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ABSTRACT. With Burnside’s lemma as the main tool we de-
rive a formula for the number of oriented triangle graphs and
for the number of such graphs in which all largest cliques are
transitively oriented.

1 Introduction

Let n > 2. D, denotes the set of the unordered pairs {x,y}, with z,y €
{1,2,...,n}, z # y. We shall often write the elements of D, as zy and
call them dyads. The triangle graph T, has D, as its point set and two
points are adjacent if and only if they are not disjoint. T, for instance, is
the complement of the Petersen graph. T, has (3) points and (n — 2)(3)
edges. For i = 1,2,... ,n the set Dn; = {ij|j # i} of order n — 1 spans a
complete subgraph T, ;, and these subgraphs are edge-disjoint. If a subset
of Dy, consists of mutually non-disjoint dyads these dyads have a common
element, unless the subset has the form {zy, yz, zz}. It follows that if n > 4,
the Dy, ; are the cliques of maximal size in T,.

Replacing the edge {ij,ik} by either the arc (ij, ik) or the arc (ik, i5) for
all i # j # k # i we get an orienled triangle graph, in which the above
subgraphs T, ; become tournaments (a tournament is a directed graph in
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which there is precisely one arc between every pair of points; (7] is a general
reference on tournaments). By 2,, we denote the set of all oriented triangle
graphs with underlying graph T;..

These graphs often arise in the social sciences in the study of the per-
ception of similarity. For instance, in the complete method of triads ([8],
p. 263; [4], p. 92) one successively presents to a person all triples {a,b, c}
from a set of, say, colors or shapes. He is asked to decide, for all three pairs
{zy,zz} of dyads with {z,y, z} = {a,b, c}, whether y or z is more similar
to z, i.e., to produce the arc (zy, zz) or the arc (zz, zy). In the method of
mullidimensional rank order ([8], p. 263) a subject ranks, for every color z,
the other colors in order of degree of similarity to z, thus producing tran-
sitive orientations of the T, ;. Such orientations can also be derived from
data known as conditional prozimities, common in psychology ([2], p. 422;
[3], p. 154)). These consist of a prozimity measure s(z,y) for each ordered
pair (z,y), for instance the fraction of times a subject reports to have seen
y while = was presented. For each z the s(z,y) (provided they are mutu-
ally different) yield a linear order on the set of dyads zy. Circularity in the
resulting oriented triangle graphs is studied in [1].

If G is a group, V a set, and ¢ a homomorphism of G into the sym-
metric group on V, we say that G acts on V, by ¢, and that G is repre-
sented by ¢ as the permutation group ¢(G) on V. Each permutation =
in the symmetric group S, induces a permutation ¢, of D,, defined by
é={i, 3} = {n(3),7(5)}. Clearly S, acts on D, by ¢. Moreover ¢, is an
automorphism of T,,: its permutes the points of T,, (the dyads) preserving
adjacency (non-disjointness). Thus ¢(Sy) is a subgroup of Aut(T;), the
subgroup of Sym(D,,) that consists of the automorphisms of T;,. Clearly
the representation ¢ is faithful, i.e., injective, if n > 2. If n # 2,4 it is also
surjective, which we see as follows. An automorphism ¥ of T,, permutes
the cliques Dy, ;, so there is a # € Sy such that 3 maps T, ; onto T, x(;),
and the dyad i common to T, ; and T, ; must be mapped by % onto the
dyad w(i)w(5) common to Ty, (;) and Ty, x(j), SO ¥ = Pn.

For 7 € S, and A € Q, we define $,(A) to be the digraph in Q, having
as arcs the (¢ (zy), dx(z2)) = (w(z)n(y), 7(z)n(2)) for which (zy,zz) is
an arc in A. Then S,, acts on Q, by ® and &, is a graph isomorphism
from A to ®,(A).

