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ABSTRACT. The author and N.K. Khachatrian proved that a
connected graph G of order at least 3 is hamiltonian if for each
vertex z the subgraph G, (z) induced by x and its neighbors in
G is an Ore graph.

We prove here that a graph G satisfying the above conditions
is fully cycle extendible. Moreover, G is panconnected if and
only if G is 3-connected and G # K, V K, for some n > 3
where V is the join operation. The paper is concluded with two
conjectures.

1 Introduction

We use Bondy and Murty [3] for terminology and notation not defined here
and consider finite simple graphs only.

For each vertex u of a graph G we denote by N(u) the set of all vertices
of G adjacent to u. The subgraph induced by the set M(z) = N(z) U {z}
we denote by G'1(z). The degree in G;(z) of a vertex u € M(z) is denoted
by dg,(z)(u). A graph G is locally n-connected, n > 1, if the subgraph
induced by the set N(z)is n-connected for each = € V(G).

A path with z and y as end-vertices is called an zy-path. A graph G is
said to be panconnected, if for each pair of distinct vertices = and y of G
and for each ¢, d(z,y) < £ < |V(G)| — 1, there is an zy-path of length € in
G.
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Let P be a path of G. We denote by P the path P with a given orien-
tation, and by P the path P with the reverse orientation. If u,v € V(P),
then uPv denotes the consecutive vertices of P from u to v in the direction
specified by B. The same vertices, in reverse order, are given by v Pu. We
use u* to denote the successor of u on P'and u~ to denote its predecessor.

Analogous notation is used with respect to cycles instead of paths.

A graph G is said to be fully cycle extendible [6] if every vertex z of G
lies on a triangle and for each cycle C of length € < |V(G)] there is a cycle
C' of length ¢+ 1 such that V(C) c V(C").

A graph G is said to be K 3-freeif G has no induced subgra.ph isomorphic
to Kl's

Let A; and A2 be two disjoint subsets of vertices of a graph G. We
denote by e(A;, A2) the number of edges in G with one end in A; and the
other in Az.

The following results are known.

Theorem 1 (Clark [4]). Let G be a connected, locally connected and
K 3-free graph of order at least 3. Then G is fully cycle extendible.

Theorem 2 (Kanetkar and Rao [7]). Let G be a connected, locally 2-
connected and K 3-free graph of order at least 3. Then G is panconnected.

Theorem 3 (Ore [8]). Let H be a graph of order at least 3 such that
d(u)+d(v) > |V(H)| for each pair of nonadjacent vertices u,v of H. Then
H is hamiltonian.

A graph H satisfying the conditions of Theorem 3 is called an Ore graph.

Theorem 4 (Asratian' and Khachatrian [5]). Let G be a connected
graph of order at least 3 where the subgraph G(x) is an Ore graph for
each vertex . Then G is hamiltonian.
Denote by By the set of all graphs satisfying the conditions of Theorem 4.
The following results are obtained in this paper.

Theorem 5. Every graph G € By is fully cycle extendible.

Theorem 6. Let G € By and let z and y are two distinct vertices of G
with d(z,y) > 2. Then for each ¢, d(z,y) < € < |V(G)| — 1, there is an
zy-path of length ¢&.

Theorem 7. A graph G € By is panconnected if and only if G is 3
connected and G # K, V K, for n > 3 where V is the join operation.

We show that for each Ore graph H and each integer ¢t > 2 there is a
panconnected graph G € Bo with diameter ¢ such that H is an induced
subgraph of G.

1n [5] the last name of the present author was transcribed as Hasration
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Finally, we consider the set B; of all connected, locally connected graphs
G of order at least 3 which satisfy

dg, (z)(8) + dg,(z)(v) 2 |M(z)] - 1

for each triple z,u,v with d(u,v) = 2 and z € N(u) N N(v). The set B;
contains all graphs satisfying the conditions of Theorem 1 or Theorem 4.
Taking into account our results and the results of Clark and Kanetkar -
Rao we formulate two conjectures for the characterization of fully cycle
extendible and panconnected graphs from the set B;.

We use similar arguments as in [1] and [2].

