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ABSTRACT. Let F and F’ be two forests sharing the same ver-
tex set V such that E(F) N E(F') = 0. By FU F’ we denote
the graph on V with edge set E(F)U E(F'). Since both F' and
F’ are 2-colorable, we have x(FUF’) < 4. In this paper we will
investigate forests for which we can actually obtain this upper
bound for the chromatic number. It will turn out that if nei-
ther F nor F' contain a path of length three then the chromatic
number of FU F’ is at most three. We will characterize those
pairs of forests F' and F’ which both contain a path of length
three and for which the chromatic number of F U F is always
at most three. In the case where one of the forests contains
a path of length three and the other does not contain a path
of length three we obtained only partial results. The problem
then seems to be similar to a problem of Erdos which recently
has been solved by Fleischner [2] using a theorem of Alon [3].
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1 Introduction

Let F and G be two graphs with the same number of vertices. A bijection
o: V(F) = V(G) is a packing from F into G if for every pair a and b of
adjacent vertices of F the vertices o(a) and o(b) are not adjacent in G. Of
course there is a packing from F into G if and only if there is a packing
from G into F. Hence we are justified in saying there is a packing of F and
G. The chromatic member of the packing ¢ from F into G is the chromatic
number of the graph o(F) U G whose set of vertices is the set V(G) and
whose edge set is o(E(F))U E(G) where o(E(F)) = {{o(a),0(b)}: {a,b} €
E(F)}. We will say that the packing o contains the complete graph K as
a subgraph if the graph o(F) U G contains K4. Note that if both F and
G are forests and the packing o from F into G contains K4 then o maps
a path of length three of F to a path of length three of G so that those
two paths form the complete graph K. This is so because the only way to
partition the edge set of K, into two forests is to partition the edge set of
K, into two paths of length three.

A packing of two forests has chromatic number at most four because
the chromatic number of a forest is at most two. The forests F° for which
there exists a 4-chromatic packing from F into F have been completely
characterized in [1]. Namely, there exists a 4-chromatic packing from a
forest F to F itself if and only if F contains a path of length three and F
does not consist of exactly two connected components where one of the two
components is a path of length three and the other is a star. In the case
of two different forests F' and F’ the situation is much more difficult. We
will prove, Theorem 1, that if neither F nor F’ contains a path of length
three then F and F do not have a 4-chromatic packing. If both forests F
and F’ contain a path of length three then they have a 4-chromatic packing
unless every connected component of F and F' is a star or a path of length
three, none of them contains an isolated vertex and one of them consists
of exactly two connected components, a star and a path of length three.
(Theorem 2).

If every connected component of one of the two forests is a star and the
other forest contains a path of length three we conjecture that they do not
have a -chromatic packing. We can not prove this conjecture but can show
that if it fails then it fails only in “large” instances. There is an interesting
way of looking at this problem. Assume that G is a graph of chromatic
number four. Is it possible to color some ofthe edges of G blue so that the
blue graph consists of vertex disjoint stars and every circuit of G contains
at least one blue edge?

If G is a graph and A C V(G) a set of verffces of G then we denote by
G — A the graph with V(G — A) = V(G) — A in which any two vertices
are adjacent if and only if the are adjacent in G. If G is a graph and H a
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subgraph of G then G— H = G-V (H). The length of a path is the number
of its eyes. The diameter of a forest F is the length of a latest path which
is a subgraph of F. We denote by P, the path of length n. An endpoint of
a graph G is any vertex of G whose valence is at most one. A vertex of G
which is not an endpoint is called interior point.

We will need several special graphs. A star is a tree with at most one
vertex whose valence is larger than one. A star contains at least one ver-
tex. The tree M; having five edges is constructed from P; by adding an
additional endpoint to P; which has distance two from one of the endpoints
of P;. The tree M> having five edges is constructed from P; by adding an
additional endpoint to Py which has distance three from both endpoints of
P4. The tree M3 having five edges is constructed from P; by adding two
additional endpoints to Ps in such a way that each one of them is adjacent
to one of the interior points of P; and so that they have distance three from
each other. A broom is any tree which has been constructed from a star
having at least three vertices by adding an additional endpoint adjacent to
one of the endpoints of the star. Note that every broom contains a path of
length three.

