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On The Existence of (v,4,1)-RPMD

Zhang Xuebin

Nanjing Architectural and Civil Engineering Institute
Nanjing, 210009, People’s Republic of China

ABSTRACT. It is well known that a necessary condition for the
existence of a (v,4,1)-RPMD is v = 0 or 1 (mod 4) and the
existence of (v,4,1)-RPMDs for v =1 (mod 4) has been com-
pletely settled.

In this paper, we shall introduce the concept of (v,k,1)-
nearly-RPMDs and use it to obtain some new construction
methods for (v, k,1)-RPMDs with v = 0 (mod k). As an ap-
plication, we shall show that a (v,4,1)-RPMD exists for all
integers v > 4 where v = 0 (mod 4), except for v = 4,8 and
with at most 49 possible exceptions of which the largest is 336.

It is also well known that a (v, k, 1)-RPMD exists for all suf-
ficiently large v with k > 3 and v = 1 (mod k), and a (v,k, 1)-
PMD exists with v(v — 1) = 0 (mod k) for the case when k is
an odd prime and v is sufficiently large. In this paper, we shall
show that there exists a (v, k, 1)-RPMD for all sufficiently large
v with v = 0 (mod k), and there exists a (v, k, A)-PMD for all
sufficiently large v with Av(v — 1) = 0 (mod k).

1 Introduction
A cyclic k-tuple (a,as,...ayx), is defined to be {(ai, ait+1),(@k,a1): 1 <
i < k—1}. The elements a;, a;4; are said to be t-apart in a cylic k-tuple
(a1,02,...,ax) where i+ t. is taken modulo k.

Let M = {n;: 1 < i < h} be a set of positive integers. A holey perfect
Mendelsohn design (briefly (v, k,1)-HPMD, or (v, k, 1)-GPMD), is a triple
(X, G, B) where

(1) X is a v-set (of points),

(2) G is a collection of non-empty subsets of X (called holes) with sizes
in M and partition X,
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(3) B is a collection of cyclic k-tuples of X (called blocks)
(4) no block meets a hole in more than one point, and

(5) every ordered pair of points not contained in a hole appears t-apart
in exactly one block.

The vector (ny,nz,.. ., nk) is called the type of HPMD. A (v, k,1)-HPMD
of type (1,1,...,1,n) is called an incomplete perfect Mendelsohn design,
denoted by (v, n, k, 1)-IPMD. A (v, k,1)-HPMD of type (1,1,...,1) is called
a (v,k,1)-PMD.

A subset of blocks in a design is called a partial parallel class if the subset
consists of pairwise disjoint. blocks.

Let (X, A) be a (v,k,1)-PMD and (Y,B) be a (n,k,1)-PMD. If X DO Y
and A D B we say that the first design contains the second as a subdesign.

Let A = (ay,a2,...,ax) € A be a cyclic k-tuple, B = (hy, bs,...,bx) € B
and C = (¢;,¢2,...,¢k) € C be two ordered k-tuples, we define

(A, B) = ((a1,b1), (a2, b2), . .., (ak, bx)) is a cyclic k — tuple.
(A,B)={(A,B): A€ A,B e B}

(A, B,C) = ((A,B),C)

(A,B,C)={{A,B,C): A€ A,BeB,C €C}

Suppose (b;;) is an n? x k orthogonal array based on an n-set, say Y, we
say that (A x Y, G, (A, B)) is a cyclic TDlk, 1;n] where B = {(b;1, bi2, . ...,
big):1<i < n}.

It is easy to show that the numher of blocks in a (v, k,1)-PMD is v(v —
1)/k, and hence an obvious necessary condition for its existence is »(v—1) =
0 (mod k). We next define the notion of resolvability of a (v,k,1)-PMD
where v =0 or 1 (mod k).

Definition 1.1: If the blocks of a (v, k,1)-PMD for which » =1 (mod k)
can be partitioned into v sets each containing (v — 1)/k blocks which
are pairwise disjoint (as sets), we say that the (v, k,1)-PMD is resolvable
(brieflly (v, k,1)-RPMD) and each set of (v — 1)/k pairwise disjoint blocks
will be called a parallel class.

A resolvahle PMD and parallel classes by Definition 1.1 are usually called
an almost resolvahle PMD and almost parallel classes. For convenience, we
use Definition 1.1 in this paper.

Definition 1.2: If the blocks of a (v, k, 1)-PMD for which v =0 (mod k)
can be partitioned into (v — 1) sets each containing v/k blocks which are
pairwise disjoint (as sets), we shall also say that the (v, k,1)-PMD is re-
solvahle (briefly (v, k, 1)-RPMD) and each set of v/k pairwise disjoint blocks
will be called a parallel class.



N.S. Mendelsohn introduced perfect cyclic designs which were called
Mendelsohn designs by Hsu and Keedwell (see [6] and [11]). The following
theorem was proved in [3,7).

Theorem 1.1. A (v,3,1)-RPMD exists if and only if v=0or 1 (mod 3),
v#6.

From Bennett, and Lamken, Mills,and Wilson (see [1,4,9]), we have

Theorem 1.2. A (v,4,1)-RPMD exists for v=1 (mod 4).

Following the original work of Mendelsohn, investigations into the exis-
tence of (v,4,1)-PMDs were carried out by Bennett, Zhu, and the author.
It is proved that a (v,4,1)-PMD exists for precisely all positive integers
v = 0 or 1 (mod 4) except v = 4 and 8, and possibly excepting v = 12
(see [1,5,14]). The only possible exception v = 12 was recently removed
according to Bennett.

Consequently, we have
Theorem 1.3. The necessary condition for the existence of a (v,4,1)-

PMD, namely, v(v— 1) = 0 (mod 4), is also sufficient except for v = 4 and
8.

The following results were proved by the author (see [15]).

Theorem 1.4. The necessary condition for the existence of a (v,4, \)-
RPMD where A\ > 1, namely, v = 0 or 1 (mod 4), is also sufficient with
the exception of pairs (v, A) where v = 4 and X odd.

We assume that the reader is familiar with the concept of group divisi-
ble design (GDD), a transversal design (T'D) and a resolvable transversal
design (RT D).

Let N(n) denote the maximum number of mutually orthogonal Latin
squares of order n. The following results are well known.

Lemma 1.5. The existence of an n? x k orthogonal array is equivalent to
Nr)>k-2.

Let B = {(bi1, bi2, ..., bi): 1 < i < n} where (b;;) is an orthogonal array
based on the set {1,2,...,n}. If B can pe partitioned into n parts: B;,
1 < j < n such that (4, B;) is a partition of A x Y, we say that (b;;) (or
B) is resolvable. In this case we can always let

B: ={(,%,...,i): 1<i<n}or
Bi={(Gi+1,i+2,...,i+k):0<i<n—-1}

Lemma 1.6. The existence of a resolvable n? x k orthogonal array is
equivalent to N(n) > k - 1.

Lemma 1.7. If n # 2,6, then N(n) > 2; If n # 2,3,6,10, then N(n) > 3.



In this paper, we shall introduce the concept of (v, k, 1)-nearly-RPMDs
and use it to obtain some new construction methods for (v, k,1)-RPMD
for v =0 (mod k). As an aplication, we shall show that a (v,4,1)-RPMD
exists for all integers v > 4 where v = 0 (mod 4), except for v = 4,8,
and with at most 49 possible exceptions of which the largest is 336. We
also show that there exists a (v, k, 1)-RPMD for all sufficiently large v with
v =0 (mod k), and there exists a (v, k, A)-PMD for all sufficiently large v
with Av(v — 1) =0 (mod k).

2 (v,k,1)-nearly-RPMD and construction methods
We first introduce the concept of (v, k, 1)-nearly-RPMD.

Definition 2.1: Let Y(C X) be n-set and (X,Y, AUB) be a (v,n,k, 1)-
IPMD, where v =0 (mod k) and n =1 (mod k). If A can be partitioned
into (v — n) parallel classes of X, and B can be partitioned into n partial
parallel classes of X\Y: B;, 1 < j < n. Wesay that (X, Y, AUB) is nearly
resolvable (briefly, (v, n, k, 1)-nearly—IRPMD) Let S; = {a: a € B € B;j},
C; = X\ (Y US;) and ¢; = |Cj| we say Cj is the complement of the partial
parallel class B; and the vector (cl,cg,...,c,,) is called the complement
type of the nearly-IRPMD. If ¢; < cj when i < j and (cn, — 1) < k we say
the type (¢;,¢2,...,6,) is standard.

It is easy to see the complements Cj, 1 < j < n partition X \Y.
Definition 2.2: Let (X, B) be a (v,k,1)-PMD where v = 0 (mod k). If
B can be partitioned into v partial parallel classes B}, 1 < j < n, we
say that (X,B) is a (v, k, 1)-nearly-RPMD. Let S} = {a: a € B € Bj},
Cj = X\ S} and ¢ = |Cj| we say Cj is the complement of the partlal

parallel class B; and the vector (c’,,-:’; .,c,) is called the complement
type of the nearly-RPMD.

