ON GRAPHS WITH EQUAL DOMINATION AND EDGE INDEPENDENCE NUMBERS

LUTZ VOLKMANN

ABSTRACT. Let G be a simple graph. A set D of vertices of G is dominating if every vertex not in D is adjacent to some vertex in D. A set M of edges of G is called independent, or a matching, if no two edges of M are adjacent in G. The domination number $\gamma(G)$ is the minimum order of a dominating set in G. The edge independence number $\alpha_0(G)$ is the maximum size of a matching in G. If G has no isolated vertices, then the inequality $\gamma(G) \leq \alpha_0(G)$ holds. In this paper we characterize regular graphs, unicyclic graphs, block graphs, and locally connected graphs for which $\gamma(G) = \alpha_0(G)$.

1. TERMINOLOGY

We consider finite, undirected, and simple graphs G with the vertex set V=V(G) and the edge set E=E(G). For $A\subseteq V(G)$ let G[A] be the subgraph induced by A. A subgraph H of G with V(H)=V(G) is called a factor of G. N(x)=N(x,G) denotes the set of vertices adjacent to the vertex x and $\bar{N}(x)=\bar{N}(x,G)=N(x)\cup\{x\}$. More generally, we define $N(X)=N(X,G)=\bigcup_{x\in X}N(x)$ and $\bar{N}(X)=\bar{N}(X,G)=N(X)\cup X$ for a subset X of V(G). The vertex v is an end vertex if d(v,G)=1, and an isolated vertex if d(v,G)=0, where d(x)=d(x,G)=|N(x)| is the degree of $x\in V(G)$. Let $\Omega=\Omega(G)$ be the set of end vertices, and I=I(G) be the set of isolated vertices, respectively. We denote by $\delta=\delta(G)$ the minimum degree and by n=n(G)=|V(G)| the order of G. An empty graph is one with no edges. We write C_n for a cycle of length n and K_n for the complete graph of order n. A star is a complete bipartite graph $K_{1,m}$ with $m\geq 2$, and the unique vertex v of this star of degree m is called the center.

A set $D \subseteq V(G)$ is a dominating set of G if $\bar{N}(D,G) = V(G)$, and is a covering set of G if every edge of G has at least one end in D. The domination number, $\gamma = \gamma(G)$, and the covering number, $\beta = \beta(G)$, of G is the order of the smallest dominating set, and the smallest covering of G, respectively. If G is a graph without isolated vertices, then it is easy

to check that $\gamma(G) \leq \beta(G)$. A set $M \subseteq E(G)$ is an independent set, or a matching, if no two edges of M are adjacent in G. The order of a maximum matching is called the edge independence number $\alpha_0 = \alpha_0(G)$. A matching M saturates a vertex v, and v is said to be M-saturated, if some edge of M is incident with v; otherwise, v is M-unsaturated. An M-alternating path in G is a path whose edges are alternately in E(G) - M and M. An M-augmenting path is an M-alternating path whose origin and terminus are M-unsaturated.

2. PRELIMINARY RESULTS

The next two famous theorems of König [4] from 1931, and Berge [1] from 1957 are very important for our research.

König's Theorem. [4] If G is a bipartite graph, then $\alpha_0(G) = \beta(G)$.

Berge's Theorem. [1] A matching M in G is a maximum matching if and only if G contains no M-augmenting path.

Theorem 1. If G is a graph without isolated vertices, then

$$\gamma(G) \leq \alpha_0(G)$$
.

Proof. If T is a spanning forest of G without isolated vertices, then it follows from König's Theorem

$$\gamma(G) < \gamma(T) < \beta(T) = \alpha_0(T) \le \alpha_0(G)$$

and the proof is complete.

It is the purpose of this paper to characterize some classes of graphs for which the equality $\gamma(G) = \alpha_0(G)$ holds.

In the sequel, we will need some further notions, results and observations.

Proposition 1. [6] If G is a graph without isolated vertices, then we have $2\gamma(G) \leq n(G)$.

Corollary 1. If G is a graph without isolated vertices, then

$$\gamma(G) \leq \alpha_0(G) \leq \beta(G)$$
.