The endpoints a and b are a reducing pair of endpoints of the forest F
if they are either in different connected components of F or their distance
is larger than two. The reducing pair a, b of endpoints of F' preserves a
property P if F and also F —{a, b} have property P. The forest F is reduced
under property P if F has property P but does not contain a reducing pair
of endpoints which preserves property P.

We will use the following three packing lemmas of forests.

Lemma 1. Let F be a forest with the reducing pair a, b of endpoints and
F’ a forest with the reducing pair a’, b’ of endpoints. Assume that o is a
packing from F — {a,b} to F' — {a’,b’'}. Then there is an extension of o
to a packing from F to F’.

Proof: Denote by c the vertex of F adjacent to a and by d the vertex of F
adjacent to b. Note that ¢ # d. Denote by ¢’ the vertex of F’ adjacent to
a’ and by d’ the vertex of F’ adjacent to &'. Note that ¢/ # d’. Let o be a
packing from F — {a,b} to F’ — {a’,b'}. After possible renaming of a and
b and accordingly ¢ and d we may assume that o(c) # d’ and o(d) # .
We can then extend o to a packing from F to F’ by putting o(a) = b’ and
o(b)=a'. O

We will use this Lemma as follows. Assume that we wish to prove that
whenever F is a forest having some property P and G is a forest having
property Q then there is a packing (4-chromatic packing) from F into G.
We classify all reduced forests having property P and all reduced forests
having property Q and prove that every forest reduced under property
P has a packing (4-chromatic packing) with every forest having property
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Q and every forest reduced under property Q has a packing (4-chromatic
packing) with every forest having property P. The first examples of this
are the following two Lemmas.

Lemma 2. If G and F are two forests with the same number of vertices
and F contains an isolated vertex then there exists a packing from G into
F.

Proof: Using Lemma 1 we may assume that either G is reduced, which
implies that it is a star, or that F is reduced under the property that it
has an isolated vertex. In the first case it is easy to see that G and F have
a packing by mapping the center of the star G to the isolated vertex of F.
In the second case F has exactly two connected components, one being the
isolated point and the other a star, say S. We obtain a packing o from G
into F by mapping some endpoint e of G to the center of S and the vertex
adjacent to e to the isolated point of F. All the other vertices of G are
mapped to the endpoints of the star S. O

Lemma 3. If F and G are two forests each having at least two connected
components then there is a packing from F to G.

Proof: Using Lemma 1 we may assume that one of the two forests, say F,
is reduced under the property of having at least two connected components.
The reduced forest F contains then an isolated vertex. The Lemma. follows
from Lemma 2. a

2 The forests do not contain a path of length three

Theorem 1. If neither one of two forests contains a path of length three
then they do not have a 4-chromatic packing.

Proof: Assume for a contradiction that F° and G are two forests which
do not contain a path of length three and that they have a 4-chromatic
packing o from F into G. We will also assume that the number of vertices
n of F and G is minimal under those conditions. If ¢ maps an endpoint of
F to an endpoint of G then n is not minimal. (Note that if H is a graph
with chromatic number four containing a vertex z of valence at most two
then G — z also has chromatic number four.) Every connected component
of a forest which does not contain a path of length three is a star. Hence
if such a forest has n vertices it contains at least %n endpoints and hence
at most %n interior points. In order for n to be minimal the member of
endpoints of F' can be at most as large as the number of interior points of
G. But this would imply the contradiction 2n < in for n > 1. 0

164



3 Both forests contain a path of length three

Definition: A P;-star-forest is a forest which does not contain any isolated
points and in which every connected component is a path of length three
or a star. A P3-star-forest is simple if it contains exactly two connected
components one of which is a path of length three and the other a star.