It is easy to see the complements C7, 1 < j < v, partition X.
Remark 2.3: Let (X,Y, AUB) be a (v,n,k, 1)-nearly-IRPMD with the
complement type (c1, ¢z, ..., ck). If (Y,N) is an (n, k,1)-RPMD where n =
1 (mod k). Then (X,AUBUN) is a (v,k,1)-nearly-RPMD with the
complement type (c},c5,...,c,) where ¢, =¢; + 1.
Definition 2.4: If the blocks of (v, k,1)-HPMD based on X can be par-

titioned into some partitions of X, we say that it is resolvable (briefly,
(v,k,1)-HRPMD).
We now establish several constructions for (v,k,1)-RPMD for v = 0
(mod k) by using nearly-IRPMDs or nearly-RPMDs.
Lemma 2.1. Let I, = {1,2,...,u} and I, = {1,2,...,v}. Let E; bea
partition of I, x {i} for 1 < i < v, and F; is a partial parallel class of I,
with the complement C; for 1 < j < s. If the complements partition I,



then EUI, x F is the union of s partitions of I x I, where E = U1 <i<yE;
and F = UISjSaFj°

Proof: Let V; = {E: E € Ey,i € C;} it is easy to see that V;U I, x F;
is a partition of I, x I, and EU I, x F = U1<j<,(V; U Iy x F;). This
completes the proof.

Theorem 2.2. Let v,h = 0 (mod k). Suppose (I x I,,G,D) is an

(hv, k,1)-HRPMD of type v* with (h — 1)v parallel classes: D;, 1 < i <
(h — 1)v, suppose that

(1) D1 can be partitioned into v parts: E;j, 1 < j < v such that every
E; is a partition of I, x {j} for 1 <j < v;

(2) there exists a (v, k, 1)-nearly-RPMD of (I,, A).

Then there exists an (hv, k, 1)-RPMD.

Proof: Since the complements of a (v, k, 1)-nearly-RPMD, partition I,,, so
D; U, x A can be partitioned into v parallel classes of I, x I, by Lemma
2.1. Hence (I x I,,DU I, x A) is an (hv, k, 1)-RPMD.

Theorem 2.3. Let v,h =0 (mod k) and n =1 (mod k). Suppose that
(1) there exists an (hv, k,1)-HRPMD of type v*;

(2) there exists a (v,n, k,1)-nearly-IRPMD with the complement type
(c1,c2,---10n);

(3) there exist an (n, k,1)-RPMD.

Then there exists a (hv,n, k, 1)-nearly-IRPMD with the complement type
(f1, f2,..-, fn) where fi=h(ci+1)—1for1 <i<n.

Proof: Let D be the blocks of the HRPMD hased on I, x 1,,, (I, I,, AUB)
be a (v,n, k, 1)-nearly-IRPMD with the complement type (ci,c,...,cn)
where A is the union of some parallel classes, and B can be partitioned
into n partial parallel classes: Bj, 1 < 7 < n. Let (I,,N) be a (n,k,1)-
RPMD having n parallel classes: Nj, 1 < j < n. It is easy to see that
(In x I,,{h} x I,,DU I, x (AUB)U I,_; x N) is a (hv,n, k,1)-IPMD.
Since DU I;, x A can be partitioned into some parallel classes of I, x I,
and I x BU I;_; x N can be partitioned into n partial parallel classes:
InxBjUl,_1 xNj,1<j<n.
This completes the proof.

Theorem 2.4. Let u=0 (mod k) and p,n =1 (mod k). Suppose
(1) There exist a (p, k,1)-RPMD and an (n, k,1)-RPMD,



(2) There exists a (v,n,k,1)-nearly-IRPMD with the complement type
(61,02, soe )cn)’

(3) v =um such that N(u) 2 k-1, N(m) > k—1andn < m.

Then there exist a (pv,k,1)-RPMD and a (pv,n, k, 1)-nearly-IRPMD
with the complement type (fi, f2, ..., fa) Where fi =p(ci+1) — 1.

Proof: Let B(u) and B’(u) be two resolvable orthogonal array based on
I, with By (u) = {(%,1,...,1): 1 <i <u} and Bi(u) = {(1+4,244,...,k+
i): 0 £ i < u—1}. Let B(m) be a resolvable orthogonal array based on I,
with B1(m) = {(§,4,...,1): 1 <i < m}. Let (I, A) be a (p, k,1)-RPMD
having p parallel classes: Aj, 1 < j < p where each A; is a partition of
I\ {j}. Let (I, x I,, MUN) be a (v, k,1)-nearly-RPMD where M is the
union of (v — n) parallel classes: M;, 1 < j < (v—n) and N is the union
of n partial parallel classes: Nj, 1 <j <n.

Let D = (A\ Ap, B(u),B(m)) U (Ap, B'(v), B(m)), X = Ip x Iy X In,.
Since (A, B(u), B(m)) or (4,B’(u), B(m)) is a cyclic TD[k, 1;um] so it is
easy to see that (X, I, x MUN)UD) is a (pv, k,1)-PMD.

It is clear that (Aj, B,(u), B.(m)) U {5} x M; is a partition of X, so
(D\D)U I, x M is the union of p(v — n) partitions of X, where D’ =
Ui<e<n{A \ Ap,Bi(u), Bi(m)) U (A, Bi(u), Bi(m))}, which, we are to
show, can be partitioned into (p — 1)n partit.ions of X.

First we are to show that (A \ Ap, Bi(u)) U (Ap,Bi(u)) = (A\ Ap) x
I, U (A,, B (u)) can pe partitioned into (p — 1) partitions of I, x I,. Let
A€ A, B=(i+1,i4+2,...,i+ k) € Bj(u) we define (4, B) U {A; x
{s}: (4,s) € (A, B)}, a partition of I, x B, is a small part, denoted by
E(A, B). Since (Ap,B}(u)) is a partition of I,_; x I, it is not difficult to
see that (A \ Ap) x I, U (A, B (u)) is the union of u(p — 1)/k small parts:
E(A,B), A € A,, B € Bi(u). Since B{(u) is the union of k partitions of
I,: Py = {(3+1,i4+2,...,i+k)+s: i = 0,k, 2k, ..., u—k},0< s < k—1, 50
these small parts can be partitioned into (p—1) partitions of I, x I,. Hence
UaeA,,0<s<k-1,1<t<n (E(A, Ps), Bi(m)) is the union of (p — 1)n partitions
of X. We take one partition of X from them, say, (E(A, Po),B1(m)) =
E(A,Pg) x I,. Since the complements C; of Nj, 1 < j < n, partition
I, x I, and C; = 0 (mod k), so we can partition E(A,Po) x I, (may be
viewed as um/k small parts) into n parts F;, 1 < j < n, such that each F;
contains ¢;/k small parts. There is no loss of generality by assuming that
I, x N;j UF; is a partition of X for 1 < j < n. Therefore we have proved
that the (pv, k,1)-PMD is also resolvable.

Let (Y,H) be an (n,k,1)-RPMD having n parallel classes H;, where
H; c {p} x N;, 1 < j < n. Since I, x MU {(A\ A, B(u),B(m))} U
(Ap,B’(u), B(m)) is the union of (pu—n) partitions of X, and (I,xN)\H =



Uigj<n{lp x N; \ H;} is the union of n partial parallel classes of X. Hence
there is a (pv, n, k, 1)-nearly-IRPMD. Now we have completed the proof.

Theorem 2.5. Let v =0, n,p =1 (mod k). suppose that
(1) There exists a (v, k, 1)-RPMD;
(2) There exists a (v, n, k, 1)-nearly-IRPMD;
(3) There exists a (p, k, 1)-RPMD;
(49) No-n)2k-1.
Then there exists a ((v — n)p + n, k,1)-RPMD.

Proof: Let (Ip,A) be a (p,k,1)-RPMD having p parallel classes: Aj,
1 < 5 < p where A; is a partition of I, \ {j} for 1 < j <p. LetY =
{o001,003,...,00,}, {i} X {00;} = {o0;} for 1 <i<p, 1 <j<n ({p} x
I, VY, D) be a (v,k,1)-RPMD, and (I,_,UY,Y,MUN) be a (v,n,k, 1)-
nearly-IRPMD where M can be partitioned into (v — n) parallel classes
of I,_, UY and N can be partitioned into n partial parallel classes of
I,—n. Let B be a resolvable orthogonal array based on I,_, with B; =
{G,)i,...,i):1<i< (v—n)}.

Since (Ap,B1) U,y x N= A, x I,_,UI,_; x N can be partitioned
into n parallel classes of I,_; x I,_, by Lemma 2.1, so it is easy to see that
(A,B)UDU I,y x (MUN) = {({(Ap,B1) UL,y x N)U((A,,B\By)) U
D} uU{Ui<j<p-1({Aj, B)U {5} x M)} can be partitioned into (v —1)+ (p -
1)(v —n) = p(v — n) +n — 1 parallel classes of I, x I,_, UY. Hence there
exists a (p(v — n) + n, k, 1)-RPMD.

Theorem 2.6. Let v= 0, n,p=1 (mod k). suppose that.
(1) There exists a (v,n, k, 1)-nearly-IRPMD with the complement type
(01,02, e )cn);
(2) There exists a (p, k,1)-RPMD;
(3) Nv-n)>k-1.
Then there exists a ((v — n)p + n, n, k, 1)-nearly-IRPMD with the comple-
ment type (PCI,PCm X spcn)

Proof: We adopt the notation of the proof in Theorem 2.5. Since (A, B) U
I, x M can be partitioned into some parallel classes and I, x N can be
partitioned into n partial parallel classes.

