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ABSTRACT. This paper deals with (a,d)-antimagic labelings of
special graphs called parachutes. After the introduction of
the concept of a parachute the authors succeed in proving the
finiteness of two very interesting subsets of the set of all (a,d)-
antimagic parachutes by means of a method using the theory
of Diophantine equations and other number-theoretical results.

1 Introduction

In [3], G. Ringel and N. Hartsfield introduce the concept of an antimagic
graph. In [2], the authors define the concept of an (a, d)-antimagic graph
as a special antimagic graph where a,d € N. While G. Ringel and N.
Hartsfield conjecture that every connected Graph G = (V, E) of order |V| >
3 is antimagic it turns out that the property of a graph G = (V, E) to be
(a, d)-antimagic actually depends on the shape of G for one can show that
both every tree T = (V, E) of even order |V| > 4 and every cycle C = (V, E)
of even order |V| > 4 are not (a, d)-antimagic. So it makes really sense to
ask for the set of all (a, d)-antimagic graphs. In order to determine this
set we consider the infinite subset of parachutes of the set of all connected
graphs of order > 3. In [4], the concept of an (a, d)-antimagic graph is
introduced in the following way:

Definition 1: A connected graph G = (V, E) of order |V| > 3 is said to
be (a, d)-antimagic iff there exist positive integers a,d € N and a bijective
mapping f defined by

£ E —{1,2,...,|E|}
“le - fle)eeE
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such that the mapping g, induced by f and defined by

. V -N
'V = 9@ =Teesy flehveV

is injective and g¢(V) = {a,a+d,...,a+(|V|—1)d} where I(v) = {e € Ele
is incident to v} forve V.

If G = (V,E) is (a,d)-antimagic and f: E — {1,2,...,|E]} is a corre-
sponding bijective mapping of G then f is said to be an (a,d)-antimagic
labeling of G.

2 Definitions and Notations

The graphs considered here will be finite, undirected and simple. The sym-
bols V(G) and E(G) will denote the vertex set and the edge set of a graph
G € I" = set of all finite, undirected, simple graphs. In order to introduce
the notion of a parachute let g,b € N, g > 3, be two positive integers, and
let P, denote a path of order g with the vertex set V(Py) = {v1,vq,.. .y Ug}
and the edge set E(P) = {{vi, w1}l € {1,2,...,9— 1}} Then the graph
1 % P, has got the vertex set V(1 * Py) = {v} U V(P,) and the edge set
E(1+P,) = E(Py)u{{v,w}li € {1,2,...,g}}. Finally, Cy; denotes the cy-
cle of order g+b with the vertex set V(C +b) = {v1,v2,...,0g,v],%5,...,0,}
and the edge set E(Cyiq4) = E(Py) U {{v;.vi}, {vg, v{,}} U {{v],vip }i =
1,2,...,b —1}. Now the concept of a parachute will be defined in the
following way:

Definition 2: A graph Pyp = (Vo 5, Egp), 9,0 €N, g > 3, is said to be a
parachute iff P is the amalgamation (1 * P,) U Cy., obtained from the
union of 1x P, and Cy; by pasting them a.long P, such that the intersection
(1% Py) N Cyyp is equal to P,

A parachute P, is a connected graph on |V,s| = g + b+ 1 vertices and
|Eg,5| = 2g + b edges and has the minimum degree 2 and the maximum
degree g. Figure 1 shows the parachutes P52, Ps4 and Pes. If T(P) C T
denotes the set of all parachutes Py, g,b € N, g > 3, it makes sense to ask
the question for the set I'(P) C T'(P) of all (a, d)-antimagic parachutes in
T(P), a,d € N, as already mentioned above.