Theorem 2. Two forests having diameter at least three and with the same
number of vertices do not have a 4-chromatic packing if and only if one of
the two forests is a Ps-star-forest and the other is a simple P3-star-forest.

Proof: We will first establish a series of nine claims.

Claim 1: A forest F washes reduced under the property of containing
the path P3 as a subgraph is either a broom or P4 or a forest with two
components one of which is P3 and the other is a star.

Proof of Claim: Assume that the forest F is reduced under the property of
containing the path P3. If F contains at least three connected components
then there are two of them with endpoints, say a in one and b in the other,
such that F — {a,b} still contains a P3. Hence we can assume that F
contains at most two connected components.

If F contains exactly two components then one of them must be a star,
otherwise we could remove two endpoints with distance larger than two
from one of the connected components.and the other one would still have
diameter two. If the component which is not a star is not a path of length
three we could remove an appropriate endpoint from it together with an
endpoint from the component which is a star and retain the property of
containing a path of length three.

We are left with the case that F is a tree of diameter at least three. Hence
F contains two endpoints a and b which have distance larger than two and
F — {a,b} is a star. Denote the center of this star by c. Because F" has
diameter at least three not both of the vertices a and b can be adjacent to
c. If one of them is adjacent to c and the other is not then F is a broom. If
both of them are not adjacent to ¢ then F contains a path, say a,a;,¢,b1,b
of length four. If the star F — {a,b} would contain any endpoint d beside
a1 and b; then e, d would be a reducing pair of endpoints of F such that
F — {a,d} would still have diameter three. Hence F is a path of length
four. a

Definition: A forest is coarse if it contains a connected component with
at least four edges and diameter at least three.

Claim 2: If F is a forest, which is reduced under the property of being
coarse, then it is one of the following:

a) A broom with at least four edges or a path of length four or five or
one of My, M2, Ms.
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b) A forest with exactly two connected components one of them being
a star and the other one a path of length four or a broom with four

edges .

Proof of Claim: Assume that the forest F is reduced under the property
of being coarse . As in the proof of Claim 1 we argue that F has at most
two connected components. If F has exactly one connected component then
F is either reduced under the property of having diameter at least three
or it has two endpoints a and b with distance larger than two such that
F — {a, b} is a path of length three. In the first case it follows from Claim
1 that F is either a broom with at least four edges or a path of length four.
In the second case F is either a path of length fivée or one of the graphs M,
Ms, Ms.

If F has two connected components then as in the proof of Claim 1, one
of the two connected components must be a star S. The other connected
component is a tree T which is reduced under the property of having at least
four edges and diameter at least three. We proved in the raves paragraph
that T is one of the trees listed under a) in the statement of Claim 2. If T
has five edges then F can be reduced by an appropriate endpoint of T and
an endpoint of the star S preserving the property that F is coarse. Hence
T is either a path of length four or the broom with four edges . a

Claim 3: If B is a broom and F a forest containing a path of length three
and B and F have the same number of vertices then B has a 4-chromatic
packing into F.

Proof of Claim: Let a;, by, c1, d; be a path of length three in F such that
a; is an endpoint of F and A, the forest F — {ay,b1,c1,d1}. Let a,b,c,d
be a path of length three in B and A be the forest B — {a, b, ¢, d}. Because
B is a broom either all vertices of A are adjacent to B or all vertices of A
are adjacent to c. We may assume that all vertices of A are adjacent to
b. Note that A; and A have the same number of vertices. We let o be a
packing from B into F given by o(a) = ¢;, o(b) = a3, o(c) = d;, (d) = b,
and such that o is a bijection from the vertices of A to the vertices of A;.
Clearly o is a packing and has chromatic number four because it contains
the complete graph on four vertices. O

Claim 4: If D is a forest which contains a connected component P which
is a path of length three, F is a forest which is coarse and D and F have
the same number of vertices then D has a 4-chromahc embedding into F.