2 Results

By definition, a connected graph G of order at least 3 belongs to the set
By if and only if

dg, (z)(1) + da, (z)(v) 2 [M(z)] 1

for each triple of vertices u, v,z where d(u,v) =2 and z € N(u) N N(v).
Lemma 1. The inequality (1) is equivalent to

IN() N N@)N N(z)| > IN(z) \ (N(u) UN(v))| - 1. )

Proof: Let u,v € N(z) and uv ¢ E(G). Then
IN(u) N N(v) N N(z)| = |Ng, @)(u) N Ne, (z)(v)] — 1
= dg, (z) () + dg, (z)(v) — NG, (2) () U NG, (z)(v)| - 1.
Hence (1) is hold if and only if

IN(w) N N(@) N N ()] > [M(2)] - [Naye) () U Noy oy (@)| 1
= IN(@)\ (N(w) UN@))| - 1.

a
Corollary 1. Let G € By. Then

a) |[N(u) N N(v) N N(z)| > 1 for each triple of vertices u,v,z with
d(u,v) =2 and z € N(u) N N(v).

b) |N(u) N N(v)| > 2 for each pair of vertices u,v with d(u,v) = 2.
¢) G is 2-connected and, therefore, d(x) > 2 for each vertex z of G.
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Proof: Let d(u,v) =2 and z € N(u) N N(v). Then u,v € N(z)\ (N (w)U
N(v)). Therefore, by Lemma 1,

IN@w)NN@)NN(z)| 2 IN@)\(N@)UNE@)| -121.

Clearly, w 5 z for each vertex w € N(u)NN(v)N N(z). Therefore IN(u)N
N(v)| = 2. Since [V(G)| > 3 then the 2-connectedness of G follows from
(b). m}

Lemma 2. Let G € By and z, y be two distinct vertices of G. Furthermore,
let P be an zy-path of length ¢, d(z,y) < €< |[V(G)| -2 and v € V(G) \
V(P), N(v) N V(P) # 0. If vz ¢ E(G) or vy ¢ E(G) then there exists an
zy-path P’ of length £+ 1 such that V(P) C V(P’).
Proof: Without loss of generality we suppose vy ¢ E(G). Let P be the
path P with orientation from z to y and let wy,...,wn denote the vertices
of W = N(v) N V(P) occurring on P in, the order of their indices.

Case 1. n = 1. Then d(v,w{) = 2 and, by Corollary 1, there is a vertex
2 € (N(@w)N N(w!) N N(wy))\ V(P). The path P’ = zPwyzw{ Py has the
length e+ 1 and V(P) C V(P').

Case 2. n > 2. Clearly, if v is adjacent to two consecutive vertices of
P or w}w} € E(G) for some pair i,j, 1 < i < j <n, then there exists an
zy-path o{ length £+ 1. Now suppose:

a) v is not adjacent to two consecutive vertices of P,
b) wiw} ¢ E(G) for1 <i<j <n,thatis: theset W+ = {wf,...,wi}
is ind’ependent.
Since d(v,w;) = 2 for each i =1,...,n then, from Lemma 1, we obtain

n

Y IN(@) NN @) 0 N(ws)| 2 Y IN(@) \ (N@)UN@D) = n. (3)

i=1 i=1
If N(w) N N(w]) N N(w;) C V(P) for each i =1,...,n then

$°IN@) N N () N Nl < oW, W) —n @)
i=1

and
Y IN(i) \ (N(@) U N@))| 2 e(W, W) +n (5)
i=1

because N(w;) N N(wf)NN(v) € (W N@wH)\ {wi} and v € N(w) \
(N(v)U N(w})) foreachi=1,...,n.
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But (5) and (4) contradict (3). Hence
(N@)NN@f) N Nw)\V(P) # D

for some i. Let z € (N(v) N N(w]) N N(w;)) \ V(P). Then the zy-path
P': zPw;zw} Py has the length £+ 1 and V(P) C V(P’). o

Proof of Theorem 5: First let us show that every vertex u of G lies on
a triangle. Consider an edge e = uz. By Corollary 1, we have d(z) > 2.
Let v € N(z) \ {u}. If vu € E(G) then u lies on the triangle zuvz. If
vu ¢ E(G) then d(u,v) = 2. Hence, by Corollary 1, there is a vertex
z € N(u)N N(v) N N(z). Then u lies on the triangle zuzz.

Now consider a cycle € of length £, 3 < £ < |V(G)|. Let v € V(G)\V(C)
and N(v)NV(C) # 0. If v is adjacent to two consecutive vertices of C then
there is a cycle C’ of length €+ 1 such that V(C) C V(C’). Suppose v
is not adjacent to two consecutive vertices of C. Let z be a vertex from
the set N(v) N V(C). Consider the zy-path zCy where y = z—. We have
vy ¢ E(G). Hence, by Lemma 2, there exists an zy-path P’ of length £+1
such that V(P) c V(P’). Since zy € E(G) then the path P’ define the
cycle C’ of length £+ 1 such that V(C) C V(C’). a

Proof of Theorem 6: If d(z,y) > 3 and P is an zy-path of length
¢, d(z,y) < € < |V(G)| — 2, then there is a vertex v outside of P with
N(v)NV(P) # 0. Since d(z,y) > 3 then zv ¢ E(G) or yv ¢ E(G). Hence,
by Lemma 2, there exists an xy-path of length £+ 1.

