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ABSTRACT

For graph G, a total dominaling set S is a subset of the vertices
in G such that every vertex in G is adjacent to at least one ver-
tex in S. The total domination number of G is the cardinality
of a smallest total dominating set of G. We consider the total
domination number of graphs formed from an m x n chessboard
by letting vertices represent the squares, and letting two ver-
tices be adjacent if a given chess piece can move between the
associated squares. In particular, we bound from above and be-
low the total domination numbers of the graphs induced by the
movement of kings, knights, and crosses (a hypothetical piece
that moves as does a king, except that it cannot move diago-
nally). We also provide some results of computer searches for
the total domination numbers of small square boards.

1 Introduction.

Combinatorial problems on the chessboard have been proposed and studied
for a long time. A classic problem is that of covering all of the squares of the
chessboard with a minimum number of pieces of a given type. Typically
the problem statement specifies that a piece covers all of the squares to
which it could move, (according to the standard movement of chess pieces)
as well the square on which it sits. It is this last provision that motivates
this paper; in the game of chess, as well as in some real-world applications,
vertices are not self-covering. Thus, we obtain some results on covering
the chessboard under the assumption that a piece does not cover its own
square.

We base our discussion on the standard graph theoretic description
of the chessboard. We represent each square of an m x n board with a
vertex; an edge connects two vertices, z and y, if a piece placed on the
square corresponding to z covers the square corresponding to y. We denote
such a graph representing the movement of kings on an m x n board by
Km,n. Similarly we denote the graphs for the placement of queens, bishops,
knights, or rooks by Qm.n, Bmn, Nmn, or Rmgn (respectively). We use
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Cmn to denote the crosses’ graph. (The cross is a piece that is capable of
moving only one square per turn, either horizontally or vertically; it is of
interest because the graph representing its movement on an m x n board is
the m x n grid.) For square boards, one subscript suffices; thus, K, is the
kings’ graph for the n x n board. ‘

We now provide some definitions. Let G = (V, E) be a simple graph.
Given ¢ € V, N(z) and N[z] = N(z)U {x} denote the open and closed
neighborhoods, respectively, of z. For S C V, define N(S) = |, ¢s N(2);
we define N[S] similarly. We use | | and [ ] to denote the floor and ceiling
functions respectively.

For graph G, S C V(G) is a dominating set if every vertex in V(G)—S
is adjacent to at least one vertex in S. The domination number, 7(G), is the
minimum cardinality of a dominating set of G. Thus, finding the minimum
number of kings necessary to cover the standard chessboard reduces to
the problem of determining the value of ¥(Ks). Yaglom and Yaglom [8]
obtained the following values for 7:

1K) = [(n +2)/3)2 7(Ba) = 1(Ra) = n

[1] surveys some results on the domination numbers of chessboard graphs.

A total dominating set of graph G is a set S C V(G) such that every
vertex in V(G) is adjacent to at least one vertex in S. Thus, total domina-
tion of the chessboard requires the pieces to be mutually protecting. The
total domination number, 7(G), is the minimum cardinality of a total dom-
inating set of G. One hundred years ago, W. W. Rouse Ball [7] obtained
the following values of 7:

G || Qs | Bs | N
G) ]| 5 [10]

®
&

Since every total dominating set of a graph is also a dominating set of that
graph, then for all graphs G, ¥(G) < 7(G). Since ¥(R,) = n, then it follows
that 7(R,) = n; a total dominating set in R, consists of all n squares in
any one row. 7(B,) is determined in [2]. An upper bound on 7(Qn) is
established by diagonal dominating sets of queens as described in [3].

In this paper we bound from above and below the values of T7(Km ),
7(Cm,n), and 7(Nm n). We also provide exact values of these functions for
small square chessboards, and use heuristic search algorithms to improve
the upper bounds on boards of modest size.



2 Total domination of the kings’ graph.

It is simple to determine the value of 7(Km ) when the board is sufficiently
narrow. We offer the following results without proof.

Proposition 2.1

n/f2 m<3n>1 andn=0 (mod4)
T(Kmn) =1 [n/2)+1 m<3,n>1, andn#0 (mod 4)
2[n/3] m=4

We proceed to a lower bound on 7(K,; ).
Theorem 2.2 For allm,n > 5, 7(Km ) > mn/T.

