M of edges of G is called independent, or a matching, if no two
edges of M are adjacent in G. The domination number v(G) is the
minimum order of a dominating set in G. The edge independence
number ag(G) is the maximum size of a matching in G. If G has
no isolated vertices, then the inequality v(G) < ao(G) holds. In this
paper we characterize regular graphs, unicyclic graphs, block graphs,
and locally connected graphs for which 4(G) = ag(G).

1. TERMINOLOGY

We consider finite, undirected, and simple graphs G with the vertex set
V = V(G) and the edge set E = E(G). For A C V(G) let G[A] be the
subgraph induced by A. A subgraph H of G with V(H) = V(G) is called
a factor of G. N(z) = N(z,G) denotes the set of vertices adjacent to the
vertex ¢ and N(z) = N(z,G) = N(z) U {z}. More generally, we define
N(X) = N(X,G) = U,ex N(z) and N(X) = N(X,G) = N(X)U X for
a subset X' of V(G). The vertex v is an end vertex if d(v,G) = 1, and an
isolated vertex if d(v, G) = 0, where d(z) = d(z,G) = |N(z)] is the degree
of z € V(G). Let Q = Q(G) be the set of end vertices, and I = I(G) be the
set of isolated vertices, respectively. We denote by § = §(G) the minimum
degree and by n = n(G) = |V(G)| the order of G. An empty graph is one
with no edges. We write C,, for a cycle of length n and K,, for the complete
graph of order n. A star is a complete bipartite graph Ky n,, with m > 2,
and the unique vertex v of this star of degree m is called the center.

A set D C V(G) is a dominating set of G if N(D,G) = V(G), and is
a covering set of G if every edge of G has at least one end in D. The
domination number, ¥ = ¥(G), and the covering number, 8 = 8(G), of G
is the order of the smallest dominating set, and the smallest covering of
G, respectively. If G is a graph without isolated vertices, then it is easy

ARS COMBINATORIA 41(1995), pp. 45-56



to check that y(G) < B(G). A set M C E(G) is an independent set, or a
matching, if no two edges of M are adjacent in G. The order of a maximum
matching is called the edge independence number ag = ao(G). A matching
M saturates a vertex v, and v is said to be M-saturated, if some edge of
M is incident with v; otherwise, v is M-unsaturated. An M-alternating
path in G is a path whose edges are alternately in E(G) — M and M. An
M-augmenting path is an M-alternating path whose origin and terminus
are M-unsaturated.

2. PRELIMINARY RESULTS

The next two famous theorems of Konig [4] from 1931, and Berge [1]
from 1957 are very important for our research.

Konig’s Theorem. [4] If G is a bipartile graph, then ao(G) = B(G).

Berge’s Theorem. [1] A matching M in G is a marimum matching if
and only if G contains no M-augmenting path.

Theorem 1. If G is a graph without isolaled verlices, then
7(G) £ ao(G).

Proof. If T is a spanning forest of G without isolated vertices, then it
follows from Kénig’s Theorem

Y(G) £ (T) < B(T) = ao(T) < ao(G),
and the proof is complete. O

It is the purpose of this paper to characterize some classes of graphs for
which the equality ¥(G) = ao(G) holds.

In the sequel, we will need some further notions, results and observations.

Proposition 1. [6] If G is a graph without isolated vertices, then we have
2(G) < n(G),

Corollary 1. If G is a graph withoul isolaled vertices, then
7(G) £ @o(G) < B(G).

Proof. The well-known fact that ao(G) < B(G) and Theorem 1 yield the
desired inequalities. [0



Corollary 2. For a bipartite graph without isolated vertices we have v(G) =
ao(G) if and only if v(G) = B(G).

Proof. Since ¥(G) < B(G), we deduce from Konig’s Theorem
7(G) < B(G) = ao(G),
and this yields the desired result. [

In [9] we have characterized all trees T' with ¥(T') = #(T). According to
Corollary 2 we get the same characterization for trees T with y(7T") = ae(T).

Theorem 2. [9] Let T be a tree of order n > 2. Then ¥(T) = ao(T)
if and only if T* = T — N(SAT),T) = 0 or each component of T* is an
isolaled verter or a slar, where the centers of these slars are notl adjacent
to a vertez of N(QXT),T).