Proof of Claim: We observe first that T contains a path a, b, ¢, d of length
three such that T — {a,b,c,d} contains an isolated vertex z. If T has
diameter at least four this can be achieved by choosing a path z, a, b, ¢, d
of length four in which z is an endpoint of T'. If T has diameter three then
any path a, b, ¢, d of length three will have this property because T has at

166



least four vertices. We choose the packing o so that the path o(P) of (D)
and the path a,b,c,d of F form a K4 and extend o by a packing o from
D — P into F — {a,b,c,d}. Such a packing a exists because F — {a,b,c, d}
contains an isolated vertex. a

Claim 5: If F and G are two forests with the same number of vertices and if
both are reduced under the property of containing a connected component
with at least four edges and diameter at least three then there is a 4-
chromatic packing from F into G.

Proof of Claim: We will investigate all pairs of forests described by Claim
2. If one of F or G is a broom then we are done by Claim 3. If one of
them, say F is a path of length four then, excluding the broom, there is
no other four edge forest described by Claim 2 besides the path of length
four itself. It is easy to find a chromatic pacing from Py to Py. Observe
that each one of the four trees on five vertices described by Claim 2 can be
reduced to a path of length three. Because P; has a 4-chromatic packing
into P; it follows using Lemma 1 that if both forests F' and G are one of
the four trees with five edges described by point a) of Claim 2, which are
non-broom trees, then F has a 4-chromatic packing into G.

If one of the forests, say F is one of the five edge trees and G is discon-
nected then G is a path of length four or a room with four edges together
with an isolated vertex. Hence again both forests F and G can be reduced
to a path of length three.

The last case is that both graphs F' and G have exactly two connected
components one of them being a star and the other a path or a broom
with four edges . Assume that a,b,c,d is a path of length three of F and
a3,by,c1,d; is a path of length three of G. F — {a,b, c,d} contains then an
isolated vertex, say =z and G — {a1,b1,c1,d;} contains an isolated vertex,
say y. Let F be the center of the star component of F and G be the
center of the star component of G. Let o be a packing from F to G such
that a4, b1, ¢1,d; and o(a), o(b),o(c),o(d) forms a complete graph on four
vertices, o(x) = g, o(f) = y and the endpoints of the star component of F
are mapped to the endpoints of the star component of G. a

Claim 6: If F and G are two forests with the same number of vertices and
both being coarse, then the two forests have a 4-chromatic packing

Proof of Claim: Using Lemma 1 and the remarks after that Lemma we
may assume that the forests are reduced in such a way that both forests
contain a path with at least three vertices and one of the following three
cases occur:

a) One of the two forests is reduced under the property of containing a
path of length three. The other forest is coarse.
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b) Both forests are reduced under the property of being coarse.
¢) One of the forests is reduced under the property of being coarse.

Every connected component of the other forest is either a star or a path
of length three and it contains at least one connected component which is
a path of length three. In the first case we use Claim 1 to deduce that
one of the two forests, say F, is either a broom or P;or a forest with two
components one of which is Ps and’the other is star. The other forest, say
G, contains a connected component T with diameter at least three which
also contains at least four edges . If F is a broom we are done using Claim
3. If F is a path of length four then G too must be a path of length four
and any two paths of length four have a 4-chromatic packing. If F contains
a connected component which is a path of length three we use Claim 4.

In case b) the present Claim follows from Claim 5 and in case ¢) from
Claim 4. a

Claim 7: Assume that F and G are two forests having the same number
of verses and that each contains a connected component which is a path of
length three. If each one of the forests F and G has at least three connected
components then they have a 4-chromatic pacing.