Now suppose d(z,y) = 2. Since G1(z) is an Ore graph then, by Theorem
3, Gi(z) is hamiltonian. Let C = uou;...u,up be a Hamilton cycle of
G (z) where z = ug and r = d(z). Let k be the maximum integer for which
ury € E(G). Clearly, k > 2 because, by Corollary 1, [N(z) N N(y)| = 2.
Then for any ¢, 2 < € < k+ 1, the zy-path ugux—s+2uk—e43 ... uxy has the
length €. Consider now an zy-path P of length ¢, £ > k + 1, containing
the vertices uy,...,ux. If £ < |[V(G)| — 1 there is a vertex v outside P
with N(v) N V(P) # 0. Since N(z) N N(y) C {uy,...,ux} C V(P) then
vz ¢ E(G) or vy ¢ E(G). Then, by Lemma 2, there exists an zy-path P’
of length £+ 1 such that V(P) C V(P'). a

Proof of Theorem 7: Clearly, if a graph G € By is panconnected then G
is 3-connected and G # K, VK, for n > 3.

Now suppose that G is a 3-connected graph from the set By. Let z and
y be two distinct vertices of G. If d(z,y) > 2 then, by Theorem 6, there is
an zy-path of length £ for each ¢, d(z,y) < ¢ <L |[V(G)| - 1.

Let d(z,y) = 1. First we show that there is an zy-path P’ of length 2.
By Corollary 1, we have d(z) > 2. Let v € N(z) \ {y}. If vy € E(G) then
P’ = zvy. If vy ¢ E(G) then d(v,y) =2 and =z € N(v) N N(y). Hence, by
Corollary 1, there is a vertex z € N(z) N N(y) N N(v). Then P’ = zzy.
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Assuming w # wiy;, and wiy wi; ¢ E(G) for some g, 1 < ip <
n — 2, we obtain

n—1

2 ING) \ (N@) U N )] 2 e(W, W) +n (13)

i=1
because wy,y, € N(wiri) \ (N(v) U N(wf,,))), wi,, # wi and v €
N(wi) \ (N(v) U N(w})) for each i = 1,...,n — 1. But (11) and (13)
contradict (9). So, (12) is proved.

Case 1. wf # w;. Then, by (12), wywi € E(G). Since, by (6),
wy wy ¢ E(G) then wi 5 w3, Hence, by (12), wy wi € E(G).

Repetition of this argument shows that w} # wy,; and w;w} € E(G)
foreachi=2,...,n—1.

Consider the set Dy = N(v) N N(w;) N N(w}). Since d(v,w]) = 2 then,
by Corollary 1, [Dy] > 1. If uy € D; for some i, 2 < i < n— 1, then
the zy-path w;vw.-w‘l"ﬁw“ wi Puw, has the length £+ 1. Hence w; ¢ D for
each i = 2,...,n — 1. Since, by (7), D; C V(P) then D, = {wy,} because
w1 ¢ Dl.

By a similar reasoning we have for the set Dy = N(v)NN(w2)NN(w3): D,
C V(P), IDz| 2 1 and if n > 4, then wy ¢ D, foreachi =3,...,n—1.
Clearly, we ¢ Dz.

Subcase 1.1. w; € D,. It means v, wf,wi € N(w;)\ (N(v)UN(w})).
Since d(v,w}) = 2 then, using Lemma 1, we have

1=|N(@) N N(w) N N(w{)| 2 IN@)\ (N@)UN@})) -1>2

& contradiction.
Subcase 1.2. w; ¢ D;. Then D; = {wyn} and v,wf,wf € N(wy)\
(N(v) U N(wg)). Using Lemma 1 we have

1=|N(v) N N(w2) N N(wf)| 2 [N(wn) \ (N(v) U N(w3))| - 122,

a contradiction.
Case 2. v} = i+1 foreach i, 1 <i<t-1<n-1, but w} # Wiy,
Then, by (6) and (8), we have

D IN(@) N N(wy) N N(wy)| < e(Wy, Wa). (14)
j=2 :

If w;yw ¢ E(G) then

D INGup) \ (N@)UN (@)l 2 e(Wy, Wa) +n (15)
3=2
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because w; € N(w)\(N(®)UN(w;)), w§ # wi;, and v € N(w;)\(N(v)U
N(wy)) for each j =2,...,n. But (14) and (15) contradict (10).