Since every isomorphism between elements of 2, is an automorphism of
T.., we have

Lemma 1. Every isomorphism between two elements of Q,, n # 4, is
induced by some permutation in S,, which is unique if n # 2.

Thus the isomorphism classes of oriented triangle graphs are the orbits
{®.(A)|wr € S,} in Q, under the action & of S,, provided n» # 4. (For
the applications mentioned above this means that isomorphic ‘patterns’ of
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similarity arising from two sets of ‘stimuli’, both numbered 1,... ,n, can
be made equal by suitably renumbering one of the sets.)

2 The number of oriented triangle graphs

We first state Burnside’s Lemma, which gives a formula for the number of
orbits:

Burnside’s Lemma: Let G be a group that acts on a set V by &. For
g € Glet V, = {v € V|®,4(v) = v} be the set of fixed points of g. Then the
number of orbits in V' under the action & of G is

IGI7* 3 Vil.
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For a proof we refer to [5] (Corollary 15.3(a)), [6] (Theorem 5-2) or [7]
(Theorem 40). In fact in these references the lemma is stated for groups of
permutations of V only (our ®(G)), but the proof is easily adapted for the
slightly more general form above.

To be able to apply Burnside’s Lemma we must determine the number
of fixed points in Q, for each # in Sj,.

Let 7 € S, with n(z) = z, n(y) = z and n(2) = y for a certain triple
{z,y,z}. If (xy,zz) is an arc of A € Qy,, then (zz,zy) is an arc in ,(A),
so Px(A) # A, likewise if (zz,zy) is an arc of A. Using this fact we first
show that only a few elements of S, have a non-empty set of fixed points
in Q,.

Lemma 2. Let w € Sp,. There is a A € Q, with ®,(A) = A if and only if
there is an i such that the length of every cycle of = is divisible-by 2* but
not by 2i+1,

Proof: Let 7 induce an automorphism of A € Q,,. Suppose 7 has a cycle
of length 2'r and one of length 29s with r and s odd and ¢ < j. Then
ged(2r,27s) = 2*ged(r, s) is a divisor of 29~ 1s, so there are integers p
and g with 29~!s = 2rp + 29sq. Now, 72 " induces an automorphism of
A and fixes the elements of the first cycle. However, since 2irp = 2715

(mod 275), it pairwise interchanges the elements of the second cycle. As
we have seen above this is impossible. Conversely, let 7 be a permuta-
tion satisfying the condition in the lemma. The edge set of the undirected
graph T,, is permuted by ¢,. Pick one edge out of each cycle of this per-
mutation and orient it in an arbitrary way. If the edge {zy, 2z} in a cycle
of length m is oriented as (zy,zz) we orient the other edges of the cycle
as (wi(z)n¥(y), w9 (z)ni(z)), for j = 1,2,...,m — 1. We claim that we
now have an oriented triangle graph on which 7 induces an automorphism.
In fact it suffices to prove that (7™(z)7™(y), ™ (z)m™(2)) = (zy,zz2).
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Now {n™(z)n™(y), =™ (z)n™(2)} = {zy,xz} so =™(z) = z and either
7™ (y) = y, #™(2) = z or 7™(y) = 2, ®™(2) = y. The second, how-
ever, is impossible, since then the length 2¢s of the cycle of y and z in 7
is a divisor of 2m but not of m, so 2:~!|m but not 2¢jm, contradicting the
assertion that m is a multiple of the length 2'r of the cycle of z. a

We now determine the number of fixed points in 2, of a permutation
w in Sy, assuming that 7 satisfies the condition in Lemma 2 (for all other
« that number is 0). The proof of that lemma shows that the required
number is 2X(®), where A(r) is the number of cycles of the permutation of
the edges of T,, induced by w. We call these cycles e-cycles. Let ['(z,yz)
denote the e-cycle that contains the edge {ry,zz}. Let L, I, I, be the
lengths of the (not necessarily different) cycles of 7 that contain z, y and z,
respectively. Then the length of I'(z, y2) is lem (Iz,4, ;) (cf. the proof of
Lemma 2). We note that I‘(vr(:z:), 1r(y)1r(z)) = I'(z,yz) = I'(z, zy), so when
determining the I'(z, yz) we need only take one fixed z from every cycle of
w and combine it with unordered pairs {y,2z}. We distinguish four cases,
that are clearly disjoint.