The next lemma plays a central role in our proofs.

Lemma 1. Let G be a connected graph with v(G) = ao(G). IfH is a
factor of G without isolated vertices, then

Y(H) = ao(IT) = 1(G).

Proof. Since the factor H has no isolated vertices, Theorem 1 yields the
inequality y(H) < ag(H). This implies

ao(G) = ¥(G) < v(H) < ao(H) £ ao(G),
and therefore y(H) = ao(H) = ¥(G). O

Finally we note the simple but useful

Proposition 2. If C, is a cycle of length n, then v(C,) = ao(Cy) if and
only if n = 3,4,5 or 7.

Since for a graph G without isolated vertices we have ¥(G) = ao(G)
if and only if v(H) = ao(H) for each component H of G, we will only
deal with connected graphs; one can easily generalize the results to non-
connected graphs without isolated vertices.
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Theorem 3. Lei G be a connected and r-regular graph G withr > 0. Then
we have v(G) = ao(G) if and only if G = K2 or G = C3,C4,Cs, Co.

Proof. The sufficiency is obvious. The converse is immediate for » = 1, and
follows from Proposition 2 for r = 2. Now we assume that r > 3. Since G is
regular, we can deduce that |[N(X, G)| > | X| for all subsets X of V(G) (see
[8, p. 125]). Hence by a theorem of Tutte [7] (see also [8, p. 105]), there ex-
ists a factor of G whose components are either 1-regular or 2-regular. Thus,
G has a factor F whose components are 1-regular or cycles of odd length.
If F contains an odd cycle of length > 9, then it follows from Proposition
2 and Theorem 1 that v(F) < ao(F), a contradiction to Lemma 1. This
implies that the components of F are graphs of the form K3, Cs, Cs, or
C7. It is easy to check that F = Cs or F = C7 is not possible, so that the
factor F consists of at least two components. If there exists an edge in G
which joins two cycles of F, it is not hard to observe that F, together with
such an edge, form a new factor F’ with v(F’) < ao(F’), a contradiction
to Lemma 1. This means that in G the cycles of F are only joined with the
1-regular components of F. On the other hand, we conclude from r > 3
that in G all vertices of each cycle C3 of F are adjacent to an l-regular
component of F.

Now we shall show that there exists a factor J such that all components
have the form K>, Cs, or Cr. Let C be a cycle of length three in F with the
three vertices ¢q, ¢c2, and c3. Furthermore, let z;y;, z2y2, and z3ys be the
edges of three 1-regular components of F'. If there exist without loss of gen-
erality the edges ¢)z1, c2z2, ¢33, or €11, €2Z)1, €3T3, OF 1T, C221, C3T)
in G, then in each case we add these three edges to F' and get again a factor
F* such that y(F*) < ao(F") which is not possible. On the other hand,
if G contains without loss of generality the edges ciz, and cayi, then we
transform C and the 1-regular component with the vertices z; and y; in a
cycle Cs, and we have a new factor with one fewer cycle of length three.
Therefore we get step by step a factor J of the desired form.

Let J consists of i 1-regular components, j cycles Cs, and k cycles C7. Since
G is connected, every cycle Cs or C7 of J is joined in G with a 1-regular
component of J. This means that ¢ > 0 and therefore 5i + 15k > 4i + 14k.
From the last inequality it follows

AG) = 1(J) = i+2 +3k > %(‘2i+5j+ Th) = %n(G).

But this is a contradiction to a recent inequality of McCuaig and Shepherd
(5] that ¥(G) < %n(G), ifé(G)>3. 0O

From Theorem 3 and Corollary 1 we deduce immediately the following
result.
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Corollary 3. [9] For a connecled, r-regular graph G with r > 0 we have
¥(G) = B(G) if and only if G = K3 or G = Cj.

4. CORONA GRAPHS

Before proceeding we introduce the following notation. Let G be a graph
and F = {H.|z € V(G) and H, # 0} a family of graphs disjoint from each
other and from G indexed by the vertices of G. The corona G o F of the
graph G and the family F is the disjoint union of G and the graphs H,,
z € V(G), with additional edges joining each vertex v of G to all vertices
of H,. If all graphs of the family F are isomorphic to one and the same
graph H (written H = H, for all z € V(G)), then we shall write Go H
instead of G o F.

