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ABSTRACT. A 2-distant coloring of a graph is an assignment of
positive integers to its vertices so that adjacent vertices cannot
get either the same number or consecutive numbers. Given a 2-
distant coloring of a graph G, a hole of f is a finite maximal set
of consecutive integers not used by f, and h(f) is the number of
holes of f. In this paper we study the problem of minimizing the
number of holes, i.e., we are interested in the number h(G) =
miny h(f) where the minimum runs over all 2-distant colorings
f of G. Besides finding exact values for h(G) for particular
graphs, we also relate h(G) to the path-covering number and
the Hamiltonian completion number of G.

1 Introduction

Recently, motivated by the channel assignment problem and T-colorings of
graphs, Roberts [11] introduced a variant of a graph coloring!, called the no-
hole 2-distant coloring, or N-coloring for short. In such a coloring, we want
to assign positive integers to the vertices of a graph so that adjacent vertices
get numbers at least 2 apart (the 2-distant requirement), and furthermore,
the set of all the numbers used in the coloring forms a consecutive set of
integers (the no-hole requirement). If we drop the no-hole requirement,
we get a 2-distant coloring. Lanfear [6] suggests a heuristic for obtaining
a generalization of T-coloring, with minimum span which, at one point,
seeks a 2-distant coloring of a particular graph so that the set of all colors
used is a consecutive set of integers. He also suggests that such T-coloring

IThroughout this work, we are going to use the graph-theoretical terminology of
Harary [5].

ARS COMBINATORIA 41(1995), pp. 77-86



should have span which are close to the minimum span. It was primarily
in response to this suggestion that Roberts began the investigation of N-
colorings.

Roberts [11] studied existence and efficiency problems related to N-color-
ings. More specifically, he studied the question of what graphs have N-
colorings, and the question of what graphs have near-optimal N-colorings,
in the sense that the span, i.e, the difference between the largest and the
smallest integers used, is at most one larger than the minimum span in a
2-distant coloring.

Later, Sakai and Wang [13] generalized the results in Roberts [11]. They
introduced the no-hole (r + 1)-distant colorings, or N,-colorings for short,
with obvious definition. They characterize all graphs that are N,-colorable,
by relating this concept to some Hamiltonian structures in the graph. For
instance, they showed that a graph is N-colorable if and only if its com-
plement contains a Hamiltonian path. Therefore not all graphs have N-
colorings. One very natural question arises: If a graph has no N-coloring,
“how far” is it from having one? One possible interpretation for the expres-
sion “how far” might be to estimate the minimum number of holes among
all 2-distant colorings of the graph.

Formally, let G = (V, E) be a graph. If f is a 2-distant coloring of
G, a hole in f is a nonempty set H of consecutive positive integers, i.e.,
H = {a,a+1,...,b} for some integers a, b, a < b, so that there exist vertices
u,v with f(u) =a-1, f(v) = b+1, and for any c € H, there is no vertex w
with f(w) = c. Denote by h(f) the number of holes in the 2-distant coloring
f of G, and by h(G) the minimum of h(f) over all 2-distant colorings f of
G.

In this work we find h(G) for some particular classes of graphs G studied
in Roberts [11], and Sakai and Wang [13]. We also relate h(G) to two well

known invariants of G: the path-covering number and the Hamiltonian
completion number.

2 h(G) for Special Classes of Graphs

The first result provides an upper bound for h(G) based on the chromatic
number x(G).

Lemma 1 Let G be a graph. Then h(G) < x(G) — 1.

Proof: We can partition the set of vertices of G into VU Vo U...UV (q),
where, for each i = 1,2, ..., x(G), V; is an independent subset of vertices of
G. For each i = 1,2, ..., x(G), color the vertices in V; with color 2 — 1. It
is easily verified that this gives us a 2-distant coloring of G with x(G) — 1
holes. Hence h(G) < x(G) — 1. O
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It is easy to see that this upper bound is sharp; it is attained by K, the
complete graph on n vertices.

Proposition 2 If f is a 2-distant coloring of Ky, then h(f) =n-1. In
particular, h(K,)=n—1.

Proof: Trivial. a

An obvious observation is that G is N-colorable if and only if A(G) = 0.
Next we calculate h(G) for the classes of graphs studied in Roberts [11]
and in Sakai and Wang [13]. We shall be interested in the existence of
near-optimal 2-distant colorings of G (i.e., 2-distant colorings with span at
most 2x(G) — 1) with exactly A(G) holes.

Proposition 3 Let G be a bipartite graph. Then

_ | 1, i G is complete bipartite
h(G) = { 0, otherwise,

and there is a near-optimal (even optimal) 2-distant coloring with exactly
h(G) holes.

Proof: Let G be a bipartite graph. By a result of Roberts [11],
h(G) = 0 if and only if G is not complete bipartite,

and in this case, G has a near-optimal N-coloring.