38 Parachutes and their Diophantine equations

In order to determine I'(P) we consider an arbitrary parachute Py € I'(P).
Then there exist positive integers a,d € N, a > 3 because of minimum
degree in P, 4 is 2, such that the following equation holds:

() 20 +2+---+29+b) =a+(a+d) +---+ (a+ (g+b)d).
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Pisy

Figure 1

(i) is equivalent to the Diophantine equation
(ii) (29+b)(29+b+1)=(g+b+1a+5(g+b)g+b+1)

to be solved in positive integers a > 3 and d € N. Then we obtain a first
proposition helping find I'(P) in the following way:

Proposition 1. If P,, € T'(P) then there exist at most 7 mutually dif-
ferent solutions (a,d) of the Diophantine equation (ii). That means that,

for every parachute P, € I'(P) there exist at most 7 different values of d
yielding (a, d)-antimagic labelings of Pyp.

Proof: Putting d = 8 (ii) becomes
(iii) (9+b+ 1)a=—4h —2g —3b% —3b

such that a < 0 contradicting a > 3. It is obvious that one also obtains a
contradiction for each d > 9.

Applying the solution criterion for Diophantine equations we know that
the necessary and sufficient condition for the existence of integer solutions
a, d of (ii) is that the greatest common divisor gcd(g+b+1, 1(g+b)(g+b+1))
divides the product (2g + b)(2g + b+ 1) such that
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(iv) ged(g+b+1,3(g+b)(g+b+1))|(29+b)(29+b+1)
is true. Since
gcd(g+b+1,%(g+b)(g+b+1)) = {9%(’;::11) :zzil;zzzn
(iv) is equivalent to
(v) (8) (g+b+1)|(29+b)(29+b+1) or (b) (g-+b+1)[2(29+b)(2g+b+1).
Let g+ b+ 1 =1¢. Thus, ¢ is an integer > g+ 2 such that we deduce from
(v) the conditions
(vi) (a) ti(t+g)(t+g9—1) or (b) ¢|2(t +9)(t +9-1)
which are equivalent to

(vii) () tlg(g — 1) or (b) t|2g(g — 1).
Since
{teN|t>g+2Atlglg - 1)} C {t e N|t 2 g +2At[29(¢ - 1)}
(vii) is equivalent to (viii) ¢|2g(g — 1).
That means that if Py € I'(P) then ¢ satisfies (viii) and b=t —-g —1.
Since there are only finitely many different divisors ¢t > g + 2 satisfying
(viii) we have proved a further step for finding I'(P) . It holds:

Proposition 2. For every g € N, g > 3, I'(P) contains at most finitely
many parachutes P,, whereb=1t— g — 1 < 2¢g° — 3g — 1 and ¢|2g(g — 1).
Proof: It only remains to show that b < 2g2—3g—1. Since t = 2-g(g—1) is
the greatest divisor satisfying (viii) the corresponding value of b is precisely
b = 2g® — 3¢ — 1 and obviously the greatest possible number in N such that
Py € T(P) for any g > 3.
The exact number of different integers b = t — g — 1, ¢ satisfies (viii),
generally depends on the choice of g. Table 1 gives an impression of the set
of divisors satisfying (viii) and shows that for each g > 6, there are at least
five different values of b such that the corresponding parachute P, could
belong to I'(P).
Furthermore, Table 1 shows that I'(P) has the following five subsets
Ii(P), i =1,2,3,4,5, where
FI(P) = {py,2y’—39—1 l 92 3}:
Fa(P) = {Py,g2-291 I 924}
T3(P)={Pys-1| 923},
P4(P) = {Pg,g—3 | g2 4}:

and
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Ts(P) = (P, 43-s5-2) | 9 2 4}.

g 29(g-1)|t>g+2 b=t-g-1 number of
different
t|2g(g —1)

3 12 6,12 28 2

4 24 6,8,12, 1,3,7,19 4
24

5 40 8,10,20, 2,4,14,34 1
40

6 60 10,12,15,° 3,5,8,13, 6
20,30,60 23,53

7 84 12,14,21, 4,6,13,20, 6
28,42,84 34,76

8 112 14,16,28, 5,7,19,45, 5
56,112 103

929|29(9—-1) [ ti=29(9—1) | b1 =29"—-3g -1 >5

to=g(g-1) [ba=g*-29-1
t3=2g b3=g~-1
ta=2(g-1) |ba=g-3
ts = Lo bs = 3(¢*> — 39 —2)

4 Finiteness of I's(P)
First of all we shall turn towards ['s(P). Putting b = g — 1 Proposition 1

becomes

Proposition 3.