1) Suppose that y and z are in the same cycle as xz. We have (‘*2‘ 1)
choices for {y, z}, each giving another e-cycle I'(z, yz), since #'(z) #
z for i = 1,2,...,lz — 1; so {zy,zz} occurs in I'(x,vw) only if

{vl w}={y’ z} .

2) Suppose that either y or z, say y, are in the same cycle as z and
that z is in another cycle. We have (I; —1)!, ways of choosing {y, z}.
I'(z,yz) = I'(z,y'2’) if and only if I'(z,y2z) contains {zy’,z2’}, and
thus if and only if 3’ = 7i(y) and 2’ = #*(z2), where i is a multiple of
Iz in {0,1,..., lcm (Iz,l;) — 1}. There being IZ! lem(l.,!;) of such 1,
the number of e-cycles we find is

Iz = 1),

Ellem(, 1) = (Iz — 1) ged(lz, ;).

3) Suppose that y and z are in the same cycle, other than that of z.
We have (‘¢) ways of choosing {y,z}. As in the end of the proof of
Lemma 2 it can be shown that ['(z,yz) = I'(z,y'2’) iff ' = 7i(y) and
2’ = m*(z) with i a multiple of I, in {0,1,...,lem (I;,!,) —1}. Hence
the number of e-cycles is

1 (1;) - %(ly — 1) ged(lz, &y).

Iz lem(ly, 1)

4) Suppose that x, y and z are all in different cycles. We have I, ways
of choosing {y, z}. We have I'(z, yz) = ['(z,y'2’) il ¥’ = 7*(y) and
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2’ = w'(z) with i a multiple of I in {0,1,..., lem (I5,{,,1,) — 1}.
Hence the number of e-cycles is
ly“ lxlyl‘
Iz lem(iz, Uy, L) = lem(l, L, 1)

Note that I'(z, yz) determines only the cycle of z and the unordered
pair of the cycles of y and z. This explains the 7} in the following
lemma, which collects the above results.

Lemma 3. Let w be a permutation in S, which satisfies the requirements
of Lemma 2. Let t be the number of cycles of m and let I;,1,,...,1; be
their lengths. Then the number of A € Qy, fixed by &, is 2(*) where ()
equals

Lill
;( ) Y - Decdl )+2ZZ Z ,cm&:,:,,k)

i g#Ei i JFi kA

Remark: Leaving the proof to the reader we note that the formula for
A(x) in the lemma can be rewritten as

Liljl
t— 2 chd(l.,l )+3 3 Z Icm(lu Ly be)”

Using Burnside’s Lemma we now have:

Theorem 4. For n # 4 the number of isomorphism classes of oriented
triangle graphs on () points is

il Z X (7)

1rES'

where S, is the subset of S, consisting of the permutations in S, that
satisfy the condition of Lemma 2 and A(w) is defined as in Lemma 3.

Note that also for n = 4 the number in the theorem is the number of
orbits in £, under the action of S,,.

To illustrate the calculation we tabulate the results for n = 5. In the table
s is the number of permutations of the particular type, A; is the number of
e-cycles found as in case j) above for a permutation of that type, and X is
the total number of e-cycles.
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type 8 A A2 A3 A4 A s
15 1 0 0 0 30 30 230
123! 20 1 4 2 3 10 5.212
5! 24 6 0 0 0 6 3.29

Yres, oMm) = 1,073, 763, 840

number of oriented triangle graphs on 10 points: 8, 948, 032
Table 1

For some other values of n the results can be found in table 2 in the next
section.