Proof of Claim: Let P be a path of F of length three and Q be a path
of G of length three. Choose a packing ¢ from P to Q such that o(P)UQ
is the complete graph on four vertices. The forests F — P and G — Q have
both at least two components and hence by Lemma 3 the packing o can be
extended to a packing from F to G. (]

Claim 8: Let G and F be forests with n vertices in which every connected
component is either a star or a path of length three. The forest has almost
two connected components of which not more than one is a path of length
three. Then if o is a 4-chromatic pacing from F into G, o must contain the
complete graph K.

Proof of Claim: Assume for a contradiction that F has a 4-chromatic
packing o into G which does not contain K;. We also assume that n is
minimal. If o maps an endpoint a of F to an endpoint b of G then the
restriction of o to F — a will be a four chromatic packing from F — a to
G — B which also does not contain K4. This will be in contradiction to
the minimality of n. Hence every endpoint of F is mapped to some interior
point of G which implies that the number of interior points of G is at least
as big as the number of endpoints of F. The number of endpomts of Fis
at least n — 3 and the number of interior points of G is at most §n We get
n-3< 2n. and hence n < 6. If n = 6 the forest G contains at most two
interior points and F at least four endpoints. If n = 5 the forest G contains
at most two interior points and F contains at least three endpoints. This
leaves n = 4 but the only four chromatic graph on four vertices is K;. 0O
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Claim 9: Let F and G be forests with n verses and diameter three in
which every connected component is either a star or a path of length three.
There exists a 4-chromahc packing from F into G unless one of the two
forests consists of exactly two components one of which is a star and none
of the two forests contains an isolated vertex. In this case the two forests
do not have a 4-chromatic packing.

Proof of Claim: We prove first that, unless one of the two forests consists
of exactly two components one of which is a star and none of the two forests
contains an isolated vertex, there exists a 4-chromatic packing from F into
G. If each of the two forests has at least three connected components then it
follows from Claim 7 that they have a 4-chromatic packing. Hence we may
assume that one of them, say F, has exactly two connected components.
Assume that P is a path of length three in F and Q is a path of length
three in G. If one of the two forests would contain an isolated vertex then
we could map P to Q to form a K, and then continue this map to a packing
using Lemma 2. So neither F nor G has an isolated vertex. If the second
component, say S, of F is a star we are done. If S is also a path of length
three then G — Q is either a path of length three or it contains an isolated
point or it consists of two nonadjacent edges or it is a star. It is easy to
see that unless G — Q is a star, in which case we are done, S has a packing
into G — @ and hence F has a 4chromatic packing into G.

For the other direction we have to show that if neither F' nor G contains
an isolated vertex and if F' consists of exactly two connected components
one of them being a path P of length three and the other a star S then F
does not have a 4-chromatic packing into G. Assume for a contradiction
that o is a 4-chromatic packing from F into G. We deduce from Claim
8 that there is a path @ of length three in G such that o(F) U Q form
a complete graph on four vertices. The restriction of the packing o to
F — P = S is a packing from the star S to the forest G — Q. This is
only possible if G — Q contains an isolated vertex v. Because Q must be a
connected component v will also be an isolated vertex of G. a

We are now in the position to finish the proof of Theorem 2. Let F
and G be two forests of diameter outlast three with the sin number of
vertices. Note that if a forest is not a Psz-star-forest then it contains a
connected component of diameter at least three having at least four edges
. Hence if both forests are not Ps-star-forests then the Theorem follows
from Claim 6. If one of the forests is not a P3-star-forest but the other one
is a Ps-star-forest, hence contains a connected component which is a path
of length three, then the theorem follows from claim 4. If both forests are
P3-star-forests the theorem follows from Claim 9.
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4 One of the forests contains and the other does not contain a
path of length three

Let F and G be two forests with the sin number of vertices. As mentioned
earlier, if one of the forests, say F, contains no path of length three (that
is, if F is a anion of stars), we know no example of a pair F,G that would
have a 4-chromatic packing. In fact, we conjecture the following.

Conjecture 1: If F and G are forests with the same number of vertices
such that every component of F is a star, then every packing of F' into G
is 3-colourable.

