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ABSTRACT. A set of integers is k-multiple-free if it never con-
tains two integers z and kz, where k is a given integer greater
than 1. Such a set S is maximal in [1,n] = {1,2,...,n} if
S U {t} is not k-multiple free for any ¢ in [1,n]\S. In this pa-
per we investigate the size of maximal k-multiple-free subsets of
[1,n], prove that the smallest such set has ﬁ%%l_)%+0(log n)
members, and show that given k and n, if s is any integer be-
tween the minimum and maximum possible orders, there is a
maximal k-multiple-free subset of [1,n] with s elements.

1 Introduction

Throughout this paper n and k are fixed integers; ¥ > 1. The base k

expansion of n is
m

n=Sak,

i=0
where 0 < a; < k~1 and a,, # 0. The set of all integers from p to
q inclusive is denoted [p,q]. We write {}; for a function which equals 1
when j divides 7 and 0 otherwise.

A subset S of a set T is called k-multiple-free if SN ks = (), where
kS = {ks: s € S}; a k-multiple-free subset S of T is called mazimal if
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S U {t} is not k-multiple-free for any ¢ € T\S. We write M = M(k,n) for
the set of all maximal k-multiple-free subsets of [1, 7], and define

Sfr(n) = max{|S|: S € M}

gk(n) =min{|S|: S € M}.

It was shown by Wang [4] (case k = 2) and Leung and Wei [3] (case k > 2)
that

fem)=n— |2+ 5 (|z]), ftm 21 (1)
whence
filn -1 =], 2
e(n) = g( ¥ =] (2)
and
1 i
fe(n) = k+1 Ly QZO(—l) as. 3)
This was used to prove that for large n
fi(n) = —n + O(logn) ()

which was conjectured by Janous [1]

The formula (2) was proven independently by Lai [2], who also proved
some properties of gx(n):

g(n+i)=gc(n)+k—-1if i =k,n+ k= bk, (5a)
~ where k{b and a = O (mod 3), = gx(n) + ¢ otherwise when i < k;
(5b)
and in the case n = k™,
at™ = [2H1) 1 -9 [2] 4 3 e -2 [228] @
4§ 3 317 &
In this paper we focus on two problems concerning fix(n) and gi(n):
(i) investigating the asymptotic behavior of gi(n);
(ii) determining the spectrum {|S]|: S € M}.

In Section 4 below we prove some formulae relating to problem (i), and
other formulae for fi(n) and gg(n). We use these formulae to prove that
the spectrum is [gi(n), fk(n)), i.e. any integer between gx(n) and fi(n)
can be realized as the order of a maximal k-multiple-free subset of [1,7].
Sections 2 and 3 contain preliminary lemmas.
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2 Adjacency

We first consider a simpler idea than multiple-freedom. We say a subset S
of [1,n] is adjacency-free if S never contains both 7 and i +1 for any i, and
such an S is mazimal adjacency-free if SU {z} is never adjacency-free for
z € [1,n]\S. We write A(n) for the set of maximal adjacency-free subsets
of [1,n].

Lemma 1. There is a maximal adjacency-free subset S of [1,n] if and only

HEEHE

Proof: Since an adjacency-free subset can contain at most one of each of
the sets {1,2},{3,4},..., it can have at most [%] elements. On the other
hand, if S does not contain any of {z — 1,z,z + 1}, then SU {z} is also
adjacency-free, denying the maximality of S, so any maximal adjacency-free
subset must contain at least one member of each of {1,2,3}, {4,5,6},...,
which implies the lower bound.

To prove the density of the spectrum, we consider
S: ={2,5,...,3z - 1,3z +1,3z +3,... }.

In other words, S, contains every third integer from 2 to 3z — 1, and every
second integer thereafter. Then

jsul =4[22

2

So So and Srgy attain the upper and lower bounds respectively. On the
other hand, .

|Sua] =z -2+ ["—'—Z’”il

=x—2+[2_:§2£il]+3

= |Sz| +1

so So, 82,54, ... between them every possible order from [§] to [3]. O

3 Some coefficients related to divisibility
As usual we write k®||z to mean k®|z but ket! ¢}z,
Lemma 2. Suppose s > 3,0 < a < k, and
B = B,(a) = {z € [1, ak? — 1]: k3**?||z for some e > 0}
bs(a) = |Bs(a)|-
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Then
s—1 _ ak?(k*—1)
bs(a) + [T] =cs(a) = Fr)E 1)
ak3(k*~1 —1) _
=m, s=1 (mod 6)
a+1 __
= k:—l (k(I;c:—I 1) —1), 8 =2 (mod 6)
2 -
= k:—l (kgc’_ll) +l), 8 =3 (mod 6)
a -1_
=571 (k‘*(:;_l 1) —l), 8 =4 (mod 6)
_ ak(k*t! -1)
T (k+1)(k3-1)’

s =0 (mod 6)

8=5 (mod 6).

