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Abstract

Let p, ¢ denote primes, p =1 (mod 4), ¢ =3 (mod 4),¢> 7. In
an earlier study we established that if ged(¢—1,p"~!(p—1)) = 2
and if a Z-cyclic Wh(q + 1) exists then a Z-cyclic Wh(gp™ + 1)
exists for all n > 0. Here we consider ged(g—1,p""}(p—1)) > 2
and prove that if a Z-cyclic Wh(q + 1) exists then there exists
a Z-cyclic Wh(gp™ + 1) for all n > 0. The proof employed
depends on the existence of an appropriate primitive root of
p. Utilizing a theorem of S. D. Cohen we establish that such
appropriate primitive roots always exist.

1. Introduction. A whist tournament for v = 4m players, Wh(v), is a
schedule of games involving two players playing against two others such
that

(i) the games can be arranged in 4m — 1 rounds of m gémes each,
(i1) each player plays in exactly one game in each round,
(iii) each player partners every other player exactly once,
(iv) each player opposes every other player exactly twice.

Conditions (iii), (iv) will be referred to as the whist conditions. Each game
in the whist tournament is denoted by a 4-tuple (a,b,c,d) in which the
pairs {a, c}, {b,d} designate partnerships and the four other pairs designate
opponents. It is not uncommon to refer to the game (a, b, ¢, d) as a whist
table since the problem originates from the card game of whist. As a
mathematical structure the problem was introduced by E. H. Moore [12].
Existence of Wh(v) for all v = 0,1 (mod 4) was established in the late
1970’s [7,10] but it has only been recently [2,3,4,5,6] that progress has
been made on the existence of Z-cyclic whist tournaments. By a Z-cyclic
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Wh(4m) it is meant that the 4m players are elements in Zgp,—1 U {oo} and
the rounds are labeled so that round j + 1 is obtained by adding +1 (mod
4m - 1) to each non-oco element in round j.

In (3] we established that if p,q are primes, p = 1 (mod 4), ¢ = 3
(mod 4), ¢ > 7 (the case ¢ = 3 is dealt with in {2,4]) such that ged(q —
1,p""Yp —1)) = 2 and if a Z-cyclic Wh(q + 1) exists then there exists
a Z-cyclic Wh(gp™ + 1) for all n > 0. In the current study we consider
ged(g — 1,p"~1(p — 1)) > 2 and establish similar results, namely if there
‘exists a Z-cyclic Wh(gq + 1) then there exists a Z-cyclic Wh(gp™ + 1) for
all n > 0. As for the existence of Z-cyclic Wh(g + 1) it is still the case
that existence is known only for ¢ € {3,7,11,19,23,31} (¢ = 3,7,11 can
be found in [3,12] and ¢ = 19,23,31 in [9]). In Section 3 we introduce
constructions that yield Z-cyclic Wh(gp™ + 1) if there exists a common
primitive root of ¢ and p? whose power sequence (defined in Section 2)
possesses certain number theoretic properties that are compatible with the
construction. Thus in contrast to our earlier study [3] the constructions,
in general, are not valid for an arbitrary primitive root but rather depend
on the existence of an appropriate primitive root. A theorem of Cohen (8]
enables us to prove that such appropriate primitive roots always exist.

In Section 2 we introduce a structure for the ring Z,,» and list some
lemmas that are useful for our constructions. Cohen’s theorem is also
listed. In Section 3 the methodology and the constructions are discussed
and the main results are established. In Section 4 we provide a few specific
examples and in Section 5 we provide a list of primitive roots that serves
to substantiate our claim of the existence of primitive roots appropriate for
our constructions. :

2. Structure in the Ring Z,~. In the sequel it will be understood that
p,q denote primes such that p = 1 (mod 4), ¢ = 3 (mod 4), ¢ > 7 with
ged(g—1,p""}(p—1)) = 2¢, e > 1. Consider the following subsets of Zgn.

P={z:p|=}\ {0},
Q" ={z:q|z,ptz}\ {0},
E={z:ptz,qtz}\{0}.

Thus |P| = ¢p"~' — 1, |Q*] = p*~!(p—1), E = p"~}(p — 1)(¢ — 1) and

Zpn = PUQ*UEU{0}. Let W be any common primitive root of ¢ and
2

pt.

Lemma 2.1. ordgpn W = p"~}(p — 1)(q — 1)/ 2e.