Proof. The well-known fact that $\alpha_0(G) \leq \beta(G)$ and Theorem 1 yield the desired inequalities. \square

Corollary 2. For a bipartite graph without isolated vertices we have $\gamma(G) = \alpha_0(G)$ if and only if $\gamma(G) = \beta(G)$.

Proof. Since $\gamma(G) \leq \beta(G)$, we deduce from König's Theorem

$$\gamma(G) \leq \beta(G) = \alpha_0(G),$$

and this yields the desired result.

In [9] we have characterized all trees T with $\gamma(T) = \beta(T)$. According to Corollary 2 we get the same characterization for trees T with $\gamma(T) = \alpha_0(T)$.

Theorem 2. [9] Let T be a tree of order $n \geq 2$. Then $\gamma(T) = \alpha_0(T)$ if and only if $T^* = T - \bar{N}(\Omega(T), T) = \emptyset$ or each component of T^* is an isolated vertex or a star, where the centers of these stars are not adjacent to a vertex of $N(\Omega(T), T)$.

The next lemma plays a central role in our proofs.

Lemma 1. Let G be a connected graph with $\gamma(G) = \alpha_0(G)$. If H is a factor of G without isolated vertices, then

$$\gamma(H) = \alpha_0(H) = \gamma(G).$$

Proof. Since the factor H has no isolated vertices, Theorem 1 yields the inequality $\gamma(H) \leq \alpha_0(H)$. This implies

$$\alpha_0(G) = \gamma(G) \le \gamma(H) \le \alpha_0(H) \le \alpha_0(G),$$

and therefore $\gamma(H) = \alpha_0(H) = \gamma(G)$. \square

Finally we note the simple but useful

Proposition 2. If C_n is a cycle of length n, then $\gamma(C_n) = \alpha_0(C_n)$ if and only if n = 3, 4, 5 or γ .

Since for a graph G without isolated vertices we have $\gamma(G) = \alpha_0(G)$ if and only if $\gamma(H) = \alpha_0(H)$ for each component H of G, we will only deal with connected graphs; one can easily generalize the results to non-connected graphs without isolated vertices.

Theorem 3. Let G be a connected and r-regular graph G with r > 0. Then we have $\gamma(G) = \alpha_0(G)$ if and only if $G = K_2$ or $G = C_3, C_4, C_5, C_7$.

Proof. The sufficiency is obvious. The converse is immediate for r = 1, and follows from Proposition 2 for r=2. Now we assume that $r\geq 3$. Since G is regular, we can deduce that $|N(X,G)| \ge |X|$ for all subsets X of V(G) (see [8, p. 125]). Hence by a theorem of Tutte [7] (see also [8, p. 105]), there exists a factor of G whose components are either 1-regular or 2-regular. Thus, G has a factor F whose components are 1-regular or cycles of odd length. If F contains an odd cycle of length ≥ 9 , then it follows from Proposition 2 and Theorem 1 that $\gamma(F) < \alpha_0(F)$, a contradiction to Lemma 1. This implies that the components of F are graphs of the form K_2 , C_3 , C_5 , or C_7 . It is easy to check that $F = C_5$ or $F = C_7$ is not possible, so that the factor F consists of at least two components. If there exists an edge in G which joins two cycles of F, it is not hard to observe that F, together with such an edge, form a new factor F' with $\gamma(F') < \alpha_0(F')$, a contradiction to Lemma 1. This means that in G the cycles of F are only joined with the 1-regular components of F. On the other hand, we conclude from $r \geq 3$ that in G all vertices of each cycle C_3 of F are adjacent to an 1-regular component of F.