Proof. We note that for £ € V(Km,n), |[N(z)| is at most 8. Further, we
note that for S C V(Km,m) and z € N(S) - S, IN(SU {z})| < |N(S)| +86.
Since every king must be adjacent to at least one other king, mn/7(Kn »)
is at most 7. This ratio occurs only when the board is tiled with diagonally
adjacent pairs of kings as shown in Figure 1; we call this graph of 14
vertices the kings’ tile. Thus, any total dominating set, of K, which
has cardinality mn/7 consists of a perfect tiling (no overlap or waste) of
the m x n chessboard with kings’ tiles. Since such a perfect tiling is not
possible, we obtain the lower bound in the theorem statement. |

Figure 1: The kings’ tile
We now provide an upper bound on 7(K, ) based on a tiling of the
plane with kings’ tiles.
Theorem 2.3 For allm,n > 4, 7(Km,n) < (mn + 2n + 89)/7
Proof. We begin with the tiling of the board depicted in Figure 2. The

figure shows the tiling for the 24 x 24 chessboard; we will always assume
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Figure 2: Tiling the chessboard with kings’ tiles

that the tiling begins by placing a tile squarely into the top left corner
of the board, and only considering non-overlapping tiles that lie entirely
within the borders of the board.

We now determine the value of a, a lower bound on the number of
squares on the board not part of tiles in the tiling scheme above. We look
in turn at the uncovered squares near each of the four sides of the board.

1. Along the top of the board, there are at least 21|n/14] uncovered
squares;

2. Along the left side, there are at least 7|m/7] uncovered squares;

3. Along the bottom, there are at least 21|n/14] uncovered squares.

4. Along the right side, there are at least 7|m/7] uncovered squares
when n is even, and 14|m/7] when n is odd.

Summing these, we have:
_ [ 42|n/14] +14|m/7] n s even
=\ 42|n/14) +21|m/7] nisodd
Thus, under the tiling, at most mn — a squares are covered by tiles, and at
_most (mn — a)/7 kings are in the covering tiles.

We now determine an upper bound, b, on how many kings are needed
to cover the squares on the board that are not in tiles under the tiling.

68



1. Five kings are sufficient to cover each set of 21 contiguous squares
along the top that are not in tiles; the leftmost 3 uncovered squares
can be covered by adding a king to the tile immediately below, and
4 more kings can cover the remaining 18 uncovered squares. Thus,
along the top, 5[n/14] kings are sufficient to cover all of the uncovered
squares.

2. Along the left side, two kings are sufficient to cover each set of 7 con-
tiguous squares not in tiles. 2[m/7] kings can cover all such squares.

3. The uncovered squares along the bottom can be covered similarly to
to those along the top, requiring 5[n/14] kings.

4. When n is even, each set of 7 contiguous uncovered squares along the
right side can be covered with two kings; 2[m/7] kings are sufficient
for all such sets on the right side. When n is odd, uncovered sets of 11
squares are joined by 1 x 3 strips of uncovered squares. Each strip can
be covered by adding a single king to the tile immediately to the left
of the strip; each set of 11 uncovered squares can be covered with two
additional kings. Thus, when n is odd, 3[m/7] kings are sufficient to
cover the right side.

Summing these, we obtain:

b= { 10[n/14] + 2[m/7] n is even
= | 10[n/14] +3[m/7] nisodd

Combining the number of kings used in the tiling, with the number of
kings used to cover the untiled squares, we obtain:
T(Kmpn) < (mn—a)/T+b

This simplifies (at worst) to the bound in the theorem statement. |

3 Total domination of the crosses’ graph.

The value of 7(Cpn,n) is as follows for 1 <m < 2:

Proposition 3.1

landn=0 (mod4)
ILn>1, andn#0 (mod4)
2

nf2 m
T(Cmn) = { [n/2)+1 m
2[n/3] m

Using an argument similar to that for the kings’ tile, there is a unique
crosses’ tile which provides coverage of four vertices per cross; the tile is
shown in Figure 3. Based on a tiling of the m x n chessboard with crosses’
tiles (as shown in Figure 4), we obtain the following bounds on 7(Cin »):
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Figure 3: The crosses’ tile

Theorem 3.2 For allm,n>2, mn/4 < 7(Cmpn) < (Mn+2m+2n+
5)/4.

Figure 4: Tiling the chessboard with crosses’ tiles

Proof. The lower bound derives from the maximum number of squares
a cross can cover. To obtain the upper bound, we count the number of
crosses needed to cover the region tiled by the odd rows of tiles (the tiles
covering rows i of the chessboard where ¢ = 1 (mod 4)) and the number of
crosses needed to cover the region tiled by the even rows of tiles (the tiles
covering rows i of the board where i = 3 (mod 4)). We count the partial
tiles within the boundaries of the board as well as the full tiles.