Proof.

ordgpn W = lem(ord, W, ordpe W) = p*~(p—1)(¢— 1)/(¢ = 1,p" " (p - 1)).

O

88



We note that ordgpa W = 0 (mod 4) and define ¢, s by the relations

4t =p"~'(p - 1)(g — 1)/2e, (2.1)
4s=p" " (p-1). (2.2)

We list some useful results. The proofs of Lemmas 2.2-2.5 can be found in
[3], that of Lemma 2.6 in [11] and the proof of Theorem 2.7 appears in [8].

Lemma 2.2. Wi # —1 (mod ¢p") for all 0< i < 4t — 1.

Lemma 2.3. Q* is a cyclic set {q1,q2,.-.,94s} where
(i) giy1=Wyq; forall1 <i<4s—1 and Wqy, = q1, and
(i1} gi+2s + q: =0 (mod gp™) for all 1 <i < 4s.

Lemma 2.4. If a is odd then (i) W* — 1 is coprime to both p and q, and
(it) W* + 1 is coprime 1o p, and is a mulliple of q if and only if @ is an
odd multiple of 9;—1

Lemma 2.5. If « is even then (i) W* — 1 is a multiple of p if and only if
« is a multiple of p— 1, (ii) W — 1 is a multiple of ¢ if and only ifa is a
multiple of ¢ — 1, (ili) W* + 1 is a multiple of p if and only if « is an odd
maultiple of %‘, and (iv) W* + 1 is coprime to q.

Lemma 2.6. (Mann’s Lemma) Let 4u + 1 be a power of a prime and let
z be a primitive element of GF(4u + 1). Then there ezist odd integers c,d
such that z¢ + 1 = z%(z° - 1).

Theorem 2.7. (Cohen’s Theorem) Let v be a prime such that v > 211.
If g(z) is a quadratic polynomial over GF(v) not of the form a(z + b)?
where a is a non-square in GF(y) then g(W) is a non-zero square for
some primitive root W of .

From the general theory of cyclotomy [13] we know that the set E
is a multiplicative group, the group of reduced residues, and has a coset
decomposition

e—1
E=|Ja, (2.3)

i=0
where Cp = {£1,2W,2W?2, ... +W* 1} and C; = 2;Co, i =1,...,e — 1,
for certain representative elements z;. Analogous to the general theory
contained in [13] it can be shown (although we shall not in fact need this
result) that for Z,,» we can choose z; = z* where z is uniquely determined
by £ = W (mod p") and z = 1 (mod ¢). For our present purposes, however,
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all we need to note is that, in view of Lemma 2.2, we can express each C;
in the form

Ci=A;UB;, (24)

with
Ai = {zi, aW, o, W2, WY (2.5)

and
B; = {—:c,-, -z;W,..., —:c,'W“_l}, (2.6)

with 2o = 1. Now each A;, B; is a cyclic set, and, as such, any element
¥ € A; can be used as a representative, in which case the A;, B; would be
cyclically permuted and their presentation will be as in (2.5), (2.6) with z;
replaced by y;. This flexibility in the choice of the representative of a coset
shall prove to be useful for the constructions introduced in Section 3. We
close this section with the following definition.

Definition. Let v be a prime and let W be a primitive root of 7. The

sequence {I’V‘}Z;o2 is called the power sequence of W in Z,.

3. The Methodology and Main Results. For Z-cyclic whist tourna-
ments, or indeed cyclic Wh(v) in general, the basic approach is to produce
an initial round that exhibits satisfaction of the whist conditions via the
method of symmetric differences [1]. In general our approach is to form the
initial round as the union of three collections of ‘whist tables, one collection
from each of the sets P, Q*, and E. The sets P and Q* will be dealt with
exactly as in [3]. That is to say P will be handled inductively and for Q*
we have the following lemma that is proved in [3].

Lemma 3.1. The collection of whist tables

(qu q14-s, q142s, ‘I1+33) times 1, W’ W2) ey Ws_l)

satisfy the whist conditions for the set Q*. (Here the q; are as described in
Lemma 2.3.)

We note that in [3], Lemma 3.1 was established under the hypothesis
(g—1, p*~!(p—1)) = 2. Nevertheless the construction is still valid here for
the whist differences arising from these tables are of the form g w?(w* ~1),
q1wP(w? — 1), and q;wP(w?* — 1). Regardless of the parity of s, it is not
possible that p divides any of these forms (compare Lemmas 2.4, 2.5).