Now we shall show that there exists a factor J such that all components have the form K_2 , C_5 , or C_7 . Let C be a cycle of length three in F with the three vertices c_1 , c_2 , and c_3 . Furthermore, let x_1y_1 , x_2y_2 , and x_3y_3 be the edges of three 1-regular components of F. If there exist without loss of generality the edges c_1x_1 , c_2x_2 , c_3x_3 , or c_1x_1 , c_2x_1 , c_3x_3 , or c_1x_1 , c_2x_1 , c_3x_1 in G, then in each case we add these three edges to F and get again a factor F^* such that $\gamma(F^*) < \alpha_0(F^*)$ which is not possible. On the other hand, if G contains without loss of generality the edges c_1x_1 and c_2y_1 , then we transform C and the 1-regular component with the vertices x_1 and y_1 in a cycle C_5 , and we have a new factor with one fewer cycle of length three. Therefore we get step by step a factor J of the desired form.

Let J consists of i 1-regular components, j cycles C_5 , and k cycles C_7 . Since G is connected, every cycle C_5 or C_7 of J is joined in G with a 1-regular component of J. This means that i > 0 and therefore 5i + 15k > 4i + 14k. From the last inequality it follows

$$\gamma(G) = \gamma(J) = i + 2j + 3k > \frac{2}{5}(2i + 5j + 7k) = \frac{2}{5}n(G).$$

But this is a contradiction to a recent inequality of McCuaig and Shepherd [5] that $\gamma(G) \leq \frac{2}{5}n(G)$, if $\delta(G) \geq 3$. \square

From Theorem 3 and Corollary 1 we deduce immediately the following result.

Corollary 3. [9] For a connected, r-regular graph G with r > 0 we have $\gamma(G) = \beta(G)$ if and only if $G = K_2$ or $G = C_4$.

4. Corona graphs

Before proceeding we introduce the following notation. Let G be a graph and $\mathcal{F} = \{H_x | x \in V(G) \text{ and } H_x \neq \emptyset\}$ a family of graphs disjoint from each other and from G indexed by the vertices of G. The corona $G \circ \mathcal{F}$ of the graph G and the family \mathcal{F} is the disjoint union of G and the graphs H_x , $x \in V(G)$, with additional edges joining each vertex v of G to all vertices of H_v . If all graphs of the family \mathcal{F} are isomorphic to one and the same graph H (written $H \cong H_x$ for all $x \in V(G)$), then we shall write $G \circ H$ instead of $G \circ \mathcal{F}$.

Theorem 4. For a graph G and a family $\mathcal{F} = \{H_x | x \in V(G)\}$ indexed by the vertices of G we have $\gamma(G \circ \mathcal{F}) = \alpha_0(G \circ \mathcal{F})$ if and only if every graph H_x of \mathcal{F} is empty or $H_x \cong K_2$, and if exactly $H_{x_1}, ..., H_{x_t}$ are isomorphic to K_2 , then the induced subgraph $G[x_1, ..., x_t]$ contains no edges.

Proof. Since V(G) is a dominating set of the corona graph $G \circ \mathcal{F}$, it is easy to see that $\gamma(G \circ \mathcal{F}) = n(G) = n$. Let $H_{x_1}, ..., H_{x_t}$ be isomorphic to K_2 and let $H_{x_{t+1}}, ..., H_{x_n}$ be empty graphs. If we choose a vertex $y_i \in H_{x_1}$ for all i = 1, ..., n, then $M = \{x_1y_1, ..., x_ny_n\}$ form a matching in $G \circ \mathcal{F}$. Now it is not difficult to check that $G \circ \mathcal{F}$ contains no M-augmenting path, and therefore by Berge's Theorem M is a maximum matching. Hence we conclude $\gamma(G \circ \mathcal{F}) = \alpha_0(G \circ \mathcal{F}) = n$.

On the other hand, if any H_x is not empty with $|H_x| \ge 3$, then it is easy to find a matching M^* with $|M^*| \ge n + 1$. Thus,

$$\gamma(G \circ \mathcal{F}) = n < n + 1 \le \alpha_0(G \circ \mathcal{F}),$$

a contradiction. Furthermore, if the induced subgraph $G[x_1,...,x_t]$ contains an edge, it is immediate that $\gamma(G \circ \mathcal{F}) < \alpha_0(G \circ \mathcal{F})$. \square

Proposition 3. [3] Let G be a connected graph of even order. Then we have $\gamma(G) = \frac{1}{2}n(G)$ if and only if $G = C_4$ or $G = H \circ K_1$ for an arbitrary connected graph H.