If G is complete bipartite, then A(G) > 1. But, by Lemma 1, h(G) <
x(G)—1=1. So h(G) = 1 and observe that the 2-distant coloring provided
by Lemma 1 for this case, is near-optimal (even optimal), and has exactly
one hole. O

The following Corollary is immediate.

Corollary 4 If T is a tree then

_J 1, #fTisastar
WT) = { 0, otherwise,

and there is a near-optimal 2-distant coloring of T with h(T) holes. In
particular,
1, fn=20rn=3

h(Pr) = { 0, otherwise. =
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Proposition 5

2, fn=3
h(Cp)=< 1, ifn=4
0, ¥n2=5,

and there is a near-optimal 2-distant coloring of C, with h(C,) holes.

Proof: By a result of Roberts [11],
h(Cp)=0&n > 5,

and in this case, C,, has a near-optimal N-coloring.

If n = 4 then C, is complete bipartite, and Proposition 3 says that
h(Cn) = 1. If n = 3 then C,, = K,, and Proposition 2 implies that
h(Cy) = 2. In both cases, h(C,) is attained by a near-optimal 2-distant
coloring. 0

A graph G is a unil interval graph if we can assign an interval of unit
length to each vertex so that edges correspond to pairs of intervals which
overlap. The unit interval graphs have a variety of applications which are
discussed for instance in Golumbic [2] and Roberts [10]. They are especially
important in the T-coloring and the channel assignment problem literature.
Roberts [9] showed that a graph G = (V, E) is a unit interval graph if and
only if it has a compatible vertez ordering, i.e., an ordering v;,vy, ...,y
of vertices of V so that if i < j < k and {v;,vx} € E, then {v;,v;},
{v;,vx} € E. Moreover, all 1-unit sphere graphs are perfect (see Golumbic
[2]). The next four results are devoted to calculating h(G) for G a unit
interval graph when we restrict the number of vertices. We first state the
following lemma. We use the notation n = n(G) for the number of vertices
of G.

Lemma 6 Let G be a perfect graph. For each j = 1,2,...,x(G), i n(G) =
2x(G) — 3, then h(G) 2 7 — 1.

Proof: Let f be a 2-distant coloring of G and let K be a clique of size x(G)
in G. When we restrict f to K, we have x(G) — 1 holes by Proposition 2.
But n(G) —n(K) = x(G) — 3, so we can fill at most x(G) — j of these holes.
This implies that

h(f) 2 (x(C)-1) - (x(C)-35) =7 —-1.
So, K(G) 2 j - 1. o

The next theorem characterizes unit interval graphs G with 2x(G)—j ver-
tices and h(G) exactly equal to the lower bound j —1, for j = 1,2,..., x(G).

80



Theorem 7 Let G be a unit interval graph. For each j = 1,2, ..., x(G), if
n(G) = 2x(G) — 7, then h(G) = j — 1 if and only if G has a unique clique
of size x(G). In this case, there is a near-optimal 2-distant coloring with
h(G) holes.

Proof: Let vy,vs, ..., v, be a compatible vertex ordering of vertices of G.

Suppose that G has a unique maximal clique, say, vp, ¥pi1, ..., Vp4x—1-
Color these vertices with colors 1,3, ...,2x(G) — 1 in this order. For vertices
following vp44-1 in the compatible vertex ordering, start coloring them in
order as 2,4, 6, ... until 2x(G) — 2 or until no more vertices following vp4 1
remain to be colored. For vertices preceding v,, color backwards starting
with v,_; using the colors 2x(G) — 2,2x(G) —4, ... until 2 or until no more
vertices preceding v, remain to be colored. This colors all vertices of G
since there are at most x(G) — j vertices following vp45—1 and at most
x(G) — j vertices preceding vp. Since G has a unique maximal clique, this
is a 2-distant coloring, and since n(G) = 2x(G) — 7, it is not difficult to
see that this coloring has exactly j — 1 holes. Also, this coloring has span
(2x(G) — 1) — 1 = 2x(G) - 2, so it is near-optimal. From Lemma 6, we
conclude that h(G) =j — 1.

Now suppose that G does not have a unique clique of size x(G). We may
assume that there is an index p and two positive integers a,b satisfying
a+ b= x(G) so that

K1 = {vp,vps1, - Vptatb_1}

Ky = {'Up-i-a, Vpta+1y e 'vp+2a+b—l}

are two maximal cliques of G. Let us suppose by contradiction that h(G) =
7 — 1. Let f be a 2-distant coloring of G with h(f) = 7 — 1. Observe that

X= {'vp+a-—li VYp+a ---)vp+a+b-l}

is a clique of size b+1 and therefore f, when restricted to these vertices, has
b holes. Let zg,zy, ..., z; be the ordering of vertices of X so that f(zp) <
f(x1) < ... < f(zp). Let Y be the set given by,

Y = {f(zo) + 1, ..., f(zi1) + 1, fzis1) — 1, ..., fzp) — 1},

where vp4q—1 =x;, 0 <7 < b

First note that f(z;) € Y for any ¢ = 0,1;...,b. Otherwise f(z;) =
f(@)+1or f(z;) = f(zi)) — 1 for some | = 0,1,...,b, i # I. But this is
impossible because z;, z; are adjacent.