Theorem 4. For a graph G and a family F = {H|z € V(G)} indezed by
the vertices of G we have v(G o F) = ao(G o F) if and only if every graph
H, of F is emply or H, = K,, and if exactly H,,, ..., H;, are isomorphic
to Ko, then the induced subgraph G[z,, ..., ;] conlains no edges.

Proof. Since V(G) is a dominating set of the corona graph G o F, it is easy
to see that ¥(G o ) = n(G) = n. Let H,,,..., H;, be isomorphic to K,
and let H;,,,,..., H;, be empty graphs. If we choose a vertex y; € H.,
foralli=1,..,n, then M = {2141, ..., Tnyn} form a matching in Go F.
Now it is not difficult to check that G o F contains no M-augmenting path,
and therefore by Berge’s Theorem M is a maximum matching. Hence we
conclude Y(G o F) = ap(G o F) = n.

On the other hand, if any H, is not empty with |H,| > 3, then it is easy
to find a matching M* with |M*| > n + 1. Thus,

HGoF)=n<n+1< ag(GoF),

a contradiction. Furthermore, if the induced subgraph G[z,, ..., z;] contains
an edge, it is immediate that y(Go F) < ag(Go F). O

Proposition 3. [3] Let G be a connected graph of even order. Then we

have ¥(G) = {n(G) if and only if G = C4 or G = H o K, for an arbitrary
connected graph H.

Corollary 4. Let G be a connected graph with a perfect matching that
means ag(G) = in(G). Then ¥(G) = ao(G) if and only if G = C4 or
G = Ho K, for an arbilrary connected graph H-.

Proof. If G = C4 or G = H o K; for an arbitrary connected graph H, then
it follows from Theorem 4 that ¥(G) = ao(G). The converse is immediate
by Proposition 3. [
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5. UNICYCLIC GRAPHS

In [9] we have proved that if every cycle of a graph G is adjacent to an
end vertex, then ¥(G) = B(G) if and only if G* = G — N(Q(G),G) = 0
or each component of G* is an isolated vertex or a star, where the centers
of these stars are not adjacent to a vertex of N((G),G). Here we shall
show that the same class of graphs is characterized by the weaker condition
7(G) = ao(G). The proof is based on the next lemma.

Lemma 2. Let T be a tree of order n > 3. If T is not a star, then
YT — QT)) < ao(T).

Proof. In the sequel we shall use the short notation @ = Q(T). Since
the result is immediate if ¥(T) < ao(T), it remains to prove Lemma 2 for
Y(T) = ao(T). Then it follows from Theorem 2 that T* = T— N(Q,T) = 0
or each component of T is an isolated vertex or a star, where the centers
of these stars are not adjacent to a vertex of N(Q,T). Now we consider
three cases.

Case 1. The set T* = 0. Then T = T} o F at which each graph H; of F
is empty and T} is a tree. From the assumption that T is not a star we
conclude n(T;) > 2. Hence by Proposition 1 and Theorem 4 we obtain

AT =) = 5(Th) < 5n(T3) < (Ty) = ao(?).

Case 2. The set T* consists of isolated vertices I. In this case |N(Q,T)| =
Y(T) = ao(T) holds. Fora € I let U = N(Q,T) — N(a,T). Then the set
U U {a} is a dominating set of T — Q with

[UU{a}| < IN(Q,T)| = ao(T).

Case 3. The set T* contains m > 1 stars S; with the centers a;. It is easy
to see that D = N(Q) U {ay, ...,am} is 2 minimum dominating set of T". If
N(a1,T) =W and N(W,T) - {a1} = X C N(Q,T), then |X]| > |W|. All
isolated vertices of T* are adjacent to at least two neigbours of Q. But since
T is a tree, each isolated vertex of T* is adjacent to at most one vertex of
X. Therefore Dy = D— (X U {a1})UW is a dominating set of T — Q with
|D1] < ¥(T) = ap(T), and the lemma is proved. [

Theorem 5. If every cycle of a connected graph G of order n(G) > 2
is adjacent to an end vertez, then v(G) = ao(G) if and only if G* =
G — N(Q(G),G) = 0 or each component of G* is an isolated vertex or
a star, where the cenlers of these stars are not adjacent to a verler of