Proof: It will be convenient to write ¢t = i§3. If e is a non-negative integer,
define

B, = {z € 1,ak® - 1): k%|z}.

Then using the inclusion-exclusion principle,

1Bl = Y- | 2|

i>0
= aZ(_l)ika—e-i _ Z(_l)i
=0 =0
= (-1 (-k)' - {s—e}2
i=0
_ G = (219
=a P - {s—¢e}s.
So
bs(a) = Y |Baesal
0<e<t
- a ke—3e-1 _ —1)%—3e-2
k+1 oszeg ( (=177
- Z {s —3e —2}a.
0<e<t



There are three cases, according to the residue class of s modulo 3. We
assume s = 3p. Then

Z ks—3e—1 - E kSp—3e—l

0<eLt 0<e<p—-1
= k2 z k3(p—1-¢)
0<e<p—1
kz(k' - 1)
Z (_l)a—ae— z ( 1)3(p—e)
0<e<t 0<e<p—-1

=0ifp=0 (mod 2), s=0 (mod 6)
lifp=1 (mod 2), s=3 (mod 6)

Yo (s-3e-2)= > (p—e)

0<e<t 0<eLp-1

which counts the number of non-negative integers less than p and congruent
to e mod 2, i.e. [§]. Putting these together we have the result for cases
s=0or 3 (mod 6).

The other two cases, s = 3p+1 and s = 3p + 2, are handled similarly. O

4 Main Results

Theorem 1. Let k be a fixed integer, k > 2. If n is an integer greater
than 1, let ag,ay,...a, be integers defined by n = ag + a1k + -+ - + ank™,
0 < a; <k. Let 3= denote summation over j =i (mod 6). Then

gk(n) = Mﬁn - Z sgn(a;) ([ .I - {_7}3) %’

3<ji<n

2
m‘:—l) {k%(a,-i—l)-i—k %GJ'F’C %):a_,

+(KB+k=-1)> a;— (KB -k —1)) a;+ (2 —1)Za,-} .
®) ) (s)

Proof: From (5b),

gk(n) = g(amk™ + - - + a1k + ap)
= gi(amk™ +- -+ a1k) + ao (7
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(10), we get
glamk™+ -+ aj+1kj+1 + a,-kj)

= gk(amk"‘ i aj+1kj+l) <+ a_.,-k-""l(k _— 1)
+ sgn(a;)bj—1(a;) + sgn(e;){j}s

= gr(amk™ +--- + aj+1kj+l) + a-kj'l(k -1)
+ 39"(“.1)3_1 l(a:; - sgn(aJ) ([ ] {.7}3)

= gr(amk™ + - + aj+1k’+l) + a'k’_l(k -1)
+ealay) —anlas) ([L52] - k), 523

By repeated application of (11), we get from (8) and (9) that
g(n)= Y e M k-1)+ Y ci-i(a;)

3<i<m 3<i<m
- sgn(a a. - a(k — .
> @) ([£52] - ) + aaktl - 1)+ o e
Applying the values of c;j_1(a;) from Lemma 2,
k-1 k
i) =S tnt om0 sama) ([252] - 4

3<i<m

k
s py(e2k® + aik + ao)

& (k+1)K -

‘(T-rl—)(ka—_i—) kz:a,+k Za_,+k ZQJ

(0) (1) [
i23 i23 23

+(RB+k-1)> a; - (KB -k —-1)) a;+ (2K - 1)2«;,} ,
(3) 1C)) 5
which, on simplification, gives the desired result. O
Corollary 1.1. For large n,

K-k +1

o) = e -+ Oleen)-

O

Using a different viewpoint, we obtain other formulae for gx(n) and fx(n)
and find the spectrum of M.
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To do this, write
P={pell,n]: kip}
ép) = llog,c %J , PEP
Qp = {p,Pk,pk?,...,pk"?}, peP.
clearly Q, N Q, = @ if p and r are distinct elements of P, and

[Ln] = | Q. (13)

peEP

If S is any maximal k-multiple-free subset of [1,n], write S, = SN
Qp. Then S, is maximal k-multiple-free in Q,. Conversely, given a set of
maximal k-multiple-free subsets S, of Qp, for p € P, their union is maximal
k-multiple-free.

On the other hand, consider the one-to-one correspondence ¢ from Qp
to [1,4(p) + 1] defined by o(pk*) = i+ 1. It is clear that S, is maximal
k-multiple-free in Q, if and only if ¢(Sp) is maximal adjacency-free in
[1,€(p) + 1]. So from Lemma 1 we have

{ISpl: Sp is a maximal k-multiple free subset of Q,}
= {|V;| =V}, is a maximal adjacency-free subset of (1, £(p) + 1]}

[ )

We can choose Sp, to have any value in the range (14), for each p in P.
So we have

Theorem 2.
gk(n) = pEZP [MT-H] i Jeln) = ; {ﬁ?);—l-' .

For any value s in [gk(n), fe(n)], there is a maximal k-multiple-free subset
of [1,n] with s elements. _ 0O
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