We claim that no vertex in K;U K> can have a color in Y. To see this, let
v be a vertex in K1UK>. If v € K1NK>y, then v = z; forsome i =0, 1, ..., b,
and so f(v) = f(z;) € Y. If v & K; N Ky, then v is adjacent to every vertex
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in Ky N K2 = X — {vp4a—1}, and this implies that v cannot get any color
in{f(z)x1:z€ K1NK3}. S0 f(v) €Y.

It is not difficult to see that the relation “belongs to” induces a one-to-
one correspondence between the elements of Y and the holes of f restricted
to X. So, by the claim and since |Y'| = b, the b holes of f restricted to X
can only be “filled up” by colors given to the vertices outside K; U K>. But

V-KiUKs| = (2x(G)-3)—(2a+b)
= (2x(G) - 1) - (a+x(G))
= x(G)—a-J
= b- j:
so f has at least b — (b — j) = j holes, a contradiction. O

Theorem 8 Let G be a unit interval graph. If n(G) > 2x(G) — 1, then
h(G) =0. If n(C) = 2x(G) — j for some j =1,2,...,,x(G), then

clique of size x(G)

7 —1, if there is a unique
h(G) =
B otherwise.

PFurthermore, there is a near-optimal 2-distant coloring with ezactly h(G)
holes.

Proof: If n(G) > 2x(G) — 1 then by a result of Sakai and Wang [13],
h(G) = 0 and G has a near-optimal N-coloring.

Suppose that n(G) = 2x(G) — j for some j = 1,2,...,x(G). If G has
a unique clique of size x(G), Theorem 7 implies that hA(G) = j — 1 and
there is a near-optimal 2-distant coloring with A(G) holes. If G has more
than one clique of size x(G), then by Lemma 6 and Theorem 7, h(G) > j.
So, in order to prove that h(G) = j it is sufficient to present a 2-distant
coloring of G with exactly j holes. Let v1,v2,...,vn be a compatible vertex
ordering. Start coloring the vertices from the beginning of the compatible
ordering in order with the colors in the sequence below (from left-to-right
and top-down),

2x(G) -1, 2x(G)-3, 2x(G)-5, .. 5 3, 1,
2x(G), 2x(G) -2, 2x(G)-4, .. 6, 4,

until no more vertices remain to be colored. We have enough colors since
n(G) = 2x(G) — j for some j = 1,2, ...,,x(G) and the sequence above has
2x(G) — 1 colors (notice that color 2 is the only color in {1,...,2x(G)} not
in this sequence).

Let us show that the coloring above is a 2-distant coloring. The only
possible problem could occur if a vertex colored 2g is adjacent to a vertex
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colored 2¢ £ 1 for some 1 < ¢ € x(G). The only vertex colored 2g, if
there is any, is vay_q4+1. If there is a vertex adjacent to vay—q+1 colored
2q £ 1, it must be either v,_, colored 2¢q + 1, or vy_q41 colored 2q — 1.
But then vy _g41, Ux—g+2, --» V2x—q+1 Would be a clique of size x(G)+1,a
contradiction. Hence we have a 2-distant coloring.

Notice that for 1 < g < x(G) — 1, the hole between colors 2¢+1 of vy—q,
and 2g — 1 of v _q41 can be “filled up” by color 2q assigned to vgy—q+1, if
this vertex exists. Since n(G) = 2x(G) — j, only vy42,Vy43, ..., U2x—j Can
have color 2q for j+1 < ¢ < x(G)—1. So, only x(G)—j—1 of the x(G) -1
distinct holes above will be “filled up”. Therefore the 2-distant coloring has
exactly (x(G) = 1) = (x(G) —j — 1) = j holes.

Finally, this coloring has span 2x(G) —1 if j # x(G), and span 2x(G) -2
if 7 = x(G). Hence, it is near-optimal. O

3 h(G) and Hamiltonian Structures

In 1960, Ore (7] introduced the notion of path-covering number of a graph
G, denoted by p(G), defined as the minimum number of vertex-disjoint
paths containing all the vertices of G. This number turns out to be closely
related to the Hamiltonian completion number of a graph G, denoted by
he(G), defined as the minimum number of edges that need to be added to
G to make it Hamiltonian.