Corollary 4. Let G be a connected graph with a perfect matching that means $\alpha_0(G) = \frac{1}{2}n(G)$. Then $\gamma(G) = \alpha_0(G)$ if and only if $G = C_4$ or $G = H \circ K_1$ for an arbitrary connected graph H.

Proof. If $G = C_4$ or $G = H \circ K_1$ for an arbitrary connected graph H, then it follows from Theorem 4 that $\gamma(G) = \alpha_0(G)$. The converse is immediate by Proposition 3. \square

5. UNICYCLIC GRAPHS

In [9] we have proved that if every cycle of a graph G is adjacent to an end vertex, then $\gamma(G) = \beta(G)$ if and only if $G^* = G - \bar{N}(\Omega(G), G) = \emptyset$ or each component of G^* is an isolated vertex or a star, where the centers of these stars are not adjacent to a vertex of $N(\Omega(G), G)$. Here we shall show that the same class of graphs is characterized by the weaker condition $\gamma(G) = \alpha_0(G)$. The proof is based on the next lemma.

Lemma 2. Let T be a tree of order $n \geq 3$. If T is not a star, then

$$\gamma(T - \Omega(T)) < \alpha_0(T).$$

Proof. In the sequel we shall use the short notation $\Omega = \Omega(T)$. Since the result is immediate if $\gamma(T) < \alpha_0(T)$, it remains to prove Lemma 2 for $\gamma(T) = \alpha_0(T)$. Then it follows from Theorem 2 that $T^* = T - \bar{N}(\Omega, T) = \emptyset$ or each component of T^* is an isolated vertex or a star, where the centers of these stars are not adjacent to a vertex of $N(\Omega, T)$. Now we consider three cases.

Case 1. The set $T^* = \emptyset$. Then $T = T_1 \circ \mathcal{F}$ at which each graph H_x of \mathcal{F} is empty and T_1 is a tree. From the assumption that T is not a star we conclude $n(T_1) \geq 2$. Hence by Proposition 1 and Theorem 4 we obtain

$$\gamma(T-\Omega)=\gamma(T_1)\leq \frac{1}{2}n(T_1)< n(T_1)=\alpha_0(T).$$

Case 2. The set T^* consists of isolated vertices I. In this case $|N(\Omega, T)| = \gamma(T) = \alpha_0(T)$ holds. For $a \in I$ let $U = N(\Omega, T) - N(a, T)$. Then the set $U \cup \{a\}$ is a dominating set of $T - \Omega$ with

$$|U \cup \{a\}| < |N(\Omega, T)| = \alpha_0(T).$$

Case 3. The set T^* contains $m \ge 1$ stars S_i with the centers a_i . It is easy to see that $D = N(\Omega) \cup \{a_1, ..., a_m\}$ is a minimum dominating set of T. If $N(a_1, T) = W$ and $N(W, T) - \{a_1\} = X \subseteq N(\Omega, T)$, then $|X| \ge |W|$. All isolated vertices of T^* are adjacent to at least two neigbours of Ω . But since T is a tree, each isolated vertex of T^* is adjacent to at most one vertex of X. Therefore $D_1 = D - (X \cup \{a_1\}) \cup W$ is a dominating set of $T - \Omega$ with $|D_1| < \gamma(T) = \alpha_0(T)$, and the lemma is proved. \square

Theorem 5. If every cycle of a connected graph G of order $n(G) \geq 2$ is adjacent to an end vertex, then $\gamma(G) = \alpha_0(G)$ if and only if $G^* = G - \bar{N}(\Omega(G), G) = \emptyset$ or each component of G^* is an isolated vertex or a star, where the centers of these stars are not adjacent to a vertex of $N(\Omega(G), G)$.

Proof. If G^* has the above form, then we have proved in [9] that $\gamma(G) = \beta(G)$, and hence Corollary 1 implies $\gamma(G) = \alpha_0(G)$.

For the converse we consider two cases.