Hence w; w] € E(G). But then the zy-path wy Pwy_yvwowy wit Pw,
has the length £+ 1, a contradiction.
So w} = wi;, foreachi=1,...,n—1. Clearly, the path

-
Rg = wlﬁ'w;vw;HPw,.

has the length £ for each i = 1,...,n — 1. Repeating the arguments above
with P; and w; instead of P and v we obtain w]w; € E(G) for each pair
i,7,1<i <n-1,1<j <n. Hence, by (7), IN(@)NN(w)NN(w])| = n-1
foreachi=1,...,n— 1. Since

v,wf,...,wl_; € N(z)\ (N(v) UN(]))
then, using Lemma 1, we obtain
n—1=|N@E)NNw)NN@)| 2 INE@)\(NEUN@))| -12n-1
It means that
N(@z)\(N@)UN(w!)) = {v,w],...,wi_}. (16)

Let us prove that the set Vo = V(G) \ (V(P) U {v}) is empty. Suppose
Vo # 0. Since G is connected then there exists a vertex z € Vp with
N(z)n(V(P)U {v}) # 0.

a) N(2)NV(P) # 0. Since there is not an zy-path of length € 41 then,
by Lemma 2, z is adjacent to z. By (16), z ¢ N(z)\ (N(v)UN(w{)).
Furthermore, zw; ¢ E(G) because there is not an zy-path of length

£+ 1. Hence, zv € E(G). But then the zy-path zzvws Pw, has the
length £+ 1, a contradiction.

b) N(z) NV(P) = 0 and 2v € E(G). Since d(x,z) = 2 then [N(z) N
N(z) N N(v)| > 1 and there exists a vertex 2) such that z; # v and
z1 € (N(z)NN(v)NN(2))\V(P). But then the zy-path zz1vwe Puw,
has the length £ + 1, a contradiction.

Therefore Vo =0, V(G) = V(P)U {v} and G = Kn V Kn. ]
Corollary 2. A connected graph G of order at least 3 is panconnected if

dg, (=)(w) + dg, () (v) 2 [M(2)| + 1
for each triple of vertices u,v,z with d(u,v) =2 and = € N(u) N N(v).
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Proof: Clearly, G # K, V Ky for n > 3. Using the same arguments as
in the proof of Corollary 1 it is possible to prove that |N (x)NnN@)| =23
for each pair of vertices u,v of G with d(u,v) = 2. It means that G is
3-connected. Therefore, by Theorem 7, G is panconnected. a

Theorem 8. For each Ore graph Ho and each integer t > 2 there exists
a panconnected graph G € By with diameter t such that Hy is an induced
subgraph of G.

Proof: Let Hp be an Ore graph of order p and let Hy,...,Ha-1 be p-
vertex complete graphs such that the sets V(Ho), V(Hy),...,V(Ha 1) are
mutually disjoint. Consider the graph G with V(G) = U5'V (H;) and
E(G) = U2 (E(H:) U {zy \ = € V(H),y € V(Hi+1))
U E(Ha—1) U {zy/z € V(Hz-1),y € V(Ho)}.

Clearly, Hy is an induced subgraph of G and G # K, VK, forn>3. It
is not difficult to check that G € Bo and G is 3-connected. Therefore, by
Theorem 7, G is panconnected. a

Now consider the set Bj.
Proposition 1. By C B;.
Proof: If G € By then G;(z) is an Ore graph for each z € V(G). Hence

Gi(z) is 2-connected. It means that the subgraph induced by the set N(x)
is connected. Therefore G is locally connected. a

The following observation was made by the author and N.K. Khachatrian.

Proposition 2. If G is a connected, locally connected and K s-free graph
then G € B;.

Proof: Let u,v € N(z) and uv ¢ E(G). Then each vertex from the set
N(z) \ {u,v} is adjacent to u or v because G is K, 3-free graph. It means
that
[N(z)\ (N(u)U N(v))| -2 =0 < [N(u) N N(v) N N(z)I.

Hence, by Lemma 1, dg, (z)(%) + day(z)(v) 2 [M(z)| - 1. So,G€ B1. D
Conjecture 1: Every graph G € B, is fully cycle extendible unless G =
Kno_1VK, forn>3.

Conjecture 1 is motivated by Propositions 1 and 2 and Theorems 1and5.

Denote by F, the graph obtained from the complete bipartite graph Ky n,
n > 3, by deleting a perfect matching. Let

M, = {G/F, C G C K, VK, for some n > 3}

and .
My = {Kn—l VKu,n2 3}.
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Conjecture 2: A graph G € B, is panconnected if and only if G is 3-
connected and G ¢ M; U M.

Conjecture 2 is motivated by Propositions 1 and 2 and Theorems 2 and 7.
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