N(Q(G),G).
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Proof. If G* has the above form, then we have proved in [9] that ¥(G) =
B(G), and hence Corollary 1 implies ¥(G) = ao(G).
For the converse we consider two cases.
Case 1. Assume that there exists a component H of G* of order n(H) > 3
which is not a star. Let I be the set of isolated vertices of G* and R =
G*—-H-1. With H' = H—-Q(H) and Q(G) = Q, Theorem 1 and Lemma
2 yield

7(G) IN(Q,G)|+v(R) + v(H")
IN(Q,G)| + ao(R) + y(H')
< |N(Q,G)|+ ao(R) + ao(H) < ao(G),

<
<

a contradiction to ¥(G) = ap(G).

Case 2. Assume that there exists a component H of G* of order 2 or a
component A which is a star such that the center of H is adjacent to an
element of of N(9, G). If we define R as in the case 1, then we see

7(G) < IN(QG)|+7(R) < |N(R,G)|+ ao(R) + 1 £ a0(G),
which is impossible. This completes the proof of Theorem 5. O

A graph is cactus, if all cycles are edge disjoint.

Theorem 6. Let G be a connecled cactus of order n > 2 without cycles
of length three, four, five, and seven. Then v(G) = ao(G) if and only if
G* = G- N(QUG),G) = 0 or ecach component of G* is an isolated vertez
or a slar, where the cenlers of these stars are not adjacent 1o a veriezx of

N(Q(G), G).

Proof. The sufficiency follows at once from Theorem 5.

For the converse, we show that every cycle is adjacent to an end vertex.
Let C be a cycle of G, and suppose to the contrary that C is not adjacent
to a vertex of (G). Then, since G is a cactus, and C # C3,C4,Cs, Cr,
the subgraph G — V(C) has no isolated vertices, and y(C) < ao(C) by
Proposition 2. Consequently, F' = (G — V(C))UC is a factor of G without
isolated vertices, and hence Theorem 1 yields y(F) < ao(F). This is a
contradiction to 4(G) = ao(G) and Lemma 1. Now the result follows from
Theorem 5. 0O

Let us recall that a unicyclic graph is a connected graph with exactly one
cycle. If G is a unicyclic graph with cycle C and z is a vertex of G, then we
denote by c(z) the distance from z to C. In the next theorem we determine
the unicyclic graphs in which the edge independence number is equal to the
domination number.
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Theorem 7. Let G be a unicyclic graph, @ = Q(G), G* =G - N(,G),
and C the only cycle of G. Then ¥(G) = ao(G) if and only if one of the
following conditions holds:

(1) G =C3,C4,Cs, Co.

(2) C is adjacent to an end verter, and G* fulfills the conditions of
Theorem 5.

(3) C =Cy4, c(z) > 3 for all z € Q, min{d(a,G),d(b,G)} = 2 for all
pairs of adjacent verticesa,b € V(C), and all components T, ..., Ty
of the subgraph Go = G — V(C) are trees with yv(T;) = ao(T;) for
i=1,...,k such that no minimum dominaling set of Gy contains a
wvertez from N(V(C),G) N V(Go).

(4) C=C50rC =0Cs, c(z) > 2 forallz € Q, all components T, ..., T
of Go = G — V(C) are trees with v(T;) = ao(T;) fori = 1,..,k,
and for each T; there exists one vertez w; € QN V(T;) such that
c(w;) = 2. Furthermore, in the case C = Cj there exisis at least
one vertezx a € V(C) with d(a,G) = 2, and in the case C = C;
from any two neighbours on C there is one of degree 2.

Proof. The sufficiency follows from Proposition 2 and Theorem 5 in the
cases (1) and (2). For (3) we refer the reader to [9, Theorem 6]. Now let G
be of the form (4). Since for all trees T; there are vertices w; € QN V(T;)
with ¢(w;) = 2, there exist minimum dominating sets D; and maximum
matchings M; such that N(V(C),G) C Ur_, Di = D and M = U5, M;
saturates N(V(C),G), and all edges of M which are incident with a vertex
of N(V(C),G) are end edges of G and T;. If we choose in the case C =
Cs an arbitrary vertex v € V(C) and an arbitrary edge e € E(C), then
D’ = DU {v} is a dominating set of G, and M’ = M U{e} is a matching of
G. It is easy to see that D’ is a minimum dominating set of G, and from
Y(T;) = ao(T;) for all i = 1,...,k we deduce |D'| = |M’|. Furthermore,
there is no M’-augmenting path in G, so that Berge’s Theorem shows
ag(G) = |M’| = 7(G). With the same arguments we can prove the case
that C = Cs.