N\ [Pog-1 €T(P) = d < 4]

9€N
223
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1" 14

Py, (7,2)-antimagic P.s (13.1)-antimagic

Ps . (12,2)-antimagic Ps . (3,4)-antimagic

29

21

Pa.s (20,1)-antimagic Pe.s (9,3)-antimagic

Figure 2

134



Py.7 (27,1)-antimagic P,.7 (12,8)-antimagic

Figure 2 con’t

Since its proof is an immediate consequence of the proof of Proposition
1 we omit details.

The next step is to illustrate that I's(P) # @. Figure 2 depicts parachutes
P, -1 € T'3(P) and corresponding (a, d)-antimagic labelings for g < 8 and
each possible d.

Applying Proposition 3 we obtain
Proposition 4. Let P, € I's(P), g 2 3. The corresponding Diophan-
tine equation of Py 4_, is

(ix) 339—1)=2a+(29-1)d
and has the two different solutions (Tn —1,1) and (3n,3) if g=2n,n > 2,
or (5n —3,2) and (n,4) if g=2n—-1,n>2.

Proof: Putting b = g — 1 the equation (ii) becomes (ix). According to
Proposition 3, we know that d < 4, such that we obtain the two solutions
by distinguishing the cases g odd and g even.

Now we are able to show that I's(P) is finite for it holds:
Theorem 1. Let a € N be an arbitrary integer > 3.

(1) Ay>10 Ps.g—1 is not (a,1)-antimagic,

(2) Ay>12 Po.g—1 is not (a,2)-antimagic,

(3) Ay>14 Ps,g-1 is not (a, 3)-antimagic,

(4) Ag>16 Ps.g—1 is not (a,4)-antimagic.

Proof: If P, 4, is an arbitrary parachute from I'3(P) then we know that
the maximum vertex label
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(X) Gmax = 6+ (29 — 1)d = £2=315020-1d (95 _1)d

when P, ,_ is (a, d)-antimagic. Since the maximum degree in Py g1 is g
the inequality amax = +1) s true.

Applying the contraposition, we obtain the assertion that the inequality
Gmax < 3-(-'1.}1)- implies that P, 4, is not (a, d)-antimagic. Substituting the
expression (x) for amax We obtain '

(xi) gl > (29=9)+(29-1)d yhich is equivalent to

(xii) (9—(4+d))?>d?+7d+130r
(xiii) g>4+d+ V@ F+Td+130org< (4+d) - V@ +7d+13.

While the second expression gives a contradiction we obtain

(xiv) g >4 +d+ V& +7d+13.

Putting go(d) = [4 + d + V@ + 7d + 13]+1 where [4 + d+ V& + 7d + 13]
means the greatest integer less than or equal to 4+ d+ V@ +7d+ 13 and
putting d = 1,2,3,4 we obtain go(1) = 10, go(2) = 12, g,(3) = 14 and
go(4) = 16. This proves Theorem 1 and the finiteness of I's(P).

Since Figure 2 shows all (a, d)-antimagic labelings of Pg 91,3 < g <8
we only need to investigate the parachutes Py 41 for g < g < 15.

Theorem 2.
(a) Plo'g and Pu'w belong to Fa(P),
(b) Pog, Pi2,11, P13 12, P1a,13, Pis,14 ¢ [3(P).

Proof: Ad(a) Assume Py is (a, d)-antimagic. Then we know because of
Proposition 4 that (a, d) is either (34, 1)-antimagic or (15, 3)-antimagic. By
means of Theorem 1 it follows that Pjg g is not (34, 1)-antimagic. Figure 3
gives an (15, 3)-antimagic labeling of Pjgg such that Py € I's(P).