38 The number of oriented triangle graphs in which all the largest
cliques are transitively oriented.

For A € 2, let A; be the subgraph spanned by the n — 1 dyads ij, j # 4.
The A;, having the T,, ; as underlying graphs, are the largest tournaments
in A if n # 3,4. Let Q! consist of those A € Q, for which all A; are
transitive (such a A would be the outcome of an experiment in which, for
all z, the pairs zy of stimuli have been put into a linear order).

Lemma 5. Let # € S,,. There isa A € Q, with ®,(A) = A if and only if
all cycles of m have the same length.

Proof: Suppose A € Q, is fixed by # € S,. Let C) and C; be two cycles of
7 of lengths l; and ly, respectively, with !, # I, say l; < l5. A is also fixed
by o = 7. Let z and y be elements of the cycles C; and C, respectively,
and let (y1%2 --- yx) be the cycle of o containing y. Then k > 1. Either
(z1n, zy2) or (zy2,zy1) is an arc in A. In the first case applying o we see
that also (zy2, zys3), (zys, zya), - .. , (ZYx, zy1) are arcs; so we would have a
circuit, contradicting the transitivity of A;. Likewise in the second case.
So l; = ls. Conversely, suppose that all cycles of 7 € S, have equal length
l. Pick elements z;, z2, ... , zk, one from every cycle (k = n/l). Orient each
of the complete subgraphs Ty, z;, : =1,2,... , k as a transitive tournament
(there are ((n — 1)!)* ways to do so). For any other T, , there is a unique
pair (j,r) with j =1,2,...,l—1and r =1,2,...,k such that y = 7¥(z,.),
and we take as arcs the (yni(v),ynI(w)) for which (z,v,z,w) is an arc.
Thus T, y is transitively oriented and it is easily checked that 7 induces an
automorphism of the resulting oriented triangle graph. 0

Theorem 6. For n > 4 the number of oriented triangle graphs on (3)
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points with transitively oriented maximum cliques is

d((n - 1)1)°
; ((:4d!)) .

Proof: Again, by Burnside’s Lemma, we have only to consider the = € S,
satisfying the condition in Lemma 5. For a given d which divides n, the
permutations having all their cycles of length d can be constructed by first
selecting n/d disjoint subsets of order d, which can be done in

@) (29 @/ @)=/ (@2 (3))

ways. Each subset yields a cycle in (d — 1)! ways. So the number of
permutations 7 with cycles of length d is

/(@ ()

Since by the proof of the lemma each permutation leaves invariant
((n- l)!)"/d elements of (2;,, by Burnside’s Lemma the number of orbits
is

s (-0

By
din dd ('a')'
Substituting 5 for d we obtain the formula stated in the theorem. O

If n is a prime, the formula reduces to n~!((rn — 1)! + ((n — 1)!)"—1). As
in section 3 the number in the theorem is the number of orbits in £, under
Sp for n =4 as well. We tabulate some values resulting from Theorems 4
and 6, including the values for the case n = 4, to be discussed in the next
section.

oriented triangle graphs| oriented triangle graphs

n on (3) points| on (3) points with trans.
oriented maximum cliques

2 1 1
3 2 1
4 112 18
5 8,948,032 66,360
6 1,601,279,890,171,392 4,147,236,620
7 | 8,048,575,239,544,313,784,372,575,680 19,902,009,929,142,960

Table 2
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4 Thecasen=4

Q4 consists of the 212 orientations of Ty, which is the graph of the octahe-
dron. It contains 8 triangles of which 4 are spanned by triples {zy, zz,zw}
and 4 by triples {zy,yz, zz}. S; contains 1,6, 8, 3,6 permutations of type
14,1221,1131,22,41, respectively. Except for 122! they satisfy the require-
ments of Lemma 2, and by the formula of Theorem 4 (see the note just
after it) we find that there are

247122 +8.20+3.2546.23) =186

orbits in 4 under S;.