Consequently we need only be concerned with the set E. To this end
we introduce the following construction.

Construction 1. Form the collection of et whist tables

(zi, 2;We, —z;, —z;W*) times 1,W?, ... W2 i=0,1,...,e~1,
(3.1)



where a is odd.

In this construction z; merely denotes a representative for the coset C;
and is not necessarily that associated with the cyclotomic theory. Since o
is odd, the collection (3.1) exhausts the set E. The whist differences that
arise from the collection (3.1) are as follows.

partner differences: +2z;, +2z;W® times 1, W2, ... ,W4~2 3.9
i=0,1,...,e—1, (3.2)
opponent differences: +z;(W* — 1) {twice}times 1, W?, ..., W4
+z;(We + 1) {twice} times 1, W?,... W~
i=0,1,...,e—1.
(3.3)

Clearly each element in E occurs exactly once in (3.2) so the whist tables
(3.1) satisfy the partner whist condition for the set E. We proceed to
demonstrate that for suitable restrictions on a and on the z; the opponent
whist condition for the set E will be satisfied by the differences (3.3). First
of all we note that if W* £ 1 € E then all of the differences (3.3) belong to
E. That suitable restrictions on a guarantee that W +1 € E can be seen
as follows. Since W is a primitive root of p? then W is a primitive root of
p" for all n > 1. Specifically then W is a primitive root of p and we write
W = w, (mod p). In the Galois field Z, we invoke Mann’s Lemma to obtain
a pair of odd integers, (a, 8), such that, in Z,, wy +1 = wg(w,‘,' —1) (or
equivalently wg +1= w;’(wf —1)). Thus wy + 1, wy — 1 occupy positions
of opposite parity in the power sequence of w, and hence precisely one
of wy + 1, wy — 1 is a non-zero quadratic residue (alt. square) in Zp.
Mann’s Lemma guarantees at least one pair (o, ) but oftentimes there
is more than one pair. For the time being we make a basic assumption;
eventually we demonstrate that this assumption can be satisfied provided

that (p,q) # (13,7).

Hypothesis A. There exists a primitive root w, of p for which at least
one of the pairs (@, 3) obtained via Mann’s Lemma is such that not both
of a, 3 are multiples of 1—;—‘-

In general Hypothesis A places restrictions on the choices of ¢, p, and
W. For instance it is impossible to satisfy Hypothesis A for the pair (p,q) =
(13,7). Assuming Hypothesis A, Lemma 2.4 enables us to conclude that
W*+1¢€ E. We now invoke the flexibility in the choice of the z; by
assuming that zp = land z; =1 (mod p), 1 <i<e— 1.

Lemma 3.2. If Hypothesis A is salisfied and if zo = 1, z; = 1 (mod
p), 1 < i< e~—1 then the opponent differences given in (3.3) cover each
element of E exactly twice.
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Proof. Since each of the differences +z;(W® + 1) times 1, W2,... W4t-2
occurs twice in (3.3) it suffices to show that +z;(W< £ 1) times 1, W2, ..,
W4=2, i = 0,1,...,e — 1 covers the set E exactly once. Since we have
assumed that Hypothesis A is satisfied we know that for o thus given there
exist integers £, A such that

W +1=4z,WH(W*—1) (mod gp"). (3.4)

As i varies
tz;(W* —1) times 1,W2,... W42 (3.5)

gives W — 1 times all elements of E with even parities, and
+2;(W* + 1) = £z;2 WH(W* - 1). (3.6)

Now z; — z;z, permutes the C; and, as z; = 1 (mod p), we have z;z, =

Wevehiz;. Thus from (3.6), +z;(W® + 1) times 1, W?2,..., W*-2 gives

W — 1 times all +z;W? times 1, W2,..., W¥-2 ie. W* — 1 times all

elements of E with odd parities provided that A is odd. But, mod p,

We+1=2z,WANWe — 1) gives wy +1= :l:w;}(wg ~1)andso A= or

A=p8+ Q’;—ll Hence A has the same parity as 3, i.e. X is odd. O
Thus we can formulate the following theorem.

Theorem 3.3. If q,p are primes, g = 3 (mod 4), ¢ > 7, p=1 (mod 4)
such that (1) a Z-cyclic Wh(q+1) ezists and (2) Hypothesis A is satisfied,
then there ezists a Z-cyclic Wh(gp™ + 1) for alln > 0.