The procedure in case of Py 10 is more complicated than in case of Py,
for we cannot cancel a solution by applying Theorem 1. Figure 4 depicts
a (27,2)-antimagic labeling of Pyj,10 such that Py 10 € [3(P). For sake of
completeness it remains to check whether Pll,lO = (l *Pn)UP" Coy is (6, 4)-
antimagic. Assume there is a (6, 4)-antimagic labeling f of P11,10 such that
amax = 90. Since each vertex value of f is even one has to label - by means
of f - the 11 edges of Cy; \ Py, either by 11 even or by 11 odd numbers
of the set {1,2,...,32}. Assume the 11 edges of C3; \ Py, are assigned by
11 odd numbers in {1,2,...,32}. Since each vertex value is congruent 2
modulo 4 we have to take either 11 odd numbers in {1,2,..., 32} congruent
1 modulo 4 or 11 odd numbers in {1,2,...,32} congruent 3 modulo 4.
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Piay (13,3} 0rtimagic

Figure 3

This is a contradiction for there are only 8 odd numbers congruent 1
modulo 4 or 8 odd numbers congruent 3 modulo 4, respectively.

Pyy.10 (27,2)-antimagic

Figure 4

Assume the 11 edges of Cp; \ Pi; are labeled by 11 even integers in
{1,2,...,32}. Denoting the two end vertices of P;; by z and y we have to
distinguish the following three cases. 1) The two unlabeled edges incident
to z are assigned by two odd integers in {1,2,...,32} and the two unlabeled
edges incident to y are also labeled by two odd integers from {1,2,...,32}.
2) The two unlabeled edges incident to z are labeled by two odd integers
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in {1,2,...,32} and the two unlabeled edges incident to y are assigned by
two even numbers in {1,2,...,32}. 3) The four unlabeled edges incident
either to z or y are labeled by four even numbers in {1,2,...,32}.

In case 1), Figure 5 shows three distributions of odd and even numbers
on the edges of Pyj,30. All these distributions of Figure 5 are characterized
by the fact that the vertex value f(v) of the vertex v of degree 11 is the
sum of 10 odd numbers and one even number in {1,2,...,32} for each
(6,4)-antimagic labeling f of Pij10. That implies that f(v) > (14+3 +
<+« +19) 4+ 2 = 102, contradiction to apax = 90. Thus at least two edges
incident to v must be labeled by even numbers in {1,2,...,32}. It turns
out that such a distribution is not possible such that each vertex value is
congruent 2 modulo 4. Observing the arguments excluding case 1) it also
turns out that all the distributions possible in the cases 2) and 3) lead to
contradictions. Details must be omitted.

Figure 5

Ad (b) Firstly we assume the parachute Pyg = (1 ¥ Py) U™ Cy7 is an
element in I'3(P) and has an (a, d)-antimagic labeling. Then (a, d) is either
(22,2) or (5,4). Assume there exists a (22,2)-antimagic labeling f of Po s
such that amax = 56. As each vertex value of f is even the 9 edges of Cy7\ Py
are labeled either by 9 even or by 9 odd numbers of the set {1,2,...,26}.
Figure 6 shows the two possible distributions (I) and (II) of even and odd
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numbers necessarily satisfied by f. In case (I) the smallest possible value

{n {D)]
Figure 6

f(v) at the vertex v of degree 9 is equal to the sum
f@)=24+14+3+---+15=2482=66

contradicting the property amax = 56. That means that f necessarily
satisfies the distribution (II). In this case the smallest possible value f(v)
at v is equal to the sum

fw)=2+44+---4+144+14+3=56+4=60

also contradicting amax = 56. Hence Py g is not (22,2)-antimagic. It re-
mains to investigate whether Pyg is (5,4)-antimagic. Assume Py g is (5,4)-
antimagic and has the corresponding (5,4)-labeling f such that amax = 73.
Since each vertex value of f belongs to the residue class 1 modulo 4 -
the elements in 1 have got the principal remainder 1 modulo 4 - f la-
bels the 9 edges of Cy7 — Py in precisely four different ways (I) - (IV) de-
picted in Figure 7 where 0 = {4, 8, 12, 16,20, 24}, 3 = {3,7,11,15,19, 23},
2 = {2,6,10,14,18,22,26} and T = {1,5,9,13,17,21,25}. In case (I) f
permits the following 14 mutually different distributions at the vertex v
of degree 9 depicted in Table 2. For sake of shortness we have to restrict
ourselves to investigating case 1 in Table 2 as a paradigm. Assume that
f satisfies case 1. Then the smallest possible value f(v) at the vertex v is
equal to the sum

f(v)=2+6+10+14+18+22+3+7+11=93

contradicting amax = 73. The proof that all the other cases of (I) - (IV)
contradict the fact that f is a (5,4)-antimagic labeling of Pog is a matter