Case 1. Assume that there exists a component H of G^* of order $n(H) \geq 3$ which is not a star. Let I be the set of isolated vertices of G^* and $R = G^* - H - I$. With $H' = H - \Omega(H)$ and $\Omega(G) = \Omega$, Theorem 1 and Lemma 2 yield

$$\gamma(G) \leq |N(\Omega, G)| + \gamma(R) + \gamma(H')
\leq |N(\Omega, G)| + \alpha_0(R) + \gamma(H')
< |N(\Omega, G)| + \alpha_0(R) + \alpha_0(H) < \alpha_0(G),$$

a contradiction to $\gamma(G) = \alpha_0(G)$.

Case 2. Assume that there exists a component H of G^* of order 2 or a component H which is a star such that the center of H is adjacent to an element of of $N(\Omega, G)$. If we define R as in the case 1, then we see

$$\gamma(G) \leq |N(\Omega, G)| + \gamma(R) < |N(\Omega, G)| + \alpha_0(R) + 1 \leq \alpha_0(G),$$

which is impossible. This completes the proof of Theorem 5. \Box

A graph is cactus, if all cycles are edge disjoint.

Theorem 6. Let G be a connected cactus of order $n \geq 2$ without cycles of length three, four, five, and seven. Then $\gamma(G) = \alpha_0(G)$ if and only if $G^* = G - \bar{N}(\Omega(G), G) = \emptyset$ or each component of G^* is an isolated vertex or a star, where the centers of these stars are not adjacent to a vertex of $N(\Omega(G), G)$.

Proof. The sufficiency follows at once from Theorem 5.

For the converse, we show that every cycle is adjacent to an end vertex. Let C be a cycle of G, and suppose to the contrary that C is not adjacent to a vertex of $\Omega(G)$. Then, since G is a cactus, and $C \neq C_3, C_4, C_5, C_7$, the subgraph G - V(C) has no isolated vertices, and $\gamma(C) < \alpha_0(C)$ by Proposition 2. Consequently, $F = (G - V(C)) \cup C$ is a factor of G without isolated vertices, and hence Theorem 1 yields $\gamma(F) < \alpha_0(F)$. This is a contradiction to $\gamma(G) = \alpha_0(G)$ and Lemma 1. Now the result follows from Theorem 5. \square

Let us recall that a unicyclic graph is a connected graph with exactly one cycle. If G is a unicyclic graph with cycle C and x is a vertex of G, then we denote by c(x) the distance from x to C. In the next theorem we determine the unicyclic graphs in which the edge independence number is equal to the domination number.

Theorem 7. Let G be a unicyclic graph, $\Omega = \Omega(G)$, $G^* = G - \bar{N}(\Omega, G)$, and C the only cycle of G. Then $\gamma(G) = \alpha_0(G)$ if and only if one of the following conditions holds:

- (1) $G = C_3, C_4, C_5, C_7$.
- (2) C is adjacent to an end vertex, and G* fulfills the conditions of Theorem 5.
- (3) $C = C_4$, $c(x) \ge 3$ for all $x \in \Omega$, $\min\{d(a,G),d(b,G)\} = 2$ for all pairs of adjacent vertices $a,b \in V(C)$, and all components $T_1,...,T_k$ of the subgraph $G_0 = G V(C)$ are trees with $\gamma(T_i) = \alpha_0(T_i)$ for i = 1,...,k such that no minimum dominating set of G_0 contains a vertex from $N(V(C),G) \cap V(G_0)$.
- (4) $C = C_3$ or $C = C_5$, $c(x) \ge 2$ for all $x \in \Omega$, all components $T_1, ..., T_k$ of $G_0 = G V(C)$ are trees with $\gamma(T_i) = \alpha_0(T_i)$ for i = 1, ..., k, and for each T_i there exists one vertex $w_i \in \Omega \cap V(T_i)$ such that $c(w_i) = 2$. Furthermore, in the case $C = C_3$ there exists at least one vertex $a \in V(C)$ with d(a, G) = 2, and in the case $C = C_5$ from any two neighbours on C there is one of degree 2.