Proposition 9 (Goodman, Hedetniemi and Slater [4]) For any
graph G, either G is Hamiltonian, in which case u(G) =1 and he(G) =0,
or u(G) = he(G).

The problem of finding the Hamiltonian completion number was first
studied, simultaneously, by Goodman and Hedetniemi (3] and Boesch et
al. [1]. They were motivated by considerations of traversing data structures
and point diagnostic schemes for network integrity.

We close by establishing a relation between p(G) and h(G).

Proposition 10 There ezists a 2-distant coloring f of a graph G such that
h(f) = k if and only if the verlices of G° can be covered by k + 1 vertex
disjoint paths in G°.

Proof: Let f be a 2-distant coloring of a graph G such that h(f) = k.

Let vy, vs,...,v, be an ordering of vertices of G so that f(v,) < f(vg) <
... £ f(vy,) and there exist integers a; < a2 < ... < ax such that {f(va,) +
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1, f(va;)+2, ..., f(va;+1) =1}, i = 1,2, ..., k, are the k holes of f. Therefore

Py v, va, we Vg,
P2 ¢ Vg +1 Vay+2s wee VUgy
P3 ¢ Var+1y Vaz+2s ves VUgy
Pk C Va1 +1y Vap_142) - Vay
Pk-l—l ¢ Vg1, Vay+2) e Un,

are k+1 vertex disjoint paths in G° covering all the vertices (note that for
eachi=0,1,2,...k, j =1,2,...,ai41 — a;i — 1, f(Va;4j41) — f(va,45) <1,
i.e., Yg,4j+1 and v+ ; are adjacent in G°, where ap = 0 and ax4) = n, so
Pi4, is a path in G¢).

Conversely suppose that P* : o},v},...,},, for i = 1,2,..k+1, are
vertex-disjoint paths in G° covering all the vertices. Consider f defined
by

fw))=3, 1<j<m
and for 2<i<k+1,

-1
J@) =Y m+i+i-1, 1<j<n,
=1

It is easily verified that f is a 2-distant coloring and h(f) = k. O

From Proposition 9, we can state the following corollary of Proposi-
tion 10.

Corollary 11 For any graph G,

- ay_1_J0 if G¢ Hamiltonian
h(G) = (@) -1= { he(G®) =1,  otherwise. a

Therefore, the problem of determining h(G) is equivalent to the problem
of determining u(G°) or he(G*¢). These are known to be difficult problems
in the sense that they contain the classical Hamiltonian cycle problem as a
special case. However, Boesch et al. [1] and Goodman and Hedetniemi [3]
have shown that for any graph G,

he(G) = mm hc(T) 1

where S is the set of all spanning trees of G, and furthermore, they have
presented an efficient algorithm for finding he(T) for trees T (linear time
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on the number of vertices). Raychaudhuri [8] also provided an algorithm
for finding the Hamiltonian completion number for trees by observing that
w(T) = n(T) — p(T), where p(T) is the maximum number of edges in a
vertex-disjoint union of paths of T, and by formulating the problem of
finding p(T), for trees T, as a maximum flow problem in a network with
upper capacities on arcs. A heuristic based on the equation (1) is presented
in Goodman et al. [4], and also a linear time algorithm (on the number of
vertices) for finding he(G) for unicyclic graphs, i.e., graphs having exactly
one cycle. In a subsequent paper, Slater et al. [14] provided an algorithm
for finding he(G) when G is a cactus, i.e., a connected graph in which any
two cycles intersect in at most one point.

Consequently, if G is a cotree (complement of a tree), a counicyclic graph
(complement of a unicyclic graph) or a cocactus (complement of a cac-
tus), we have algorithms (linear time for cotrees and counicyclic graphs)
to calculate h(G), and for arbitrary graphs we have the heuristic based on
equation (1).

As we have already pointed out, the problem of determining k(G) is not
an easy one and, consequently, a reasonable way to attack a problem of this
difficulty would be to try to understand it as deeply as possible by studying
several different classes of graphs. In Section 2, we followed this strategy
by concentrating on a few particular families of graphs G and obtaining
exact values for A(G). It would be interesting to keep investigating other
classes of graphs, for instance the class of r-unit sphere graphs which has
important applications in communications. A graph G is said to be r-unit
sphere if there is a function g : V — R" so that {z,y} is an edge if and only
if the Euclidean distance in R" between g(z) and g(y) is at most 1.

Another interesting direction for further research would be to extend the
results in this paper to (r + 1)-distant colorings, i.e., study the minimum
number of holes over all (r + 1)-distant colorings of a graph (some results
in this direction can be found in Sakai [12]). A more general context would
be to study the minimum number of holes over all T-colorings of a graph
for an arbitrary set T. For more about T-colorings we refer the reader to
Tesman [15]. .
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