139



Figure 7

of routine checking such that we are allowed to omit further details. This
means that Ppg is not (5,4)-antimagic. This completes the proof that the
statement Pyg ¢ ['3(P) is true.

Case | Number of | Number of | Number of | Number of
different different different different
integers integers integers integers

of 0 of T of 2 of 3
1 0 0 6 3
2 1 0 7 1
3 2 0 4 3
4 2 0 4 3
5 0 1 4 4
6 0 2 6 1
7 0 2 1 6
8 1 1 5 2
9 1 1 1 6
10 2 1 6 0
11 2 1 2 4
12 2 2 4 1
13 2 2 5 0
14 1 2 3 3
Table 2

The statement Py4 13 ¢ '3(P) is true. Its proof is an immediate conse-
quence of Proposition 4 and Theorem 1. In order to show the truth of the
statement Pj5 14 ¢ Fa(P) we assume Pj514 = (1 * Pig) uPis Cog is (a, d)-
antimagic. According to Proposition 4, (a, d) is either (37,2) or (8,4). The
first case is not possible because of Theorem 1. Therefore we only have to
investigate if it is possible that there exists a (8, 4)-antimagic labeling f of
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Py5,14 such that amax = 124. As each vertex value of f is even the 15 edges
of Co9 — Py5 are labeled either by 15 even numbers or by 15 odd numbers of
the set {1,2,...,44}. Then Figure 8 shows the two possible distributions of

Figure 8

even and odd numbers of {1,2,...,44} for Pi5 14. In both cases f implies
the smallest possible value f(v) at the vertex v as the sum

fw)=2+4+---+28+4+1=211
or
fW)=2+4+...+22+143+5+7=148

contradicting amax = 124. This completes the proof of Py5,14 ¢ I's(P).

In case of Py3 3, the assumption Py3 ;, € I's(P) implies because of Propo-
sition 4 that (a, d) is either (32,2) or (7,4) where the first case is not possible
according to Theorem 1. Consequently it remains to prove that the exis-
tence of a (7,4)-antimagic labeling f of Pi3 12 with amay = 107 leads to a
contradiction. This proof is very lengthy and similar to the proof that the
parachute Py g is not (5,4)-antimagic. Therefore, we omit details and state
that P13'12 ¢ La(P ) is true.

The last statement of (b) is Pl2,11 ¢ Ls(P). Assume P]z,u = (1
Py2) UP3 Cyg is (a, d)-antimagic. Then it follows from Proposition 4 that
(a, d) is either (41,1) or (18,3). While the first case can be omitted because
of Theorem 1 we have to investigate whether the existence of a (18, 3)-
antimagic labeling f of Py3 1; with amax = 87 leads to a contradiction. In
order to do this we start from the fact that each vertex value of f in P21
is a multiple of 3 such that the distribution of the numbers of the residue
classes 0, T, 2 modulo 3 for the 12 edges of Cy3 — Pi3 is unique and shown
in Figure 9.

141



0 9—0—°—0_- 900069 —0—0—0
1 2 1 2 1 2 1 2 1 2 1 2
Figure 9

If the value f(v) at the vertex v of degree 12 has 10 or 8 or 6 summands
from O then f(v) is greater than 165 or 108 or 90, respectively, and we
obtain the contradiction to amax = 87. Therefore, it remains to check the
case where f(v) has 4 summands from 0, T and 2, each. It is necessary that

f(v) is equal to amax = 87.