Therefore (I, x I,_nUY,Y, (A, B)UI, x (MUN) is a ((v—n)p+n,n, k, 1)-
nearly-IRPMD.

Theorem 2.7. Let v =0 (mod k), p=1 (mod k). Suppose that



(1) There exists a (v, k, 1)-nearly-RPMD;
(2) There exists a (p, k,1)-RPMD;
(3 Nw-1)2k-1.

Then there exists a (p(v — 1) + 1, k, 1)-nearly-RPMD.

Proof: We adopt the notation of the proof in Theorem 2.5.

Let (I, U {00}, N) be a (v, k,1)-nearly-RPMD where N can be parti-
tioned into v partial parallel classes : Nj, 1 < j < v. It is easy to see that
(A,B)UI, x N = {Urcigpigico—1((AuBy) U {5} x Np)} U (I, x N, is
the union of p(v — 1) + 1 partial parallel classes of Ip x I,_; U {oo}. This
completes the proof.

8 Recursive construction for (v,4,1)-RPMDs with v =0 (mod 4)

We establish construction for (v,4,1)-RPMDs with v = 0 (mod 4) by using
nearly-IRPMDs or nearly-RPMDs.
Let

H¢={h,‘ji 1 SJS5} forn—-m+1<i<n,
Pi={pj:1<j<b}forn-t+1<i<m,
Gj={j}xI,for1<j<15,
Gis = {16} X In_¢ U (Un-t+1<i<nPi),
Gi7 = {17} X In—m U (Un—m+1<i<n Hi),
G ={Gi:1<ig17}, X =U1<i<17G;,
G ={nn+4t,n+4m}
K ={517},B(z)={B:c€ BeEe B}, v =1Tn+4m + 4t
Qi=hex{i}for1<i<n-1t,
j=115>< {j}UPj forn—t+1<j<n

In this section, the following figure is very helpful to readers.

Ql Q2 ------ Qn—l Qn
G S *oo* oL * *
Gy * *....... * % oL * *
G3 * ok *oox * L. * *
Gz * *o........ * % * * *
Gie X * — _ —
G X e, *e— — e —_—



Lemma 3.1. If N(n) > 15 then there exists a GDD[K,G,v] of (X,G,B)
satisfying the following condition: (B) For z € H,, B(z) can be partitioned
into n parts: B(z);, 1 < i < n such that Ugep(z),(B \ {z}) = Q: for
1<i<n.

Proof: Since N(n) > 15 we can let (I17 x In, {{i} x In: i € Ii7},D)
be a TD[17,1;n] and there is no loss of generality by assuming that (A)
{(17,n)}Ul16x {1} € D for 1 < i < n. Select (m~+t) points: (17,n), (17,n—
1),...,(17,n—m+1), (16,n), (16,n—1),...,(16,n~t+1). AGDD[K, G,v]
is constructed as follows : First replace (17, 1) with H; and (16,4) with P;.
For any block which formerly contained one point which is now replaced
form new blocks from a GDD[{5}, {1, 5}, 21] which has as groups the set
of new points and singleton sets for all old points still in the block. For
any block of the T'D[17,1;n] which formerly contained two points which
are now replaced new blocks are constructed from a [GDD[{5}, {1,5},25]
which has as groups the two sets of new points and singleton sets for all old
points still in the block. It is easy to see that the GDDIK, G, v] satisfies
the condition (B) from the condition (A).

Since there exist a (5,4,1)-RPMD and a (17,4,1)-RPMD, we can let
(B,A(B)) be an (k,4,1)-RPMD for B € B, provided |B| = h, which has
h parallel classes: A(B)., z € B where A(B), is a partition of B\ {z}. It
is easy to see that P> = Upep(z)A(B): is a partition of X \ G, provided
z € Gy, for1 <1< 17 and (X,G,A) is a (v,4,1)-HPMD where A =
UpeBA(B) = UzexP.. Moreover from the condition (B) it satisfies the
following condition: (C) For z € H,, P can be partitioned into n parts:
P, 1 <i < nsuch that Pt is a partition of Q; for 1 <i < n.

Let Y = {001,002,...,00w}, w =1 (mod 4), n = 3 (mod k). Suppose
that

(1) (G1zUY,D)is an (n+4m + w,4,1)-RPMD,

(2) (G1sVY,Y,MUN) is an (n+4t +w, w, 4, 1)-nearly-IRPMD with the
complement type (c;, ¢z, ---,Cw),

(3) (InVY,Y,KUE) is an (n + w, w, 4, 1)-nearly-IRPMD with the com-
p]ement t‘ype (fl:f2: oo ,fn)’

(4) fizt;20for1 <i<wwheret; = (¢ — f;)/4.

We are to prove that (X UY,AUDUMUNU (I1;5 x (KUE))) is a
(v + w, 4,1)-RPMD where {3} x {c0;} = {o0;}.

Since the union of P, and a parallel class of G; UY, provided z € G;, is
a parallel class of X UY, so we only need to show that P, UNU ;5 x E
can be partitioned into w partitions of X \ G17 where z = hy;.
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Since the complements N; of Nj, 1 < j < w, partition G1¢ and the
complements E; of E;, 1 < j < w, partition I, and f; > ¢; > 0, for
1 < i < w, so there is no loss of generality by assuming that

Ny = {{16} b4 {]}' 1<5< (f1 —t)}U{P_.,-:n-t+l <jJ Sn—t+t1}

Ne={{16}x {5}: Y (fa—ta)+1<5< Y (fo—ta)}

1<a<i-1 1<s<i
U{Pjin—t+ Y t,+1<j<n—t+ Y t}for2<i<w
1<a<i-1 1<a<i

Eyx={j:1<ji<fi-t}U{jin—t+1<j<n—t+t}
E={j:1+ Z (fo—t)<i< Z(fa—t,)}

1<s<i—1 1<s<i
U{jin—t+ > t+1<j<n—t+ Y t}for2<i<w.
1<s<i—1 1<s<i

It is easy to see that N; U I)5 x E; is a partition of Uiey, \ g;Qi. Therefore
P.UNUI;5 x E can be partitioned into w partitions of X\ G17 for z = hy;,
from the condition (C). That is

Theorem 3.2. Suppose that
(1) N(n) 215,n=3 (mod 4), w=1 (mod 4);
(2) There exists an (n + 4m + w, 4, 1)-RPMD;

(3) There exists an (n + 4t + w, w, 4, 1)-nearly-IRPMD with the comple-
ment type (c1,c2,...,Cy)

(4) There exists an (n + w,w, 4, 1)-nearly-IRPMD with the complement
tYPe (fl)f2: see Iflll);

(5) fizti20fort;=(ci— fi)/4and 1 <i<w.

Then there exists (v + w,4,1)-RPMD.

12



Let

V={vn;:1<j<5},

G;=Gjfor1<j<17andj#15

Gis ={(15,5): 2<j <n}uV

G' ={Gj:1<i<17}

X' =Uici<17Gi,

G' ={n,n+4,n+4t,n+4m}

Q, = Lis x {1}UV,

Qi=Qifor2gi<n
B'(z)={B:z€ BeB'}

Lemma 3.3. If N(n) > 15 and m+t < n then there exists a GDD[K, G’, v+
4] of (X', G',B’) satisfying the following cnndition (B’).

For z € H,, B'(z) can be partitioned into n parts: B'(z);, 1 <i<n
such that UgeB!(z); B \{z}=Q; for1 <i<n.

Proof: Since N(n) > 15, let D be blocks of a TD[17, 1;n] based on I 7x I,.
Let U= {(17,5):n—m+1<j<n}U{16,j):n—t+1 < j < n}and
D(z) = {D: z € D € D}. Since m + t < n so there is no loss of generality
by assuming that (A’) {(17,n)}Ul}¢x{i} € Dfor1 <i < nand |[DNU| <1
for D € D((15, 1)).

Select (m+-t+1) points: (17,n),(17,n-1),...,(17,n—m+1), (16,n), (1p,
n—1),...,(16,n—¢t+1),(15,1). The construction of a GDD[K,G’,v +4]
satisfying the condition (B’) is similar to that of a GDD[K, G, v] in Lemma
3.1.

Theorem 3.4. Suppose that
(1) N(n) >15,n=3 (mod 4), w=1 (mod 4), m +¢t < n;
(2) There exists an (n +4m + w, 4, 1)-RPMD;

(3) There exists an (n + 4t + w, w, 4, 1)-nearly-IRPMD with the comple-
ment type (ci,ca, ..., Cw);

(4) There exists an (n + 4 + w, w,4, 1)-nearly-IRPMD with the comple-
ment type (g1, 92, .-, Juw);

(5) There exists an (n + w,w, 4, 1)-nearly-IRPMD with the complement
type (fl) f?: e -,fw);

6) (1>04209—-fi=4, /i >2t; 20,9 = f; for 2 <i<w, where
ti=(ci— fi)/4, for 1 <i<w.
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Then there exists a (v + 4 +w,4,1)-RPMD where v = 17n + 4m + 4t.