The automorphism group K of Ty has order 48. The 24 automorphisms
¢x, T € Sy, permute the triangles of type {zy, zz,zw}. The other 24 are
the ¥¢,, where ¢ is the permutation of D, mapping every dyad onto its
complement in {1,2,3,4} (geometrically the reflection of the octahedron in
its centre). They interchange the triangles of type {zy,xz, zw} with those
of type {zy, yz, 2z}. Note that ydx = ¢r¥).

We now apply Burnside’s Lemma for K. The sum of the numbers of fixed
points of the ¢, we know already: 24 - 186. For the ¥¢, with 7 of type
14,1221,113!,22 4!, respectively, the number of cycles of the permutation
induced on the edge-set of T is easily checked to be 6,7, 2, 8, 3, respectively.
Only in the case of 122! it turns out to be impossible to orient the edges
in every cycle in such a way that ¢, becomes an automorphism. (If, for
instance, 7 = (12)(3)(4), then ¥¢, interchanges the dyads 13 and 14, so it
would map the arc (non-arc) (13, 14) onto the non-arc (arc) (14, 13).)

Thus the number of oriented triangle graphs on 6 points is
4871(24-186 +264+8.22+3.22 +6-23) =112.

Let Qf be the set of all A € Q4 having all 8 triangles transitively oriented.

% is invariant under the action of K as well as under that of G. We want to
count the number of orbits under K. Note that 2} C € but that £} is not
invariant under K, since there are A € Q in which one or more triangles of
type {zy,yz, 2z} are oriented cyclically. 2} contains 6* = 1296 elements,
since each T} ; can be oriented as a transitive triangle in 6 ways. According
to the formula in theorem 6 they form 60 orbits under S;. Elements of €
that are not in the same of the 60 orbits could only be equivalent under the
larger group if they belong to Qf .

We first determine the number of elements in ), omitting details. By
inspection (use a planar drawing of the octahedral graph) one can establish
that there are 2- 33 . 6 = 324 ways to orient T3 such that all 4 triangles
{zy,zz,zw} become transitive whereas the triangle {23,34,42} becomes a
cycle. For 2-22.32 4+ 2.32 = 90 of these also {13,34,41} becomes a cycle,
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and for 2 + 23 = 24 of the latter {12,24,41} becomes a cycle too. Finally,
in 6 cases all four triangles {zy, yz, 2z} become cycles. Using inclusion and
exclusion we find that the cardinality of Qf is

4 4 4 4
1296 — (1) .324+(2) -90 — (3) -24 + (4) -6 =450

(which we confirmed by computer search).

We now determine how many of the 60 orbits under S, in 2} are in O,
i.e. we determine the number of orbits in Q4 under S4. By Lemma 5 we
have only to look at id., the 3 permutations of type 22 and the 6 of type 4!.
Careful inspection (again we omit details) shows that they leave invariant
450, 26 and 4 elements, respectively, so the number of orbits is

2471(4504-3-26 + 6 - 4) = 23.

Another inspection shows that for 7 of type 14,122!,113!,22 4! the per-
mutation ¢, leaves invariant 18, 0, 0, 82, 8, respectively, of the 450 ele-
ments of Q4. So under K the number of orbits in 2, and therefore the
number of oriented triangle graphs on 6 points with all maximal cliques
transitively oriented, is

4871(24.23+1-184+3.82+6.8)=18.

\

We have seen that the 23 orbits in 2§ under S; reduce to 18 under K.
We have also seen that, under K, there is no further equivalence between
the 37 orbits in Q) — QY. Each of them, however, is mapped by % onto one
of the 126 orbits in Q4 —Qj. Apparently the remaining 89 orbits (consisting
of the elements in which a triangle of type {zy, zz,zw} as well as one of
type {zy,yz, 2z} is cyclically oriented), reduce to 112 — 18 — 37 = 57.
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