Case | 4 possible 4 possible 4 possible
summands | summands | summands
from 0 from T from 2
1) | 3+6+4+9+12 | 14+4+7+10 | 24548420
2) 24-5+11+17
3) 2+-8+11+14
4) | 3+6+9+12 | 14447419 | 24-5+8+11
5) 144410416
6) 147410413
7) | 3+6+9+21 | 14+4+7+10 | 245+8+11
8) | 3+6+12+418
9) | 3+9+124-15
10) | 34+6+9+12 | 14+4+47+13 | 24548417
11) 2+5+11+14
12) | 3+6+9+12 | 14+4+7+16 | 2+5+8+14
13) 1+4+410+13
14) | 3+6+9+18 | 1+4+4+7+10 | 24+5+8+14
15) | 3+6412+15
16) | 3+6+9+15 | 1+4+7+10 | 2+5+8+17
17) 2+5+11+14
18) | 3+6+9+18 | 14+4+7+13 | 245+8+11
19) | 3+6+12+15
20) | 3+6+9+15 | 14+4+4+7+16 | 2+5+8+11
21) 14+4+410+13
22) | 3+6+9+15 | 14447413 | 2+5+8+14
Table 3

Table 3 shows the 22 representations of 87 as sum with 12 summands such
that four are from 0, T or 2, respectively. As the integers 84, 81, 78, 75,
72 and 69 must necessarily appear at vertices of degree 3 and as 35 is
the greatest number available for edge labeling of Py2,11 by means of f it
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turns out to be a matter of routine checking of finding the contradiction by
proving that it is not possible to represent the six numbers 84, 81, ... ,69
by means of one of the 22 representations of 87 given in Table 3. For sake
of shortness we omit details. This completes the proof of Theorem 2.

An immediate consequence of Theorem 2 is

Corollary 1. T'3(P) is finite and consists of exactly 8 parachutes by
I's(P) = {Ps,2, Ps3, Ps 4, Ps,5, Pr,6, Pa,7, Pro,9, P11,10}

5 Finiteness of I'y(P)
Now we turn towards ['4(P). Putting b = g — 3 Proposition 1 becomes

Proposition 5.
/\ [Pyg-3 €T(p) = d < 4]

@EN
924

Since its proof is an immediate consequence of the proof of Proposition
1 we are allowed to omit details.

In order to illustrate that [4(P) is not empty we depict parachutes
P, 43 € T'4(P) and corresponding (a, d)-antimagic labelings for4 < g <9
in Figure 10.

Applying Proposition 5 we obtain

- 14
4 9 5

/171

3 12
a 4
25
P, , (5,4)-antimagic P., (10,2) -antimagic

Figure 10
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P, . (16,1)-antimagic Ps; (9,3)-antimagic

26

33 42

Pe.3 (15,2)-antimagic Ps.s (6,4)-antimagic

Figure 10 con’t
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P;.« (23,1)-antimagic P, (12,3)-antimagic

.59

Pqs.s (20,2)-antimagic Py (7,4)-antimagic

Figure 10 con’t
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Po.s (30,1)-antimagic Pg.s (15,3)-antimagic

Figure 10 con’t

Proposition 6. Let P, ,_3 € I's(P), g > 4. The corresponding Diophan-
tine equation of Py g4_3 is

(xv) 3(3g — 2) =2a+d(2g - 3)

and has the two different solutions (7Tn — 5,1) and (3n,3) if g =2n -1,
n >3, or (5n,2) and (n+3,4) if g=2n,n>2.

Proof: Putting b = g — 3 the equation (ii) becomes (xv). According to
Proposition 5 we know that d < 4 and we obtain the two solutions of the
statement of Proposition 6 by distinguishing the cases g odd and g even.

Now it is possible to point out that I'4(P) is finite.
Theorem 3. Let a € N be an arbitrary integer > 3.

(1) Ag>10 Po.g-3 is not (a,1)-antimagic.

(2) Ag>11 Po,g-3 is not (a, 2)-antimagic.

() Ag>13 Po,g-3 is not (a, 3)-antimagie.