It is easy to check that this conjecture is equivalent to the following one.

Conjecture 2: Let F be a forest whose every component is a star, and
let T be a tree edge-disjoint from F but on the same vertex set. Then,
x(FUT)<3.

If true, then the second conjecture is sharp in the following sense. If
the tree T is replaced by a unicyclic graph, the chromatic number of its
edge-disjoint union with a forest consisting only of stars can jump to four.
This is witnessed on any wheel with an odd number of spokes, where the
unicyclic graph is a hamiltonian cycle of the wheel.

We contribute to the second conjecture by showing that it is true for any
tree and any forest that contains at most four nontrivial components, all
of them stars. Also, we show that this conjecture is valid for all trees of
diameter at most 11, irrespective of the number of stars in F.

4.1 Reduction Lemmas

Throughout, F will denote a forest whose each component is a star (note
that we allow also trivial 1-vertex stars), and T will denote a tree; both F
and T share the same vertex set V but are edge-disjoint. As usual, FUT
win denote the graph with vertex set V and edge set E(F)U E(T). By
dg(u) or dr(u) we denote the valency of the vertex « € V in F and T,
respectively. The vertices in V that are central vertices of stars in F will
be called essential, the vertices v € V with dp(v) < 1 will be peripheral
Thus, isolated vertices of F as well as endvertices of isolated edges in F
are both essential and peripheral. This ambiguity will prove convenient in
statements of our results.

For any graph H and v € V(H) we denote by H —V the graph obtained
from H by deleting the vertex v. If e € E(H) and F ¢ E(H), then H —e
(or H + f) denotes the graph that arises from H by deleting the edge e
(or adding the new edge f) while keeping the vertex set unchanged. If
u,v € V(H), the symbol H/uv stands for the graph obtained from H by
identifying the vertices u and v (and suppressing parallel edges, if any, as
well as the “loop” if uwv € E(H)).
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In the subsequent reduction lemmas, we always construct a new forest
F’ from F and a new tree T” from T such that V(F') = V(T") and E(F')n
E(T’) = 0. To simplify the statements, the symbol F'UT’ —3 FUT means
that every 3-coloring of F’ UT’ extends to a 3-coloring of FUT.

Reduction Lemma 1: Let v € V be a peripheral vertex which is also an
endpoint of T. Put F = F —vand T' =T —v. Then, FUT' =3 FUT.

Proof: Since v has valence at most 2 in F U T, the extendibility of 3-
colorings is obvious. O

Reduction Lemma 2: Let v;,v2 € V be peripheral verses, both adjacent
to an essential vertex u in F. Assume that there is a vertex w € V such that
vyw,vow € E(T). Let F' = F/vyv; and TV = T/vyv2. Then, F'UT’ —3
FuT.

Proof: Let v denote the vertex obtained by identifying v; with vo. Then,
any 3-coloring of the smaller graph extends to one of F U T obtained by
assigning to both v; and vy the color of v and keeping the colors of other
vertices unchanged. ()

Reduction Lemma 3: Let u;, u2, us € V be essential vertices such that
ujug, uzug, € E(T) and wyug ¢ E(F). If F' = F/ujuz and T' = T/ujus,
then FFUT' -3 FUT.

Proof: Similar to the above and therefore omitted. a

Reduction Lemma 4: Let u;, u2 € V be essenhal vertices, let ujvy, ugus €
E(F), (vi # u;) and uy,up & E(T). Assume that e = ujvz € E(T) and that
v and uy are in the same component in the graph T'—e. Put F' = F/u,ju,,
T’ = (T — e)/ujuz. Then, F'UT’ —3 FUT.