Proof. Let W be a common primitive root of ¢ and p? that is associated
with Hypothesis A. We proceed by induction. For n = 0 we have the Z-
cyclic Wh(g + 1). Assume the theorem true for n — 1 and consider the
n case. The initial round for the Z-cyclic Wh(gp™ + 1) is the union of
the tables of Lemma 3.1, the tables (3.1) of Construction 1 and those of a
Z-cyclic Wh(gp™~! + 1) constructed on the set P U {0,c0}. O

Note that if p = 5 then w, = 2,3 and in either case the (o, B) of
Mann’s lemma is (1,3). Thus we can choose a = 1 in Construction 1 and
Hypothesis A is automatically satisfied independent of the value of q.

Corollary 3.4. If there ezists a Z-cyclic Wh(q + 1), then there ezists a
Z-cyclic Wh(q -5™ + 1) for all n > 0.

We observe that if p is a prime such that in Zp Mann’s Lemma gives
o = 1 for at least one pair (a, 8) then Hypothesis A is satisfied independent
of the choice of ¢ and the rest of our methodology guarantees that the tables
(3.1) with o = 1 satisfy the whist conditions for the set E. We demonstrate
now that with the exception of p = 13, there exists at least one primitive
root of p for which Mann’s Lemma yields a pair with & = 1.
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Lemma 3.5. Let vy be any prime such that ¥ > 211, then there exisis at
least one primilive root of v, call it w, for which an o of Mann’s Lemma
equals 1. That is to say there exisls a primilive root w of vy for which
precisely one of w+ 1, w— 1 is a square in GF ().

Proof. Let z denote a fixed, but otherwise arbitrary, non-square in GF (7).
Consider the quadratic polynomial g(z) = z(z2?—1) over GF (7). Applying
Cohen’s Theorem, there exists a primitive root of v, call it w, such that
g(w) is a non-zero square. Thus z(w? — 1) = w?* for some p > 0. Since 2
is a non-square, z = w?>"*+! for some 7 > 0. Consequently (w+1)(w—1) =
w? — 1 = w°% (a non-square). In GF(7) the product of two squares or the
product of two non-squares is a square, hence precisely one of w41, w—1
is a square. O

If for a given p, the w given by Lemma 3.5 is not a primitive root of
p? then we set w' = w + p (which will be a primitive root of p?) and
(v + 1)(w' — 1) = (w+ 1)(w — 1) (mod p) is a non-square in Z,.
Lemma 3.6. Let p be a prime such thal p =1 (mod 4), p < 211, p # 13,
then there exists a primitive root of p, call it w, such that precisely one of
w41, w—1is a square in Zp.
Proof. See the list in Section 5. It is to be noted that all of the w listed
in Section 5 are also primitive roots of p. ]

Corollary 3.7. (to Theorem 3.3) pr\#- 13 and if there exists a Z-cyclic
Wh(g + 1) then there ezists a Z-cyclic Wh(qp™ + 1) for alln > 0.

There remains only the case p = 13 to consider. p = 13 has four (4)
primitive roots 2,6,7,11. For each of these the (a, ) of Mann’s Lemma
is (3,9). Thus Hypothesis A could be violated only for ¢ € {7,19}. How-
ever, ¢ = 19 causes no problem for in that case we can choose & = 3 in
Construction 1. Indeed

Corollary 3.8 (to Theorem 3.3) If there ezists a Z-cyclic Wh(q + 1),
g > 11, then there exisis a Z-cyclic Wh(q -13" + 1) for alln > 0.

Proof. Choose a = 3 in Construction 1. ]
Finally we deal with ¢ = 7, p = 13 via a new construction.
Theorem 3.9. There exists a Z-cyclic Wh(7-13" + 1) for alln > 0.