(4) Ag>15 Po.g-3 is not (a,4)-antimagic.

Proof: If P, ,_3 denotes an arbitrary parachute in I';(P), the maximum
vertex value of each (a, d)-antimagic labeling f of Py 43 is equal to
99 +2gd—3d—6
o = 920 . .
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Solving the inequality
(xvi) m;-q S sgizg‘;-ad—s

we obtain the statements of Theorem 3. (xvi) is equivalent to
(xvii) g > d+4+ V& +5d+10.
Putting go(d) = [4 +d + V@ +5d + 10]+1 where [4 + d + V& +5d+10]

is the greatest integer less than or equal to 4 + d+ v/d% + 5d + 10. Putting
d=1,2,3 or 4 we obtain go(1) = 10, go(2) = 11, go(3) = 13 and go(4) = 15
proving Theorem 3.

As an immediate consequence of Theorem 3 we formulate the following
theorem expressing the finiteness of I'4(P) in the following way:

Pyo.t (25.2)-antimaglo

Figure 11

Theorem 4. I'y (P) is finite and consists of Py, Ps,z, Ps,a, Pz 4, Ps'5, Pg‘s
and P10,7~

Proof: Because of Figure 10 and Theorem 3 we only need to show that
there exists an (a, d)-antimagic labeling of Pyo,7 and that Py 43 ¢ I'4(P)
for g = 11,...,14. The first part is proved by Figure 11 showing a (25,2)-
antimagic labeling of Pigo7. For the sake of completeness it is mentioned
that Pyg 7 is not (8,4)-antimagic. As the proof is similar to the one given
above in case of Py514 We omit details.

Assume Py3 19 € T'4(P). According to Proposition 6 (a, d) is either (44,1)
or (21,3) contradicting Theorem 3 such that Py3,10 ¢ I's(P) is true.
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Assume Py; g € T'4(P). Then (g, d) is equal to (18,3) because the second
case (a,d) = (37,1) is not possible due to Theorem 3. Since each vertex
label of the (18,3)-antimagic labeling f is a multiple of 3 there are only
two essentially different distributions of the residue classes 0, T, 2 modulo
3 depicted in Figure 12. Then in both distributions,

Figure 12

it is necessary that the vertex label f(v) of the vertex v of maximum
degree in Py, g has the value 75 and that the 10 vertex labels 72, 69, 66, 63,
60, 57, 54, 51, 48 and 45 have to appear at 10 of the 11 vertices of degree
3 such that the sum
72469 + - - - + 45 = 585.

Then the best possible sum of edge labels of f is either
73+22+ 18442+ 2(30+29 +---+23) =579
in case (a) or
73+23+18+2—(30+29+ - +24) 4+ 2(22 4+ 21) = 578.

This contradiction means that the assumption Py g € I'4(P) is not true.

Now assume that Pyyy is an element of ['4(P). According to Theorem 3
and Proposition 6, (a, d) is necessarily equal to (10,4) such that apax = 110.
Since each vertex value of f in Py4,1; is even the 12 edges incident to at
least one vertex of degree 2 must be labeled either by 12 odd or by 12 even
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numbers in {1,2,...,39}. Discussing all possible cases of distributions one
obtains contradictions in any case such that the assumption P4 1; € I'4(P)
is not true.

Finally we assume Py39 € I'4y(P). According to Theorem 3 and Propo-
sition 6 (a,d) is equal to (9,4) such that amax = 93. It is not very difficult
to see that it is not possible to obtain the vertex values 89,85, 81, 77, 73,
69, 65, 61, 57 as sums of three summands from {1,2,...,33} for because of
89 = 33432424 and 85 = 33+31+21 the sum 24+21+(1+---+10) > 93.
This completes the proof of Theorem 4.

After this finiteness proof for I'4(P) it remains to investigate the set
['(P) \ (I's(P) UT4(P)) where we conjecture that this set is infinite. It
turns out that there are very nice parachutes in I'(P) \ (I's(P) UT4(P)).
For sake of length we will give this infiniteness proof in a further paper.
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