Proof: The proof is similar to that of Theorem 3.2.

It is easy to see that the existence of a (4u,4,1)-RPMD is equivalent
to that of a (4x, 1,4,1)-nearly-RPMD with the complement type (4u —1).
From Theorem 3.2 we have

Theorem 38.5. Suppose that
(1) N(n) 215,n=3 (mod 4),0<m, t <n;

(2) There exists a (4u,4,1)-RPMD for du =n+4m+1, n+4t +1 and
n+ 1.

Then there exists a (v + 1,4,1)-RPMD, where v = 17Tn +4m + 4t.

4 (v,4,1)-RPMD for v =0 (mod 4)

Lemma 4.1. There exists a (v, n, k, 1)-nearly-IRPMD with standard com-
plement type for (v,n) € T from Appendix in Section 6 of this paper,
where

T = {(20,5), (24,5), (28, 5), (32, 5), (36, 5), (36, 9), (40,9),
(44,9), (52, 13), (56, 13), (60, 13), (68, 17), (132, 33)}

The following result is due to Baker and Wilson (8].

Lemma 4.2. There exist a (40,4,1)-RPMD and a (40,5, 4, 1)-nearly-
IRPMD with standard complement type.

Proof: Let X = (Z7U {oo}) x Z5 Y = Z7 U {c0},

B; = {((c0,0),(1,2),(2,1),(4,2)),((0,0), (3,1),(6,0), (5,0))}
B = {((00’0): (2:3)v (41 0): (lv4)s ((010)1 (6’ 2)» (5$ 3)’ (314))}
B3 = {((c0,0), (4,1),(1,3),(2,3), ((0,0), (5,3), (3,2), (6,4))}
By = {((OO, 0),(1,4),(2,2), (4,0), ((0,0), (3,0), (6r 3),(5,1))}
Bs = {((00, 0)7 (6) 0)’ (5v 4)! (3s l)s ((0: 0): (41 0), (11 3)1 (2: 0))}

Let (Zs, A) be a (5,4,1)-RPMD and B = U <;<5B;. It is readily checked
that (X, (devB)UY x A) is a (40,4, 1)-PMD, and it is easy to see that B; can
be partitioned into 7 parallel classes of X for 1 < i < 5. Taking one parallel
class of them together with Y x A it is not difficult to see that the union
can be partitioned into 5 parallel classes. Therefore the (40,4,1)-PMD is
resolvable.
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Since {z} x A can be partitioned into 5 parallel classes of {z} x Z5: {z} x
A;, 1 < i< 5 where {z} x A; is a partition of {z} x Z5\ (z,7) for 1 <i < 5.
So Z7 x A be partitioned into 5 partial parallel classes: Z7; x A;, 1 <i < 5.
Hence (X, {00} % Z5, (Z7 x A)UdevB) is a (40, 5,4, 1)-nearly-IRPMD with
standard complement type.

Lemma 4.3. There exist a (v,4,1)-RPMD for v = 60 and 72, and
a (v,n,4,1)-nearly-IRPMD with standard complement type for (v,n) =
(60,5) and (72, 9).

Proof: The proof is similar to that of Lemma 4.2. We only need to present
a collection of base blocks for each of the two cases:

For (v,n) = (60,5), X = (Z1; U {o0}) x Zs.

B, = {((00, 0)! (0, l)a (3’ 1)) (—lr 1))’ ((1: 0),(5,2), (_21 3),(4,1))
((2’ 0): (-4’ 3)! (_5:4): (-3! 1))}

B2 = {((c0,0),(0,2),(1,2),(-4,2)),((4,0),(-2,2),(3,3), (5,1))
((—3’ 0)! (_5» 3): (2a4): (_l: l))}

B3 = {((°°7 0)" (01 3)’ (4v 3), (-5’ 3)): ((51 0)$ (3: 2)1 (1' 3)’ (—2$ 1))
((—1,0), (2v3)v (—3v4)v (—4$ 1))}

B4 = {((c0,0),(0,4),(5,4),(2,4)), ((-2,0),(1,2),(4,3),(3,1))
((—4'0), ("‘3, 3)1 (—1s4)i (_5' 1))}

Bs = {((ooi 0)1 (Ov 0)» (-2’ 0)’ (—3’ 0))’ ((3: 0): (4' 2): (5’ 3)) (11 1))
((_5v0): (_la 3)1 (_4’4): (Zt 1))}

For (v,n) = (72,9), X = (Z; U {o0}) x Z,.

B) = {((c0,0), (0,0), (6,3), (2,0)), ((4,0), (5,8),(1,8), (3,3))}
B; = {((oo, 0), (0, 3),(5,6), (4,3)), ((lv 0), (3: 8)’ (21 8)’ (6’ 3))}
B3 = {((00, 0), (0, 6),(3,0), (1’ 6))r ((2, 0)(6, 8), (4,8), (5, 3))}

B4 = {((00,0), (0,1),(1,2),(6,7)), ((2,0),(4,0),(5,7),(3,5))}
Bs = {((0,0), (0,4),(2,5),(5,1)),((4,0), (1,0),(3,7),(6,5))}
Bs = {((OO, 0): (0’ 7, (41 8), (3v 4)): ((1' 0)' (21 0),(6,7), (51 5))}
Bz = {((00,0),(0,2),(1,4), (6,5)), ((4,0), (5,3),(3,2),(2,4))}
Bg = {((c0,0), (0,5),(2,7),(5,8)),((1,0), (3,3),(6,2), (4, 4))}
By = {((0010)’ (0, 8)1 (4: 1)7 (3' 2)): ((2’0)! (6: 3): (5» 2)! (1a4))}

Lemma 4.4. There is a (16,4,1)-HRPMD of type 4* (see Lemma 3.16 in
{15].
Lemma 4.5. There is a (32,4, 1)-HRPMD of type 48.
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Proof: Let X; = {[5,5]: 1 <j <4} for 1 <i<8and X =U<icsX:.
Let

E, =(2,2,4,4), E; =(1,1,3,3), E3=(1,3,2,4), E4 = (3,1,4,2)
Es=(1,1,4,4), Eg=(2,2,3,3,), Ez=(1,2,1,2), Es = (3,4,3,4)
A; ={(5,1,3,2),(2,3,1,5),(7,4,6,8), (8,6,4,7)

(6,1,4, .3),(3,4,1,6),(7,2,8,5),(5,8,2,7)

(7,1,5,4),(4,5,1,7),(6,2,3,8),(8,3,2,6)

(8,1,6,5), (5,6,1,8), (4,2,7,3),(3,7,2,4)

(2,1,7,6),(6,7,1,2), (5,3,8,4), (4,8,3,5)

(3,1,8,7),(7,8,1,3), (5,2,4,6), (6,4,2,5)

(4,1,2,8),(8,2,1,4),(6,3,5,7),(7,5,3,6)}
Az = {(b,a,d,c): (a,b,c.,d) € A1} Az = {(b,c.,a,d): (a,b,c,d) € A}
Ay ={(d,a,c,b): (a,b,c,d) € A1} As ={(a,b,d,c): (a,b,c,d) € A}
Ag = {(b,a,c,d): (a,b,c,d) € Al} A;=Ag= A3

Let B; = (E;, A;) for 1 <i < 8. It is readily checked that (X,G,B) is a
(32,4,1)-HRPMD where B = U;<i<sB; and B; UB;4; can be partitioned
into 7 parallel classes of X for i =1,3,5,7.

Lemma 4.6. There exists a (24,4, 1)-HRPMD of type 35.

Proof: The proof is similar to that of Lemma 4.2. We only need to present
a collection of base blocks. Let X = (Z7U {o0}) x Z3

B; = {((0,0),(0,0),(1,2),(4,0)),((2,0),(3,1),(6,1),(5,0))}
B = {((00, 0)’ (0! 1), (2: 0)1 (la l))» ((4’ 0)1 (6a l)a (5) 1): (3: 0))}
B3 = {((c0,0),(0,2),(4,1),(2,2)), ((1,0),(5,1),(3,1),(6,0))}

Lemma 4.7. There exists a (45,4, 1)-HRPMD of type m* for (s,m,t) =
(4,4,1),(8,4,2),(6,3,2) satisfying the condition (1) in Theorem 2.2

Proof: For (s,m,t.) = (4,4,1), from Lemma 4.4 there is no loss of general-
ity by assuming that there exists a (16,4, 1)-HRPMD of type 44 satisfying
the condition (1). For (s,m,t.) = (8,4,2). We adopt the notation of the
proof in Lemma 4.5. Let

All = {(5) 1)3) 2)) (2v 31 lv 5)) (7:476) 8), (S’Gv 4: 7)} C Al-
Ay = {(b,a,d,c): (a,b,c,d) € A1}

Since U;=1,2(Ei, Ai1) is a parallel class of X and can be partitioned into a
parallel class of X5U(U;=1,2,3X;) and a parallel class of XU (U;-¢,7,8 X:), so
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we can say there is a (32,4, 1)-HRPMD of type 48 satisfying the condition
(1) of Theorem 2.2 from Lemma 4.5. For (s, m,t.) = (6, 3,2), it is easy to
see that there exists a (24,4, 1)-HRPMD of type 3® satisfying the condition
(1) from Lemma 4.6.