1. In each odd numbered row of tiles, 2[n/4] crosses are needed to cover

the tiles, except when n = 1 (mod 4). In the special case a cross can
be saved in each odd row of tiles since the last tile in the row covers
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a single square; that square can be covered by an extra cross in the
tile immediately to the left of the square. Since there are |m/4] + 1
odd rows of tiles, then the number of crosses needed to cover the odd
rows of tiles, is:

_ | 2|m/4]|[n/4] +2[n/4] = m/4] -1 n=1 (mod 4)
=1 2(m/4][n/4] + 2[n/4] otherwise

2. Using a similar argument, the number of crosses needed in the even
rows of tiles is:

b= { 2|(m+2)/4)([(n+2)/4]1 = 1) n=3 (mod 4)
T 2l(m+2)/4][(n + 2)/4] otherwise

Summing a and b, we obtain (at worst) the upper bound in the theorem
statement. u

4 Total domination of the knights’ graph.

Theorem 4.1 For allm,n >4, mn/8 < 7(Nm ») and

(Nm) < (mn4+5m+6n+56)/8 m=n (mod2)
™R = 1 (mn+5m+5n+43)/8 m odd and n even

Proof. The lower bound derives from the fact that a knight can cover at
most eight squares. The upper bound is based on the pattern of knights
shown in Figure 5; the gray squares on the board are those not covered by
knights in the pattern. Around the board we show how to cover the gray
squares.

First we note that the number of knights in the pattern on an m x n
board is as follows:

[mn/8] m and n are odd
o= 4 [mn/8] —|n/8] m is even and n is odd
“ ] [mn/8] — |m/8) m is odd and n is even

[mn/8] — [m/8) — [n/8_|‘ m and n are even

We now count the number of additional knights needed to cover the gray
squares as shown in Figure 5.
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Figure 5: A pattern of knights on the m x n board

. Every eight rows there is a pattern of six uncovered squares along

the left edge of the board. Each of the [(m — 1)/8] full or partial
occurrences of the pattern can be covered by three knights.

. Each of the [(n —4)/8] occurrences of eight uncovered squares along

the top of the board can be covered by three knights.

. Each of the [m/8] occurrences of six uncovered squares along the

right edge of the board can be covered by three knights. This is true
whether n is even or odd.

When m is even, each of the [n/8] occurrences of eight uncovered
squares along the bottom can be covered by four knights. When m is
odd, each of the [n/8] occurrences of four uncovered squares can be
covered by two knights.
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Thus, the number of knights used to cover the gray squares is:

b< { 3[m/8] + 3[(m — 1)/8] +2[n/8] + 3[(n — 4)/8] m is odd
=1 3[m/8] +3[(m —1)/8] +4[n/8] +3[(n —4)/8] m iseven

The sum of a and b simplifies (at worst) to the theorem statement if we
assume that m is the odd dimension whenever m Z n (mod 2). ]

5 Algorithmic search and final remarks.

Using a backtracking search, we determined the following values of 7(K,),
7(Chr), and 7(Ny,):

nll2]3|4]|5] 6] 7] 8] 9]10]11]12]
Ko [2]2[4]5] 8] 912151821 [24

Coll2]3[(6]9]12[15]20]25]|30]{ 35
N, 6|7 8]10]14 |18

To obtain these results, we used the following branch and bound techniques:

1. Abandon the search when it leaves behind an uncovered square;

2. Abandon the search when (the number of uncovered squares)/(the
number of remaining pieces) is greater than the maximum number of
squares a piece can cover;

3. Limit the placement of the pieces that cover the corner squares (to
avoid checking solutions that are symmetric with respect to rotation
and reflection of the board).

‘We also used the heuristic algorithm described in Figure 6 to strengthen
the upper bounds on graphs of modest size. This algorithm is typical of
hill-climbing algorithms that permit sideways moves in the search space
(see [4] and [5]).
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place a piece on each square of the board;

loop

pick piece p at random,;
if p can be removed without uncovering a square then

remove piece p;
else if p can move to a new square without uncovering a square then

move p to the new square;

Figure 6: Heuristic algorithm for covering a chessboard

Using this technique we improved the upper bounds for the following cases:

njl10]11])12]13|14]15]|16|17]18] 19| 20|

Kn 20[33]38[43[48[54] 60 68
(o 421495664 72181 (90105111

N, 222528323944 (485761 66 75

n| 21| 22| 23] 24| 25| 30| 40] 50| 60| 70|
K. || 727 8 [ 87 95 102 | 146

C. || 121 | 132 | 145 | 160 | 177 | 241 | 429 | 658 | 944 | 1284
N, | 8| 8 | 94| 101 [ 109 [ 152

The successfully covered boards (from both the backtracking and heuristic
searches) appear in [6].

We note that tori (boards with wrap-around rows and columns) of
the proper dimensions can be perfectly tiled with kings or crosses tiles;
similarly, the opposing edges of the pattern of knights from Figure 5 can
be brought together when the dimensions of the board are appropriate. In
particular, if K,q,:',, is the m x n kings’ torus, C,’f,,n is the m x n crosses’
torus, and N7,  is the m x n knights’ torus, then:

Remark 5.1 Form,n > 1, 7(K7, 14,) = 14mn, 7(CT, 4,) = 4mn, and
T(NsTm’sn) = 8mn.
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