Proof. The sufficiency follows from Proposition 2 and Theorem 5 in the cases (1) and (2). For (3) we refer the reader to [9, Theorem 6]. Now let G be of the form (4). Since for all trees T_i there are vertices $w_i \in \Omega \cap V(T_i)$ with $c(w_i) = 2$, there exist minimum dominating sets D_i and maximum matchings M_i such that $N(V(C), G) \subseteq \bigcup_{i=1}^k D_i = D$ and $M = \bigcup_{i=1}^k M_i$ saturates N(V(C), G), and all edges of M which are incident with a vertex of N(V(C), G) are end edges of G and G. If we choose in the case G = G an arbitrary vertex G of G and G and G is a matching of G. It is easy to see that G is a minimum dominating set of G, and from G is a matching of G. It is easy to see that G is a minimum dominating set of G, and from G is a minimum dominating set of G. With the same arguments we can prove the case that G is a minimum dominating set of G. With the same arguments we can prove the case that G is a minimum arguments we can prove the case that G is a minimum arguments we can prove the case that G is a minimum arguments we can prove the case that G is a minimum argument of G.

Conversely, we assume that G is not of the form (1) or (2). Then $c(x) \geq 2$ for all $x \in \Omega$, and because of Lemma 1, it is immediate that $\gamma(T_i) = \alpha_0(T_i)$ for all i = 1, ..., k. If $C \neq C_3, C_4, C_5, C_7$, then G - V(C) has no isolated vertex and $\gamma(C) < \alpha_0(C)$. Consequently, $F = (G - V(C)) \cup C$ is a factor of G without isolated vertices such that $\gamma(F) < \alpha_0(F)$, a contradiction to Lemma 1. This implies that $C = C_3, C_4, C_5, C_7$.

In the case $C = C_4$ we refer the reader to [9, Theorem 6].

Now let $C = C_3$. Assume that there exists a tree $T_j = T$ such that $c(x) \geq 3$ for all $x \in \Omega \cap V(T)$. Let $u \in V(T)$ be the unique vertex adjacent to C. Then the induced subgraph $H = G[V(C) \cup \{u\}]$ has the property $\gamma(H) = 1 < 2 = \alpha_0(H)$ and G - V(H) contains no isolated vertices. This is

again a contradiction to Lemma 1. Now suppose, to the contrary, that there is no vertex $x \in V(C)$ with d(x,G) = 2. Let $\Omega_2 = \{v | v \in \Omega, \ c(v) = 2\}$, and $H = G[V(C) \cup \Omega_2 \cup N(\Omega_2, G)]$. We see that $\gamma(H) = k < k+1 = \alpha_0(H)$, and G - V(H) is a subgraph without isolated vertices. According to Lemma 1, this is impossible.

By similar observations we get the desired result for $C = C_5$.

Finally, let $C = C_7$. Analogously to the case $C = C_3$ it is possible to show that there is no tree $T_j = T$ with $c(x) \geq 3$ for all $x \in \Omega \cap V(T)$. Now let u be a vertex with c(u) = 1 and $U = N(u, G) \cap \Omega$. Then the subgraph $H = G[V(C) \cup U \cup \{u\}]$ fulfills the inequality $\gamma(H) = 3 < 4 = \alpha_0(H)$. This contradicts Lemma 1, since the graph G - V(H) has no isolated vertices. With this contradiction we have exhausted all the possibilities and the proof is complete. \square

6. BLOCK GRAPHS

We now turn our attention to block graphs. We begin with some definitions and notations. A vertex v of a graph G is called a cut vertex of G if G-v has more components than G. A connected graph with no cut vertex is called a block. A block of a graph G is a subgraph of G which is itself a block and which is maximal with respect to that property. A graph G is a block graph if every block of G is a complete graph.

Theorem 8. Let G be a connected block graph of order $n(G) \geq 2$, $\Omega = \Omega(G)$, and $G^* = G - \bar{N}(\Omega, G)$. Then we have $\gamma(G) = \alpha_0(G)$ if and only if $G^* = \emptyset$ or each component of G^* is an isolated vertex, a star, or a triangle, where the centers of the stars are not adjacent to a vertex of $N(\Omega, G)$ and not all vertices of each triangle are adjacent to a vertex of $N(\Omega, G)$, but at least one vertex of each triangle is adjacent to a vertex of $N(\Omega, G)$.