Proof. The proof is inductive as is the proof of Theorem 3.3. We stream-
line the argument by focusing exclusively on the set E. Let W be a common
primitive root of 7 and 132 such that W = 2 (mod 13). Each coset repre-
sentative z; is taken so that ; = 1 (mod 13). Consider the collection of et
whist tables

(z:,2;W, —2; W, —2;W?) times 1, W2, W2 i=0,1,...,e~1. (3.7)
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The differences arising from these tables are as follows.

partner differences:  +z;(W + 1), t2;W(W + 1) times
LWe . w2 i=0,1,...,e~1 (3.8)

opponent differences: *z;(W — 1), £z;W(W —1) times
LW2,.. . W% 2 i=0,1,...,e—1 (3.9)

opponent differences: +2z; W, £z;(W? + 1) times 1, W2, ..., W1t-2,
i=0,1,...,e—1. (3.10)

Invoking Lemmas 2.3, 2.4 we conclude that all of the differences in (3.8)-
(3.10) belong to E. It is clear that all elements of E occur exactly once
in each of (3.8), (3.9). Thus the whist conditions for E are satisfied by
the whist tables (3.7) if 2z;W, z;(W?2 + 1) occupy positions of opposite
parity in their respective sets A, (or By), A (or B,). But this condition is
equivalent to the requirement that precisely one of 2w, w;;’ + 1 is a square
in Z,3. Now?wp=4=22andw§+1=5=29. O

4. Some Examples. For reference we give a Wh(8), Wh(20), and a
Wh(56).

Example 4.1.
(a) Wh(8): (c0,4,0,5), (1,2,3,6);

(b) WhA(20): (00,10,0,17), (1,6,2,9), (3,7,5,16), (4,13,12,18) ,
(8,11, 14, 15);

(¢) Wh(56) [3]: (c0,40,0,10), (5,25,20,30), (35,50,45, 15),
(11,22,44,33), (1,8,54,47), (4,32,51,23),
(16,18,39,37), (9, 17,46, 38), (36, 13,19, 42),
(34,52,21,3), (26,43,29,12), (49,7,6,48),
(31,28,24,27), (14,2,41,53).

Example 4.2. v =92 =7-13+1. W =80,e =3,z =1, z; = 66,
z2 = 79. For the initial round of a Z-cyclic Wh(92) form the union of the
tables:

(1) Wh(8) on PU{0,00}: (c0,52,0,65), (13,26,39,78);
(2) Lemma 3.1applied to Q*: (7, 56, 84, 35), (14,21,77,70), (28,42, 63,49);

(3) Tables (3.7) applied to E:
(1,80,11,61), (30,34,57,10), (81,19,72,27), (64,24, 67,82),
(9,83,8,3), (88,33,58,90),



(66,2,89,22), (69,60,31,23), (68,71,20,53), (38,37,54,43),
(48,18,73,16), (75,85,6,25),
(79,41,50,87), (4,47,44,62), (29,45,46,40), (51,76,15,17),
(74,5, 86,55), (36,59, 32, 12).

Example 4.3. v =248 =13.19+1. W =2 e=3,20 = 1, z; = 40,
z2 = 105. For the initial round of a Z-cyclic Wh(248) take the union of
the following whist tables:

(1) For PU {0,00} take the tables of Example 4.1(b) and multiply each
element by 13;

(2) Apply Lemma 3.1 to Q*: (19, 152,228, 95), (38,57,209, 190),
(76,114,171, 133);

(3) For E take the tables (3.1) with @ = 3 (alternatively we could use
(3.7) since W = 2 (mod 13)).
(1,8,246,239) times 1, W2, W4, ..., W,
(40,73,207,174) times 1, W2 W4, ... W34,
(105,99, 142, 148) times 1, W2, W4,... W34,

Example 4.4. v =276 = 11-5°+1. W =2 e=5,20 =1, z; = 6,

zy = 56, z3 = 21, 24 = 46. For the initial round of a Z-cyclic Wh(276)
take the union of the following tables: X

(1) For PU {0,00} take the tables of Example 4.1(c) and multiply each
element by 5;

(2) Apply Lemma 3.1 to @*: (11,77,264,198) times 1, W,...,W1;

(3) For E take the tables (3.1) with a =1
(1,2,274,273) times 1, W?2,..., W13,
(6,12,269,263) times 1, W?,..., W3,
(56,112,219,163) times 1, W?2,..., W13,
(21,42,254,233) times 1, W2,... W18
(46,92,229,183) times 1, W?2,... W15

5. Appropriate Primitive Roots for Lemma 3.6. For convenience
of space we list the results as ordered pairs (p, wp). (17,5), (29,2), (37,5),
(41,6), (53,2), (61,6), (73, 11), (89,6), (97, 13), (101, 2), (109, 10), (113,5),
(137,5), (149,2), (157,5), (173,2), (181,21), (193,10), (197,2).
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