Conversely, we assume that G is not of the form (1) or (2). Then ¢(z) > 2
for all £ € Q, and because of Lemma 1, it is immediate that v(T;) = ao(T})
foralli =1,..,k If C # Cs3,C4,Cs,C7, then G — V(C) has no isolated
vertex and ¥(C) < ap(C). Consequently, F = (G — V(C))UC is a factor
of G without isolated vertices such that ¥(F) < ao(F), a contradiction to
Lemma 1. This implies that C = C3,C4, Cs, C7.

In the case C = C4 we refer the reader to [9, Theorem 6].

Now let C = C3. Assume that there exists a tree T; = T such that
c(z) > 3 for all 2 € QN V(T). Let u € V(T') be the unique vertex adjacent
to C. Then the induced subgraph H = G[V(C) U {u}] has the property
Y(H) = 1< 2 = ag(H) and G— V(H) contains no isolated vertices. This is
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again a contradiction to Lemma 1. Now suppose, to the contrary, that there
is no vertex z € V(C) with d(z,G) = 2. Let Q2 = {v|v € Q, ¢(v) = 2}, and
H = G[V(C)UQUN(R;,G)]. Wesee that y(H) = k < k+1 = ao(H), and
G — V(H) is a subgraph without isolated vertices. According to Lemma 1,
this is impossible.

By similar observations we get the desired result for C = Cs.

Finally, let C = C7. Analogously to the case C = Cj it is possible to show
that there is no tree T; = T with ¢(z) > 3 for all z € QN V(T). Now let
u be a vertex with ¢(u) = 1 and U = N(u,G) N Q. Then the subgraph
H = G[V(C)uU U {u}] fulfills the inequality v(H) = 3 < 4 = ao(H). This
contradicts Lemma 1, since the graph G — V(H) has no isolated vertices.
With this contradiction we have exhausted all the possibilities and the proof
is complete. O

6. BLOCK GRAPHS

We now turn our attention to block graphs. We begin with some defini-
tions and notations. A vertex v of a graph G is called a cut vertex of G if
G — v has more components than G. A connected graph with no cut vertex
is called a block. A block of a graph G is a subgraph of G which is itself a
block and which is maximal with respect to that property. A graph G is a
block graph if every block of G is a complete graph.

Theorem 8. Let G be a connected block graph of order n(G) > 2, Q =
QG), and G* = G — N(R,G). Then we have v(G) = ao(G) if and only if
G* = 0 or each component of G* is an isolated vertez, a star, or a triangle,
where the centers of the stars are not adjacent to a verlez of N(Q,G) and
not all vertices of each triangle are adjacent to a vertez of N(Q2,G), bul at
least one vertez of each triangle is adjacent 1o a vertez of N(,G).

Proof. The sufficiency is not hard to check. For the converse we first observe
that all components of G* are block graphs. Let H be a component of G*.
If H is a tree, then the proof of Theorem 5 yields the desired result.

Now we assume that H is not a tree. Let I be the set of isolated vertices
of G*and R=G*- H - I.

If H is a block with n(H) > 4, then y(H) = 1 < ag(H), and therefore we
deduce from Theorem 1

7G) < IN@G)+2(R) +1

< |N(R,G)|+ ao(R) + ao(H) < ao(G),

a contradiction to ¥(G) = ao(G). If H = K3 and all vertices of H are
adjacent to-a vertex of N(2, G), then analogously we obtain a contradiction.
Furthermore, the connectivity of G implies that at least one vertex of H is
adjacent to a vertex of N(2, G).

53



Finally, we discuss the case that H is not a tree with at least one cut vertex.
Let B; be a block of H of order n(B,) > 3, B; a further block of H with
V(B1)NV(B2) # 0, and H' = G[V(B1)U V(B2)]. From the fact that G is
a block graph we deduce that G — H' contains no isolated vertex. Hence
Theorem 1 yields

1G) < YCG-H)+v(H)<ao(G-H')+1

< Oro(G - H') + C\!o(H') < ao(G).
This contradiction to ¥(G) = ao(G) completes the proof of Theorem 8. O

7. LOCALLY CONNECTED GRAPHS

A graph G is locally connected if for each v € V(G), N(v,G) # 0 and
the induced subgraph G[N(v,G)] is connected (for some basic results on
this class of graphs see [2]).