Proof. The sufficiency is not hard to check. For the converse we first observe that all components of G^* are block graphs. Let H be a component of G^* . If H is a tree, then the proof of Theorem 5 yields the desired result.

Now we assume that H is not a tree. Let I be the set of isolated vertices of G^* and $R = G^* - H - I$.

If H is a block with $n(H) \ge 4$, then $\gamma(H) = 1 < \alpha_0(H)$, and therefore we deduce from Theorem 1

$$\gamma(G) \leq |N(\Omega, G)| + \gamma(R) + 1$$

$$< |N(\Omega, G)| + \alpha_0(R) + \alpha_0(H) < \alpha_0(G),$$

a contradiction to $\gamma(G) = \alpha_0(G)$. If $H = K_3$ and all vertices of H are adjacent to a vertex of $N(\Omega, G)$, then analogously we obtain a contradiction. Furthermore, the connectivity of G implies that at least one vertex of H is adjacent to a vertex of $N(\Omega, G)$.

Finally, we discuss the case that H is not a tree with at least one cut vertex. Let B_1 be a block of H of order $n(B_1) \geq 3$, B_2 a further block of H with $V(B_1) \cap V(B_2) \neq \emptyset$, and $H' = G[V(B_1) \cup V(B_2)]$. From the fact that G is a block graph we deduce that G - H' contains no isolated vertex. Hence Theorem 1 yields

$$\gamma(G) \leq \gamma(G - H') + \gamma(H') \leq \alpha_0(G - H') + 1$$

$$< \alpha_0(G - H') + \alpha_0(H') < \alpha_0(G).$$

This contradiction to $\gamma(G) = \alpha_0(G)$ completes the proof of Theorem 8. \square

7. LOCALLY CONNECTED GRAPHS

A graph G is locally connected if for each $v \in V(G)$, $N(v,G) \neq \emptyset$ and the induced subgraph G[N(v,G)] is connected (for some basic results on this class of graphs see [2]).

Theorem 9. Let G be a connected and locally connected graph. Then $\gamma(G) = \alpha_0(G)$ if and only if $G = K_2$ or $G = K_3$.

Proof. The sufficiency is obvious, and the converse is immediate if the order $n(G) \leq 3$. For $n(G) \geq 4$ we choose a vertex $u \in V(G)$ with

$$|N(u,G)| = \min\{|N(x,G)| | x \in V(G) \text{ with } |N(x,G)| \ge 3\}.$$

Since G is locally connected, we conclude for the induced subgraph $H = G[\bar{N}(u,G)]$ the inequality $\gamma(H) = 1 < 2 \le \alpha_0(H)$.

In the case that $G' = G - \bar{N}(u, G)$ contains no isolated vertices, this inequality yields a contradiction to Lemma 1.

If the subgraph G' has an isolated vertex w, then by the definition of u, it follows d(w,G)=2 or d(w,G)=|N(u,G)|. Now let $a_1,...,a_p$ and $b_1,...,b_m$ be the isolated vertices of G' with $d(a_i,G)=2$ and $d(b_j,G)=d(u,G)$ for $1 \leq i \leq p$ and $1 \leq j \leq m$, respectively. Furthermore, define $A=\{a_1,...,a_p\},\ B=\{b_1,...,b_m\},\ \text{and}\ F=G[\bar{N}(u,G)\cup A\cup B].$ By construction, the graph G-F contains no isolated vertices and therefore, by Lemma 1, it suffices to prove $\gamma(F)<\alpha_0(F)$.

For d(u,G)=3 it is easy to check that $\gamma(F)=1<2\leq\alpha_0(F)$ or $\gamma(F)=2<3\leq\alpha_0(F)$. In the remaining case $d(u,G)\geq 4$, we assume without loss of generality that $|N(a_i,G)\cap N(a_j,G)|\leq 1$ for $i\neq j$. Now we consider two cases.