Lemma 4.8. There exists a (4us, 4, 1)-HRPMD of type mu** for (s,m,t.) =
(4,4,1),(8,4,2),(6,3,2) satisfying the condition (1) in Theorem 2.2 where
N(u) > 3.

Proof: The proof is similar to that of Lemma 2.13 in [15] by using Lemma
4.7.

Theorem 4.9. There exists a (4¢,4,1)-RPMD for t = 42, 66 and 186.

Proof: applying Lemma 4.8 with u = 7, 11, 31 we can obtain a construction
of a (4¢,4,1)-RPMD for ¢t = 42, 66, 186 which is similar to that of Lemma
4.2,

Theorem 4.10. There exists a (4t,4,1)-RPMD for t € {20,28, 32, 36, 44,
48,52, 56, 60, 64, 68,132}.

Proof: From Theorem 1.2 and Lemma 4.1 we have that there is a (4t.,4, 1)-
nearly-RPMD for ¢ € {5,6,7,8,9,10,11,13,14,15,17,33}. Apply Theo-
rem 2.2 with h = 4, v = 4u to obtain a (4 - 4u,4,1)-RPMD for u =
5,7,8,9,11,13,14, 15,17 and 33 where the required (16u,4,1)-HRPMD of
type 4u? comes from Lemma 4.8. Apply Theorem 2.2 with h = 8, v = 24, 32
to obtain a (4t, 4, 1)-RPMD for ¢ = 48, 64 where the required HRMDs come
from Lemma 4.8.

Theorem 4.11. There exists a (4t,4,1)-RPMD for t = 25,35,40,45,50,55,
63,65,70,72,75,81,85,147,168,169,170,175,182, 185,195,203,231,261.

Proof: From Theorem 1.2 and Lemma 4.1 and 4.2 we have that there is
(4ti n’4v 1)'neaﬂY'RPMD for (tr n') = (5) 5)) (7! 5)1 (8: 5)1 (9) 5)! (10: 5)) (111 9))
(13,13), (14, 13),(15,13),(17,17). Apply Theorem 2.4 to obtain a (4mp,
4,1)-RPMD for (m, p) = (5,5),(7,5),(8,5),(5,9),(11,5) (7,9),(5,13),(14,5),(8,9),
(15,5),(9,9),(5,17),(7,21),(8,21), (13,13),(7,25),(14,13),(5,37),(15,13),(7,29),
(7,33),(9,29) and a (8mp, 4,1)-RPMD for (m,p) = (5,5) and (5,17).

Lemma 4.12. There is a (v,n,4,1)-nearly-IRPMD with the complement
type (ci,¢2,...,cq) where (v,n) and (¢, ¢a,...,cq) are shown in Table A

Proof: For (v,n) = (4 - 20,5),(4 - 28,5), (4 - 32,5), (4 - 36,9), (4 - 44,9),
(4-52,13), (4-56, 13), (4-60, 13), we apply Theorem 2.3 to obtain a (v, n,4, 1)-
nearly-IRPMD where the required nearly-IRPMDs come from Lemma 4.1.
For (v,n) = (4-30,5),(4-41,9),(4 - 46,9), (4 - 57,13), since
4.30=5-23+5, 4-41=5-31+9,
4.46 =5-35+9, 4.57=5.43+13
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we apply Theorem 2.6 to obtain a (v,n,4, 1)-nearly-IRPMD where the re-
quired nearly-IRPMDs come from Lemma 4.1.

(v:n) (clvc2|'-'acn)

(4-20,5)  (15,15,15,15,15)

(4- 28,5)  (15,15,15,31,31)
(4-30,5)  (15,15,15,35,35)
(a-32,5)  (15,15,31,31,31)
(4-36,9)  (15,15,... ,15)
(4-41,9) (15,15,... ,15,35)
(4- 44,9)  (15,15,... ,15,31,31)
(4- 46,9)  (15,15,... ,15,35,35)
(4- 52,13) (15,15,... ,15)

(4- 56,13)  (15,15,... ,15,31)
(4-57,13) (15,15,... ,15,35)
(4- 60,13) (15,15,... ,15,31,31)

Table A

Theorem 4.13. There exists (4t.,4,1)-RPMD for ¢t = 41,49, 62,74, 80,
171,172,174,176, 178,179, 180,184, 196, 211, 241, 244, 270.

Proof: Apply Theorem 2.2 with h = 4, v = 80,172, 176,184 to obtain a
(4t,4,1)-RPMD for ¢t = 80,172,176, 184. Here the required (v, 4, 1)-nearly-
RPMD for v = 80,176,184 comes from Lemma 4.12 and Theorem 1.2
and the required (172,4, 1)-nearly-RPMD comes from Theorem 2.7 since
172=9-19+ 1 and there is a (20, 4, 1)-nearly-RPMD. Since

4.41 =5-31 + 9, 4. 49 = 5. 39 +1, 4.62 =5-47+ 13
4.74 =6-59 + 1, 4.171=5-135+9, 4-174 =5 139 +1
4.178=9-79+1, 4-179=5-143+1, 4.-180=13-5545
4196 =25-314+9, 4211=5-167+9, 4.244=25-39+1

we can apply Theorem 2.5 to obtain a (4¢,4,1)-RPMD for ¢ = 41,71, 180,
196,211 and apply Theorem 2.6 with n = 1 to obtain a (4t,4,1)-RPMD
for t = 49, 74,174,178, 179, 244 since the existence of a (4u,4,1)-RPMD is
equivalent to that of a (4z, 1,4, 1)-nearly-RPMD, and apply Theorem 2.4
with p = 9, u = 4 and m = 30 to obtain a (4 - 270,4,1)-RPMD. Here the
required nearly-IRPMDs come from Lemma 4.1, 4.2 and 4.12 and RPMDs
come from Theorem 1.2 and Lemma 4.2 and 4.3 and Theorem 4.10 and
4.11

Apply Theorem 2.5 with p =5, v = 200, n = 9 to obtain a (4-241,4,1)-
RPMD where the required (4 - 50,4, 1)-RPMD comes from Theorem 4.11
and the required (4 - 50,9, 4, 1)-nearly-IRPMD is from Theorem 2.4.
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Summarizing the ahove results, we have

Theorem 4.14. There exists a (4t,4,1)-RPMD for t = 10, 15, 18, 20, 25,
28, 32, 35, 36, 40, 41, 42, 44, 45, 48, 49, 50, 52, 55, 56, 60, 62, 63, 64, 65,
66, 68, 70, 72, 74, 75, 80, 81, 85, 132, 147, 168, 169, 170, 171, 172, 174, 175,
176, 178, 179, 180, 182, 184, 185, 186, 195, 196, 203, 211, 231, 241, 244,
261, 270.

Theorem 4.15. There exists a (4u,4,1)-RPMD for 86 < u < 266.

Proof: Apply Theorem 3.2 with n = 19, w =5, ¢ = 0,1,2,3,4, m =
4,9,12, 14, 19 to obtain a (17n+4m+4t+w, 4,1)-RPMD, that is, 4(82+m+
t) € RPMD for t =0,1,2,3,4, m = 4,9,12,14,19. So we have {4u: 86 <
u < 105} ¢ RPMD. Here the required conditions come from Lemma 4.1
and 4.2 and Theorem 4.14.

Apply Theorem 3.2 withn =23, w =5,t=0,1,2,3, m = 3,8,11,13,18,21,
to obtain a (4(99 + m+t),4,1)-RPMD, that is, {4u: 107 <u < 115,117 <
u < 123} ¢ RPMD.

Apply Theorem 3.4 with n = 23, w = 5, t = 3, m = 3,13 to obtain
(4u,4,1)-RPMD for » = 106 and 116.

Apply Theorem 3.2 withn =27, w=5,¢t=0,1,2, m = 7,10, 12,17, 20, 24,
27 to obtain that {4u: 124 < u < 130,133 < u < 138,140 < u < 145} C
RPMD.

Apply Theorem 3.4 with n =27, w = 5, t = 2, m = 12, 20 to obtain 4u €
RPMD for z = 131 and 139.

Apply Theorem 3.2 with n =27, w =p, t =2, m = 27 to obtain 4-146 €
RPMD.

Apply Theorem 3.2 withn = 31, w =9, t = 0,1, m = 15, 18, 22, 25, 26, 30,
31 to obtain that {4u: 149, 150, 152, 153,156, 157, 159, 160, 161, 164, 165, 166}
C RPMD.

Apply Theorem 3.2 with n = 27, w = 5, ¢t = 12,20,24, m = 20,27
to obtain that 4u € RPMD for = = 148,155, 163,167 where the reqired
(32 + 4¢,5,4, 1)-nearly-IRPMD for ¢ = 12,20, 24 comes from Lemma 4.12.

Takingn =31, w=9,¢t =1, m =15, 18,22,26 we have that 4u € RPMD
for u = 151, 154, 158, 162 by Theorem 3.4.

Takingn =43, w=13,t=0,1,38,42,43, m = 1,4, 6,11, 14, 18, 21, 22, 26,
27,28, 30, 31, 34, 35, 36, 38,41, 42 we have that {4u: 187 < u < 266}\{4u: u

= 195, 196,203, 211,231, 236 237,241, 244, 248,253,261} C RPMD by us-
ing Theorem 4.9 and Theorem 4.11.