Theorem 9. Let G be a connected and locally connecled graph. Then
¥(G) = ao(G) if and only if G = K3 or G = K3.

Proof. The sufficiency is obvious, and the converse is immediate if the order
n(G) < 3. For n(G) > 4 we choose a vertex u € V(G) with

|N(u, G)| = min{|N(z,G)| |z € V(G) with |N(z,G)|> 3}.

Since G is locally connected, we conclude for the induced subgraph H =
G[N(u,G)) the inequality y(H) = 1 < 2 < ao(H).

In the case that G’ = G — N(u,G) contains no isolated vertices, this in-
equality yields a contradiction to Lemma 1.

If the subgraph G’ has an isolated vertex w, then by the definition of u, it
follows d(w, G) = 2 or d(w,G) = |N(u,G)|. Now let ay, ...,a, and by, ...,bm
be the isolated vertices of G’ with d(a;,G) = 2 and d(b;,G) = d(u,G)
for1 < i< pand 1 € j < m, respectively. Furthermore, define A =
{ay,...,ap}, B = {b1,...,bm}, and F = G[N(u,G)U AU B]. By construc-
tion, the graph G— F contains no isolated vertices and therefore, by Lemma
1, it suffices to prove y(F) < ag(F).

For d(u,G) = 3 it is easy to check that y(F) = 1 < 2 < ao(F) or
Y(F) = 2 < 3 < ap(F). In the remaining case d(u,G) > 4, we assume
without loss of generality that |N(a;, G)N N(a;,G)| < 1 for i # j. Now we
consider two cases.

Case 1. If N(ai,G) N\ N(a;,G) = @ for all i # j, then it is easy to see:
Ifp=0and m>1lorp=1,then y(F) <2< 3 < ap(F).

If p=2 and d(u,G) = 4, then ¥(F) € 2 < 3 < ag(F).

If p=2 and d(u,G) > 5, then y(F) < 3 < 4 < ag(F).
Ifp>3,theny(F)<p+1<p+2<ayF).
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Case 2. There exist two vertices a;,a; € A with [N(a;, G)N N(a;,G)| = 1.
Suppose without loss of generality that N(a;,G) = {z1,z2} and N(a3,G) =
{z2,z3}. If there is no vertex a; € A with j > 3 and N(e;,G) = {z1,z3},
then the subgraph J = G[{z1, z2, z3, a1, az}] of F has the property v(J) =
1 < 2 = ag(J). Since d(u,G) > 4, the subgraph F — J contains no iso-
lated vertices and thus we get the desired inequality y(F) < ao(F). If
there exists a vertex az € A with N(a3,G) = {z;,23}, then for L =
G[{z1,z2, 73, a1,a3,a3}] the inequality y(L) = 2 < 3 < ao(L) holds, and
again it follows ¥(F) < ao(F). This completes the proof of Theorem 9. O

Corollary 5. IfG is a connected and locally connected graph, then 4v(G) =
B(G) if and only if G = K.

Proof. The sufficiency is obvious. If ¥(G) = B(G), then it follows from
Corollary 1 that ¥(G) = ao(G). Since ¥(K3) # B(Ks), Theorem 9 yields
the desired result. O

A graph is chordal if it contains no cycle of length greater than three as an
induced subgraph.

Lemma 3. If G is a chordal block, then G is locally connected.

Proof. Assume to the contrary that there exists a vertex u € V(G) such
that G[N(u, G)] is not connected. Since G is a block, the subgraph G —u'is
connected. If (a,...,d) is a shortest path in G — u between two components
of G[N(u,G)), then (u,a, ..., b, u) is an induced cycle of length greater than
three. This is a contradiction to the hypothesis that G is chordal. [J

From Theorem 9 and Lemma 3 we deduce immediately the following result.

Corollary 6. If G is a chordal block, then v(G) = ao(G) if and only if
G = 1{2 orG = I(g.
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