Proof: Let u be the vertex obtained by identifying u; with uz. Then, any
3-coloring of F’ U T’ extends to one of FUT by assigning the color of u to
both u; and uz. No conflict can occur, because vou € E(F’ UT’) and thus
the colors of v; and u; in F UT will be different (and the edge e can be
safely inserted back to obtain FUT). O

Reduction Lemma 5: Let u;v;, ugve be two edges of F' where both u,
and uy are essenhal vertices and uj,u2 & E(T). Let e = ujvs € E(T),
f = uov; € E(T), and let uy add vz belong to the same component of
T — e. If F contains at least 3 components, then there always exists a
new edge g such that 77 = ((T — e — f)/u1u2) + g is a tree. Moreover,
F/ujupUT' -3 FUT.

Proof: Again, let u arise by identifying u; with ua. Now, (T'—e — f)/uju2
has exactly 2 components T} and T>. We have two possibilities: Either
vy € V(T}) (say) and vp,u € V(T3), or vy,v3 € V(T}) and u € V(T3). Due
to the fact that F has at least 3 components, in either case there is a new
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edge g (not in F/ujus) such that T’ = ((T'—e — f)/uju2) +g is a tree. The
coloring extension procedure is the same as in the preceding lemma. 0O

4.2 Results

As in the preceding section, let F be a forest consisting of star components
only and let T be a tree with V(F) = V(T) =V and E(F)n E(T) = 0.
Denote by a(F) the number of non-trivial components of F (i.e., a((F) is
the number of stars in F' with at least one edge).

Proposition 1. If a(F) =1, then x(FUT) < 3.

Proof: Let v be essential vertex of F. Any 2-coloring of T' extends to a
3-coloring of F U T by assigning the vertex v a third color. a

Proposition 2. If a(F) =2, then x(FUT) < 3.

Proof: The assertion is trivially true for small graphs. We proceed by
induction on the cardinality of V. Let u; and u2 be essential vertices of the
two non-trivial stars in F'. We first take care of vertices that are isolated in
F. Suppose that w € V is isolated in F but both wu; and wu; are edges
of T. Forming F’ and T’ from F and T, respectively, by identifying u;
with u2 and combining Proposition 1 with Reduction Lemma 3 (where w
is considered as essential) we see that x(FUT) < 3. Thus, we may assume
that for every vertex w with dp(w) = 0 there exists a vertex u,, € {uy,u2}
such that wu,, @ E(T). Let us add all the new edges wu,, into F, obtaining
a forest F* consisting of two stars and no isolated vertices on the same set
V. If we show that x(F* UT) < 3, then we are done. In what follows we
thus assumne that F contains no isolated vertices.

Let v be a peripheral vertex in F. If v is also an endpoint of T', then the
graphs 7' =T -V and F' = F -V either satisfy the induction hypothesis,
or Proposition 1 applies (if the removal of v destroys a non-trivial star in
F). In either case, by Reduction Lemma 1 we have x(FUT) < 3. It
remains to deal with the case when no pendant vertex of T is peripheral.
But since o (F) = 2, it follows that then T must have exactly 2 endpoints,
i.e., T is a path with endvertices u; and ug, and wyuz ¢ E(T). The desired
3-coloring of F U T is now obtained from a 2-coloring of T — u; — u2 by
assigning u; and u; a third color. O

Proposition 8. If a(F) =3 then x(FUT) < 3.

Proof: The assertion is easily seen to be true if the graph has no more than
6 vertices. Again, we proceed by induction on the number of vertices. By
arguments similar to those in the preceding proof, we can restrict ourselves
to the case when F contains no isolated vertices and no endpoint of T' is a
peripheral vertex of F. It follows that T has at most three pendant vertices
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that are, at the same time, essential vertices of F (of valence at least 2 in
F).

In this situation, it is easy to check that there exists a pendant edge of
T, say, e = uyv, such that u; is essential and v is peripheral (and adjacent
to another essential vertex in F'). But then, it is possible to apply one of
the Reduction Lemmas 4 or 5. Combining Proposition 2 with the induction
hypothesis we conclude that x(FUT) < 3. O

Now we state and prove our first main result in this case.