Apply Theorem 3.2 with n = 31, w = 9, t = 8, m = 31 to obtain a
(4 - 173,4,1)-RPMD where the required (72,9, 4, 1)-nearly-IRPMD comes
from Lemma 4.3.
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Apply Theorem 3.2 with n = 31, w = 5, ¢t = 21, m = 23 and 27 to obtain
4u € RPMD for u = 177 and 181.

Apply Theorem 3.2 with n = 31, w = 9, ¢t = 31, m = 18 to obtain
4 -183 € RPMD where (4-41,9,4, 1)-nearly-IRPMD is from Lemma 4.12

Taking n = 47, w = 13, t = 0,37,45, m = 0,13, 33,34 we have 4u €
RPMD for u = 236,237, 248, 253 by Theorem 3.2.

Combining the above results and Theorem 4.14, we have {86 < u <
266} ¢ RPMD.

Theorem 4.16. There exists a (4u,4,1)-RPMD for u > 266.

Proof: Takingn = 59, m, ¢ € A = {0, 3,5,10, 13,17, 20, 21,25, 26, 27, 29, 30,
33, 34,35, 37, 40,41, 45,47, 48, 49, 50, 51, 53, 55, 57, 59} we have {4u: 266 <
u < 361} \ {270} ¢ RPMD by applying Theorem 3.5.

Taking n = 79, m,t € A = {0,5, 8, 12, 15, 16, 20, 21, 22, 24, 25, 28, 29, 30,
32, 35, 36,40, 42, 43, 44, 45,46, 48, 50, 52, 54, 55, 60, 61, 65, 66, . .., 78,79} we
have {4u: 361 < u < 494} C RPMD by using Theorem 3.5

Takingn =107, w=5,t =0,me A = {4,7,8,12,13, 14, 16,17, 20, 21, 22,
24,27,28, 32, 34, 35, 36, 37, 38, 40, 42, 44, 46, 47, 52, 53, 57, 58, .. ., 106,107} we
have {4u: 494 < u < 563} C RPMD by Theorem 3.2 where the required
(4-28,5,4,1)-nearly-IRPMD comes from Lemma 4.12.

Taking n = 127, t,m € {0, 3,4,8,9, 10,12, 13, 16,17, 18, 20, 23, 24, 28, 30,
31, 32, 33, 34, 36, 38,40,42,43, 48,49, 53, 54, .. ., 126,127} we have {4u: 563 <
u <794} C RPMD bv applying Theorem 3.5.

Taking n = 163, 199, 239, 347, 383, 503, 719, 1019, 1427, 1831 we have
{4u: 794 < u < 11444} C RPMD.

Similarly taking n = 3°, 3°~3.31, 3°~4.113, 3°~3.47, 3°=3.59, 3°-3.79,
35-3.87,3°-3.127, 321 .19, 35-1.23, 3*+2 for s = 7,9,11,... we have
{4u: u > 11444} C RPMD.

Since 270 € RPMD from Theorem 4.14, so we have {4u: u > 266} C
RPMD.

From Theorem 1.3, summarizing the ahove results we have

43 44 45 46 47 48 49 411 4.12 413
414 416 417 419 421 4.22 423 424 426 4.27
429 4.30 4-31 433 4.34 4.37 4.38 439 443 446
447 4.51 4-53 454 4.57 4.58 4.59 4.61 467 4.69
4.71 473 476 477 478 479 4.82 4.83 4.84.

Table B
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Theorem 4.17. A (v,4,1)-RPMD exists for all integers v > 4 where
v =0 (mod 4), except for v = 4,8, and with 49 possible exceptions shown
in Table B.

5 Asymptotic results about (v,k,1)-RPMDs and (v, k, A\)-PMDs

Remark 5.1: Let (X, A) be a (v, k,1)-RPMD where X = {z;,z,,...,z,}
By Definition 1.1 and 1.2, it is easy to see that for v =1 (mod k) A can be
partitioned into v parallel classes A; such that A; is a partition of X\ {z;}
where 1 < ¢ < v, and for v =0 (mod k) A can be partitioned into (v — 1)
parallel classes A; such that A; is a partition of X where 1 < < (v —1).

Definition 5.2: Let (X, A) be a (v,k,1)-RPMD having parallel classes
A, Ay,...,A,. Let (X,B) be a (u,k,1)-RPMD having parallel classes
By,By,...,B;. If X DY and A; D B;, 1 < i < t, we say the first design
contains the second as a subdesign.

Theorem 5.3. A (v,k,1)-RPMD exists for all sufficiently large v with
k>3 and v =1 (mod k) (see [2]).

Theorem 5.4. Suppose there exists a (v, K; A\)-PBD and for each m €
K there exists an (m,k,1)-PMD. Then there exists a (v, k, A\)-PMD (see
Theorem 4.1 in ({10]).

Theorem 5.5. A (v,k,1)-PMD exists with v(v — 1) = 0 (mod k) for the
case when k is an odd prime and v is sufficiently large (see Theorem 3.3 in

[11]).

Theorem 5.6. Suppose there exists a (v, K;1)-PBD and for eachm € K
there exists an (m,k,1)-RPMD and m = 1 (mod k). Then there exists
a (v, k,1)-RPMD and there exists an (m, k,1)-RPMD as a subdesign, for
m € K (see Corollary 2.19 in [15]).

Theorem 5.7. Suppose there exist a (u, k,1)-RPMD and a (v, k,1)-RPMD
where u,v = 0 or 1 (mod k). Then there exists a (uv, k,"1)-RPMD which
contains a (u, k,1)-RPMD and a (v, k, 1)-RPMD, respectively, as a subde-
sign (see Theorem 2.1 and Remark 2.2 in [15]).

Theorem 5.8. Suppose there exist a (u,k,1)-RPMD and a (v + 1,k,1)-
RPMD, where u =1 (mod k) and v+ 1 =0 or 1 (mod k). If there is an
RTD[k,1;v]). Then there exists a (uv + 1,k,1)-RPMD which contains a
(u, k,1)-RPMD and a (v+ 1, k,1)-RPMD, respectively, as a subdesign (see
Theorem 2.14 and Remark 2.15 in [15]).

Theorem 5.9. If there exists a GDD[K, 1, M;v] satisfying for each h € K
there exists an (h,k,1)-RPMD, h = 1 (mod k) and for each n € M there
exists an (n+w, k, 1)-RPMD having a (w, k, 1)-RPMD as a subdesign,n = 0
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(mod k). Then there exists a (v + w, k,1)-RPMD where w = 0 (mod k)
(see Theorem 2.12 and Theorem 2.18 in [15]).

Given a set K of positive integers, we define a(K) as the greatest common
divisor of {k — 1: k € K} and B(K) as the greatest common divisor of
{k(k—1): k € K}. The following theorem is essantially Theorem 1 in [13].

Theorem 5.10. Given a set K of positive integers, By(K) = {v: there
exists a (v, K; A)-PBD} contains all sufficiently large integers v satisfying
the congruences:

A(v —1) =0 (mod a(K)) and
Mv(v—1) =0 (mod B(K))

Let ¢ = en + 1 be an odd prime power. The cyclic multiplicative group
of the field GF(q) has a unique subgroup H§ of index e and order n. The
multiplicative cosets H§, HS,...,HS | of H§ are the cyclotomic classes
of index e. They evidently partition GF(q) \ {0}. The class of cosets
{H§, HS,...,HS_,} will be denoted H®.

Let P, be the set of ordered pairs {(i,7): 1 < i < j £ r}. We define
a choice to be any map C: P, — H¢, assigning to each pair (i,5) € P, a
coset C(%,3) modulo the e-th powers in GF(g). An r-vector (a,,a,...,a,)
of elements of GF(q) is consistent with the choice C if and only if a; —a; €
C(@,j)foralll <i<j<r.

Wilson [12] proved in his cyclotomic paper the following.

Theorem 5.11. Let ¢ = 1 (mod e) is a prime power and q > ™",

then for any choice C: P, — H¢, there exists an r-vector (ay, a2,...,ar) of
elements of GF(q) consistent with C.

Consider the arithmetic progression {mk(k—2)+k—1: m=1,2,3,...}.
Since (k—1,k(k—2)) = (k-1,(k=1)(k—2)+k-2)=(k-1,k-2) =1,
so, by Dirichlet’s theorem and Theorem 5.3 there is an mp satisfying

(a) g =mok(k—2)+k—-1=(k—-2)(mok+1)+1 > e™(r1) where
r=k—-1,e=k—-2;

(b) g = (k — 2)(mok + 1) + 1 is odd prime power;
(c) there exists an (mok + 1, k,1)-RPMD;
(d) there is an RT D[k, 1;vo — 1] where v = (mok + 1)q + (mok + 1).