Case 1. If $N(a_i, G) \cap N(a_j, G) = \emptyset$ for all $i \neq j$, then it is easy to see:

If p = 0 and $m \ge 1$ or p = 1, then $\gamma(F) \le 2 < 3 \le \alpha_0(F)$.

If p=2 and d(u,G)=4, then $\gamma(F)\leq 2<3\leq \alpha_0(F)$.

If p=2 and $d(u,G) \geq 5$, then $\gamma(F) \leq 3 < 4 \leq \alpha_0(F)$.

If $p \geq 3$, then $\gamma(F) \leq p+1 < p+2 \leq \alpha_0(F)$.

Case 2. There exist two vertices $a_i, a_j \in A$ with $|N(a_i, G) \cap N(a_j, G)| = 1$. Suppose without loss of generality that $N(a_1, G) = \{x_1, x_2\}$ and $N(a_2, G) = \{x_2, x_3\}$. If there is no vertex $a_j \in A$ with $j \geq 3$ and $N(a_j, G) = \{x_1, x_3\}$, then the subgraph $J = G[\{x_1, x_2, x_3, a_1, a_2\}]$ of F has the property $\gamma(J) = 1 < 2 = \alpha_0(J)$. Since $d(u, G) \geq 4$, the subgraph F - J contains no isolated vertices and thus we get the desired inequality $\gamma(F) < \alpha_0(F)$. If there exists a vertex $a_3 \in A$ with $N(a_3, G) = \{x_1, x_3\}$, then for $L = G[\{x_1, x_2, x_3, a_1, a_2, a_3\}]$ the inequality $\gamma(L) = 2 < 3 \leq \alpha_0(L)$ holds, and again it follows $\gamma(F) < \alpha_0(F)$. This completes the proof of Theorem 9. \square

Corollary 5. If G is a connected and locally connected graph, then $\gamma(G) = \beta(G)$ if and only if $G = K_2$.

Proof. The sufficiency is obvious. If $\gamma(G) = \beta(G)$, then it follows from Corollary 1 that $\gamma(G) = \alpha_0(G)$. Since $\gamma(K_3) \neq \beta(K_3)$, Theorem 9 yields the desired result. \square

A graph is chordal if it contains no cycle of length greater than three as an induced subgraph.

Lemma 3. If G is a chordal block, then G is locally connected.

Proof. Assume to the contrary that there exists a vertex $u \in V(G)$ such that G[N(u,G)] is not connected. Since G is a block, the subgraph G-u is connected. If (a,...,b) is a shortest path in G-u between two components of G[N(u,G)], then (u,a,...,b,u) is an induced cycle of length greater than three. This is a contradiction to the hypothesis that G is chordal. \Box

From Theorem 9 and Lemma 3 we deduce immediately the following result.

Corollary 6. If G is a chordal block, then $\gamma(G) = \alpha_0(G)$ if and only if $G = K_2$ or $G = K_3$.

Acknowledgments. I would like to thank the referee for valuable suggestions. Also, I am grateful to Peter Dankelmann who read the manuscript and made some helpful comments.

REFERENCES

- C. Berge, Two theorems in graph theory, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 842 - 844.
- G. Chartrand and R. E. Pippert, Locally connected graphs, Casopis Pest. Mat. 99 (1974), 158 - 163.
- 3. J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, On graphs having domination number half their order, *Period. Math. Hungar.* 16 (1985), 287 293.
- 4. D. König, Graphen und Matrizen, Mat. Fiz. Lapok 38 (1931), 116 119.
- W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989), 749 - 762.

- 6. O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38, 1962.
- W. T. Tutte, The 1-factors of oriented graphs, Proc. Amer. Math. Soc. 4 (1953), 922
 - 931.
- 8. L. Volkmann, Graphen und Digraphen: Eine Einführung in die Graphentheorie, Springer-Verlag, Wien New York 1991.
- 9. L. Volkmann, On graphs with equal domination and covering numbers, Discrete Math. (to appear).

LEHRSTUHL II FÜR MATHEMATIK, RWTH AACHEN, TEMPLERGRABEN 55, 5100 · AACHEN, GERMANY