Theorem 38.! Let F be a forest and T a tree with the same number of
vertices. If F contains at most four non-trivial components, all of them
stars, then every packing of F and T is 3-chromatic.

Proof: For the sake of simplicity we assume that F and T share the same
vertex set but are edge-disjoint. In view of the preceding results and their
proofs, we let a(F) be equal to 4. The case when F has 8 vertices can
be settled easily (e.g., using Reduction Lemma 1 and Proposition 3). We
proceed by induction on the number of vertices. As before, we may assume
that F' has no isolated vertices and that T has at most four endpoints that
are essential (and of valence at least 2 in F). Now, if T has at least three
such endpoints, then it necessarily contains a pendant edge (say) u;v where
u; is essential (and pendant in T') and v is peripheral. Applying the same
method as in the end of the preceding proof, we deduce that Reduction
Lemmas 4 or 5 combined with Proposition 3 yield x(FUT) < 3. We are
therefore left with the situation when T is a path.

Let w1, ug, ua, u4 be essential vertices of the four stars of F'. If one of the
pendant edges of T joined an essential vertex with a peripheral one, then we
would apply Reduction Lemma 4 or 5 again to conclude that x(FUT) < 3.
Therefore, each of the two pendant edges of T must join essential vertices;
without loss of generality we assume that u; and u4 are endpoints of T and
uyug, uguy € E(T). So, T = ujusv1v2...v,u3u, is a path with essential
vertices ujusuzuyg.

Colour ujuz by two different colours, set vg = uy, up4; = u3 and let ¢
be the least < in {1,2,...,p — 3} such that v; is joined by an edge of F to
ug Or u4.

If {is an integer, 1 < ¢ < ¢—1, v_; is and v;4 is not colored, the coloring
can be extended to v;, since this vertex has exactly two colored neighbors
—one in F and one (v;—;) in T.

Now suppose that v; are colored for all i < ¢ — 1 and vqu; € E(F) for
some j € {3,4}. Colour u; by the same color as vgq_; and ug_; by any of
the two remaining colours.

1We are grateful to the referee for supplying a substantial part of the proof of theo-
rem 3
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By analogous reasons as above if 1 is an integer, ¢+1 < i < p, v4; is and
v;_; is not colored, the coloring can be extended to v;.

Finally, if only v, is not colored, its three neighbors vg_1, v441 and u; are
colored by at most two colours and the coloring can be finished properly. O

As a counterpart to the above, we prove that F UT is 3-colorable when
T has “small” diameter, regardless of the number of stars in F.

Theorem 4. Let F be a forest whose each component is a star and let T
be a tree with the same number of vertices as F. If the diameter of T is
at most 11, then each packing of F and T is 3-colorable.

Proof: Again, let F and T be edge-disjoint and on the same vertex set V.
We employ induction on n, the number of vertices in V, and concentrate
only on the induction step. We can safely assume that every star in F is
non-trivial. Also, we may assume that every pendant edge of T joins two
essential vertices of F' (otherwise we could use reductions as in the preceding
proofs, noticing that they do not increase the diameter). Now, Iet u; be
an endpoint and ujuy a pendant edge of T. If dp(u;) = 1, then clearly
(FUT)—-u; —3 FUT. On the other hand, if dp(u2) = 1 and ugv; € E(F),
then we can for free interpret u, as a peripheral vertex and use Reduction
Lemma 4 (and the induction hypothesis) to show that x(FUT) < 3. It
therefore remains to consider the case when dp(u;) > 2 and dp(ug) > 2 for
every pendant edge uiug € E(T).

Let ¢ be the number of pendant edges in T'. Since the diameter of T is at
most 11, we have n < 5t+2. But every pendant edge gives rise to two stars
in F on at least 3 vertices each; thus, n > 6t. We have 6t < n < 5t + 2,
and hence ¢t = 2. Consequently, T is a path on at most 12 vertices and
F consists of at most 4 stars; but then x(F UT) < 3 by Theorem 1. The
proof is complete. a
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