In this section we always let n = mok+1,e=k—-2,r=k—-1,9=en+1,
vp =ng+n, k > 3, and © ba generator of GF(q)\ {0} and Hf = {©*: t =1
(mode)} for0<i<e-—1.
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Let A = (00,a2,a3,...,ax) be a cyclic k-tuple, where a; € GF(q) for
2 <1 < k. We define

D;(A):{a,+¢—a,:2$z$k,i7£l—t}

where i +¢t and 1 — ¢ are taken modulo k.
From Theorem 5.11, we have that

Lemma 5.12. There exists an ordered set of r distinct elements (a1, a2, .. .,
a,) satisfying the following conditions:

(1) (aivj — i) € Hfgy g for1 < j<r/2,1 <i<1—jand (ag4isj —
a;) € —HZy _; 55 for1 <j<(r/2)-1,1<i<(r/2)~-j, whenris
even;

(2) (acss —ax) € Hyy fr 15 < (r=1)/2, 1 <i<r~jand
(argr iy — @) € —-Hgy | for0<j< (r-1)/2-1,1<i¢g
2
(r—1)/2 - j, when r is odd.

Since q is odd, then n is even when r is even and n is odd when r is odd.
Hence we have Hf = —Hf when r is even and Hf = Hf+§ when r is odd.

Let bj—l = (aj.|.1 - ai)/(ag - a,) for 1 < J <r—1. From Lemma 5.12 we
have

Lemma 5.13. There exists an ordered set of r — 1 distinct elements
(b0, b1, - - ., br—2) satisfying the following conditions:

(1) the set {bo,by,...,br_2} forms a system of representatives for the
cyclotomic classes of index e in GF(q).

(2) for A= (o0,0,b9,by,...,br—_2), the set D;(A) forms a system of rep-
resentatives for the cyclotomic classes of index e in GF(q), where
1<t<r/2whenriseven,orl <t<(r+1)/2 when r is odd.

Lemma 5.14. There exists an (n + q, k,1)-PMD.

Proof: Let (Y, B) be an (n,k,1)-RPMD where Y = {00;: 0 <i <n -1}
and X = GF(q). Let A; = 6 A = (00;, 0,000, ...,b.20%) for 0 < i <
n — 1, be base blocks, where A comes from Lemma. 5.13.

From the condition (2) in Lemma 5.13, it is easy to see that

Uo<i<n—1D:(Ai) = GF(q) \ {0}

for 1 <t < r/2 when r is even, or for 1 <t < (r +1)/2 when r is odd.
Hence it is easy to see that (X UY, (devA) U B) is an (n + ¢, k, 1)-PMD
where devA = {A; + g: g€ GF(q),0<i<n—-1}.
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Theorem 5.15. There exists an (nq + n, k,1)-RPMD.
Proof: We adopt the notation of the proof in Lemma 5.13 and 5.14. Let
{.7} X Aj = (°°t'+.7'v (jv 0): (j’ bﬂeie)' EXR) (j, bf—2eie))a

Nl = {(0, e), (l, eee)’ ceey (i, 86"), ceey (n — 1, ee(ﬂ—l)e)},
A={A:0<i<n—1}N={N:¢eGF(a)},

and (N,D(N)) be an (n,k,1)-RPMD having n parallel classes : D(N),
0 < i < (n—1), where D(N); is a partition of N \ {(i,a;)} for N =
{(0, aO)v (11 a’l)l ceey (n - l: aﬂ-l)}'

Since N, £ € GF(q), are base blocks of T'D[n, 1;g], it is easy to see that
((In x GF(q))UY, dev(D(N)U I, x A)UB) is an (nq+n, k,1)-PMD where
D(N) = Usear(pD(Ne), and dev(D)YN) U T, x A) = {B +(0,9): g €
GF(q),Be D(N)UI, x A} and (GF(q)UY, (devA)UB) is an n+gq, k, 1)-
PMD from Lemma 5.14.

We are to prove that the blocks can be partitioned into (ng + n — 1)
parallel classes. We denote N, for £ = b,©% by N, it is easy to see that

E;=1I,x A;U (Ugg:g,::: D(N,,)i—:) where0<i<n -1
is a parallel class, so
In x AUD(N\ No) = Up<i<n—1E;
is the union of n parallel classes. Hence
dev((I, x AUD(N\ Np)\ Eo
is the union of (ng — 1) parallel classes. Finally we are to prove that
Eo UB U devD(Np)
is the union of n parallel classes. Let
F; =B; U {i} x AU (Uogs<r-2D(Ns,n-;);),
where 0 < j < n — 1. It. is easy to see that
Eo UB = Uggj<n-1F;.

Since each F; contains one point of I, x {€} for all £ € GF(g), so

devD(Np) can be partitioned into n parts G;, 0 < j < n — 1, such that

each F; U G; is a parallel classes. That is Eg U B U devD(Np) is the union
of n parallel classes. This completes the proof.
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From Theorem 5.3 there exists a (u, k,1)-RPMD for allu > up andu =1
(mod k) where uy is sufficiently large integer.

Let K = {vo(u—1)+1,(u—1)(vo — 1)+ 1: u > up,u = 1 (mod k)},
Ko = {vo(u—1)+1: u = vok?+1, (vok+ 1)k+1}U{(vo—1)(u—1)+1: u=
(vo—1)k®+1,(vo — 1)k2 +k+1}UK C {u: u > up,u=1 (mod k)}, it is
not difficult to see that a(Kp) = a(K) =k, f(Ko) = B(K) = k when k is
even and B(Kp) = B(K) = 2k when k is odd. Hence, from Theorem 5.10
we have

Theorem 5.16. There is a u such that {u: u > u;,u = 1 (mod k)} C
By(K).

Theorem 5.17. There exists a (h + vo — 1,k,1)-RPMD for h € B,(K).

Proof: It is easy to see that there exists a GDD[K,1, M;h—1] where M =
{g—1: g€ K} for h € By(K). Since there exists a (g, k,1)-RPMD for g €
K, and there exists a (vou, k,1)-RPMD which contains a (v, k, 1)-RPMD
as a subdesign from Theorem 5.7, and there exists a (u(vo — 1) + 1,k,1)-
RPMD which contains a (v, k, 1)-RPMD as a subdesign from Theorem 5.8.
Apply Theorem 5.9 with v = h—1 and w = v to obtain a (h+vp —1,k, 1)-
RPMD.
From Theorem 5.16 and Theorem 5.17, we have

Theorem 5.18. There exists a (v, k, 1)-RPMD for all sufficiently large v
with v =0 (mod k).

Theorem 5.19. There exists a (v, k, \)-PMD for all sufficiently large in-
tegers v with Av(v — 1) = 0 (mod k).

Proof: Let K = {v: there exists a (v, k,1)-PMD}. From Theorem 5.3 and
Theorem 5.14, there is ug such that Ko = {v: v =1 (mod k),v > uo}U{g+
n} C K. Since g+n =0 (mod k), it is easy to see that a(K) = a(Ko) = 1,
B(K) = B(Ko) = k when k is even and B(K) = B(Ko) = 2k when k is odd.
Therefore, by Theorem 5.4 and Theorem 5.10, we complete the proof.
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6 Appendix (v,4,1)-nearly-IRPMD for v = 0 (mod 4)

Let T = {(20,5), (24,5), (28,5), (32, 5), (36,5), (36, 9), (40,9), (44, 9), (52, 13),
(56,13), (60, 13), (68, 17), (132, 33)}.

Lemma 4.1. There exists a (v,n,4, 1)-nearly-IRPMD with standard com-
plement type for (v,n) € T.
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Proof: In each of the following cases for (v,n) € T, we let G = Z,_4,
X =2,_nand Y = {o0;: 1 £ i < n}. We then present a collection of
base blocks B and n partial parallel classes of X namely, D;, 1 < ¢ <
n, as defined. Since B is a parallel class of X UY, it is easily checked
that (X UY,Y, (devB) UD) is a (v,n,4,1)-nearly-IRPMD with standard
complement type where D = U;<i<nD:.

The case (v,n) = (20, 5) Let

B = {(c01,—5,—1,6), (002,1,7,2),(c03,3, —7,5), (04,4, =3, —4)
(‘x’S’ 0, _2, —6)}
D, = {(0,1,3,6) +4i +12( —1): i=0,1,2} for 1 <j < 5

The case (v,n) = (24, 5) Let

B = {(5, -9, -2, 8), (00, =7, =1, -8), (002,0,4, —4), (03,1,9,7)
(004, =5, —6,3), (o0s, 6,2, —3)}
D; = {(0,1,3,6) +4i +16(j —1):i=10,1,2,3} for 1 < j <4
Ds = {(0,1,3,6) +4i + 7:i=0,1,2}

The case (v,n) = (28,5) Let

B = {(—4,4,9, -10), (-11,7, -7,0), (0, =2, 11, -1),
(002, —5, 5, =3), (003, =9, 10, 8), (04,2, 1, —6), (005, —8, 6, 3)}
D, = {(0,1,3,6) +4i +20(j —1):i=0,1,2,3,4} for 1 < <3
Ds={(0,1,3,6) +4i —9:i=0,1,2,3}
Ds = {(0,1,3,6) +4i +7:i=0,1,2,3}

The case (v,n) = (32,5) Let

B = {(11, -5, -12,-13),(~10, -6, 2,0), (10, -11, —4, 5),
(001,8, —3,7), (002,13, -2, =7), (003, 3, ~1,12),
(004, —9,9, 1), (005,4, —8, 6)}
D, ={(0,1,3,6) +4i + 4(j —1):0<i< 5} for 1 <5 <2
Dy = {(0,1,3,6) + 4i+20(k —3) —6: 0 <i <4} for 3<k <5
The case (v,n) = (36,5) Let
B = {(-9,-5,3,15),(-1, —4,14,13), (-2, -11, -6,10),
(5,-13, —3,12), (001, 2, —8,1), (002, 11, -14,9)
(c03, —12, 8,6), (004, 7, —10, —15), (c0s, —7,4,0)}
D, = {(0,1,3,6) +4i: 0 < i < 6}
D; = {(0,1,3,6) +4i +24(j —2): 7<i<12} for2<j <5
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The case (v,n) =(36,9) Let

B = {(0c01,4, 1,3), (002, —4, —11, —6), (003,11, 10, 8)
(004, —10, 5, —5), (005,13, -3, —7), (006, —1,6,7)
(007, 2, —12, —8), (008, 2, —13, 9), (009, 0, =9, 12)}
D; = {(8,11,17,25) + i+ 3( — 1): i =0,1,2}
{(5,14,1,20) +i +3(G —1):i=0,1,2} for 1 < < 9

The case (v,n) = (40,9) Let

B = {(-13,9,-9,0), (001,12, 2,10), (002, -1, -12,4),

(cos, 5, —3,11), (004, — 14, —4, —7), (05, 6, —8, —15),
(o0s, —6, —11, 14), (007, 3, 8, 15), (008, —5, -2, 13),
(009, —10,1,7)}

D; = {(0,4,16,12) +i+4(j —1): i=0,1,2,3} U
{(0,1,3,2) +i+4(j —1):i=8,21,26} for 1 <j <7

Ds = {(0,1,3,2) +i: i = 0,4,9,13,17,22,27}

Do = {(0,4,16,12) +i+28:i=0,1,2} U
(0,1,3,2) + 14 +28: i = 8,21,26}

The case (v,n) = (44, 9) Let

B = {(6,3, 1, 8,),(9, -15,15,-11), (001, 11, -3, =7),

(002, 7, —13, —9), (003, —5,17,16), (004, —1, 5, —14)
(005, 2, —10, 14), (c0s, —17,0, —6), (007, 4, —12,1),
(cos, —2,12,13), (009, —16, —8,10)}

D; = {(0,3,8,10) +5: 5 € A;}U{(11,2,9,1) + j: j € B;}
for 1 <5 <9, where

A = B, = {1,5,19,23}, Az = B;={6,10,22,26}

As = B3 = {8,12,25,29}, A4 = B4 = {9,13,27,31}

Ag = Bs = {11,15,28,32}, A= Bg = {14,18,30,34}

A7z = B; = {17,21,33,2}, As={3,7,20,24},

Bs = {3,7,24} A, =1{0,4,16}, B, = {0,4,16,20}
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The case (v,n) = (52,13) Let

B = {(00,,0, -9, —=2), (002,17,4, —19), (003, —16, -7, —12)
(004, 10, 2, 5), (005, 3,9, —3), (ooc, -11,-17,—4)
(007, 14, 13, 6), (c0g, —6, 16, —15), (c0g, 11, —18, —13)
(o010, ~8, 12, 8), (0011, 7, —14, —10), (0012, 19, -1, 1)
(o013, —5, 18, 15)}
D;={B'+i+12(j —1):i=10,4,8} for 1 < j <13 where
B = {(0, 14,12, -12), (-15,2,13, 3),(—14,-13,15,1)}

The case (v,n) = (56,13) Let

B = {(0, -3, —10, 10), (c01, 4, —13, 6), (002, —12,12, —6)
(003, —21, —9, —14), (004, -7, —20, 1), (005, 20, —18,11)
(o0, 13, —15, 2), (007, 19, —17, 5), (ccs, 14 — 19, —1),
(009, —4, —16, 21), (0010, 16,7, —8), (0011, —11, 3,9)
(0012, —5,8,17), (0013, 15,18, —2)}

D; ={16(0,1,3,2)+16i: i€ A;} for1 <i <4

Ds = {16(0,1,3,2) + 16;5: j = 10,2,37} U
(0,1,3,2) + i: i € Cp}

Ds.; = {4(0,1,3,2)+j: j € B;}U{(0,1,3,2) +j: j € C;}

for 1 < 7 < 8 where

A, = 16{14, 18, 22, 26, 30, 34, 38,42, 3,7}

Aq = 16{11, 15,19, 23,27, 31, 35,39, 0,6}

As = 16{4, 8,12, 16,20, 24, 28, 32, 36,41}

Aq = 16{40,1,5,9,13,17, 21, 25, 29, 33}

B, ={1,2,3,4} B, ={5,6,7,24,25,26,27}

B; = {8,9,10,11,28,29,30,31} By =B3+4,Bs=B3+8,

Bs¢=B3+12 B;=Bg=¢

Co = {39,0,8,12,16,23,27} C, = {17,21,25,29, 33,37}

Cy = {20,40,1} C3 = {24,4} C, = {28,5} Cs = {32,9}

Ces = {36,13} C; = {41,2,6,10,14, 18,22, 26, 31,35}

Cs = {30, 34, 38,42, 3,7,11,15,19}
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The case (v,n) = (60,13) Let

B = {(~8, —21,1,-5), (9, 23, 14, =9), (001, —16, 3, —14)
(002, 8, 11,2), (003, —22, 10, —12), (004, -4, 22, —15)
(c0s, —1, =17, 12), (006, —13, 7, 19), (007, 3, 6, —20)
(008, 5, —19, 23), (009, —11,0, 16), (co10, 15, 20, —10)
(0011, -—6, ——18, 18)(0012, —2, 4, 17), (0013, 13, —7, 21)}

D; ={(0,1,3,2) +i: i € A;} Day;=1{(0,7,21,14) +7i: i € B}

Ds;; = {(0,4,12,8) +4i:ie€ C;} for 1 <j <4
D3 = {(0,1,3,2) +i: i=3,10,17} U

{(0,4,12,8) + 4i: i = 6,18,30,42} U
{(0,7,21,14) + 7i: i = 0,7,27}

A, = {21,25,29, 33,37,41,45,2,7,11, 15}

Az = {14, 18,22, 26, 30, 34, 38, 42, 46, 5, 9}

Az = {19, 23,27, 31, 35, 39,43, 0,4, 8,13}

Ay = {16, 20, 24, 28, 32, 36,40, 44, 1, 6,12}

By={4i:1<i<11} By={31+4i:0<i<3}U
{1+4i:0<i<6)

Bs = {29 +4i: 0 <i < 4} U {2,6,11,15,19,23}

By = {10+4i: 0 <i < 10} ‘

C, = {44,1,5,10,14}, {19 + 4i: 0 < i < 5}

C, = {46,3,7,11,15}, {21 + 4i: 0 < i < 5}

Cs = {45,2} U {4i: 2 < i < 10}

Ca = {0,4,9,13,17, 22, 26, 34, 38,43}

The case (v,n) = (68,17) Let

B = {(00y, —21, =17, —20)(c0z, —25,4, 24)(c03, —16, —24, —19)

(04,25, 14, 21) (005, —15, 8, —10)(00s, 3, 15,9)
(007, —13, =14, —6)(c0s, 20, 6, 12)(c09, 16, —4, 7)
(0010, 11, 2, —5)(0011, —-7, —9, 10)(0012, 5, —12, 23)
(0013, 17, 19, —2)(0014, —18, 18, 13)(0015, 22, —11, —8)
(0016, ~1,0, —23)(c017, 1, -3, —22)}

D;={B'+i+12(j —1):i=0,4,8} for 1 < j <17 where

B’ ={(0,13, -12, —25),(1, 15, —14, 25), (2, 12, —24, —15)
(3,24, 14, -13)}
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The case (v,n) = (132,33) Let

B = {(o01, 33, —19, 32), (002, 18,49, —5), (c03, 24, —47, —15)
(004, —39, 19, —36), (005, —44, —10, 30), (c0g, 16, —12, —43)
(007, 10, ~28, 5), (00, —21, 31, 6), (009, —34, —16,8)

(0010, —11, 27, —18), (0011, 37,3, —33), (0012, —49, —29, —6)
(0013, 17, —40, 26), (0014, 44, 40, —-24), (0015, —37, 22, 7)
(0016, —25, 25, —14), (0017, —32, —3, 34), (0018, 14, 29, —31)
(0019, —48, 9, —35), (0020, —30, —46, 35), (0021, 2, 21, 48)
(0022, —2,41, —17), (0023, 47, 1, 12), (0024, 39, 15, —8)
(0025, —26, —45, —9), (0026, 43, 0, —20), (0027, —13,13, 38)
(0028, —42, 28, —23), (0029, —41, 23, —4), (0030, 42,46, —7)
(0031, 20, 36, —1), (0032, —27, —38, 11), (0033, 4, —22,45) }
D;={F+j+i: FeF,i=0,33,66} for 1 <j <33 where
F={(1,13,-1,-13),(2,8,-2,-8), (3,6, -3, —6)
4,9, -4,-9), (5,12, -5, -12), (7,15, -7, —15)
(10,11, -10, —11), (14,16, —14, —16)}
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