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ABSTRACT. Using linear algebra over GF(2) we supply simple
proofs to three parity theorems: the Gallai’s partition theo-
rem, the odd-parity cover theorem of Sutner, and generalize
the “odd-cycle property” theorem of Manber and Shao to bi-
nary matroids.

1 Introduction
Gallai proved, more than 30 years ago, the following partition theorem.

Theorem 1. Let G be a graph, then:

(1) there exists a partition V(G) = AU B, AN B = ¢, such that in the
induced subgraphs (A) and (B) all degrees are even.

(2) there exists a partition V(G) = AUB, AN B = ¢ such that in the
induced subgraph (A) all degrees are even and in (B) all degrees are
odd.

O

A simple graph theoretic proof was given by Posa, while a more compli-
cated proof using linear algebra was given by Chen. For both proofs we
refer to the book of Lovasz [4].

A seemingly unrelated game called “The Garden of Eden”, has been
considered by Sutner [6]. The original problem goes as follows: Suppose
each of the squares of the n by n grid is equipped with an indicator light
and a button. If the button of a square is pressed, the light indicator of the
square changes from off to on and vice versa. The same change happens

ARS COMBINATORIA 42(1996), pp. 175-180



to the light of all the adjacent squares. Initially all the lights are off. Is it
possible to press a sequence of buttons in such a way that in the end all
the lights are on?

In graph theoretic notation this problem can be generalized and refor-
mulated as follows: Let G be a simple graph (without loops and multiple
edges), and denote, for every vertex v € V(G), by N(v) the set of all neigh-
bors of v in G including v itself. A subset Q@ C V(G) is called odd-parity
cover iff for every vertex v € V(G), [IN(G)N Q| =1 (mod 2). It is easy
to see that a graph G has an odd-parity cover iff the "Garden of Eden” is
solvable in G. Sutner [6] proved:

Theorem 2. Every simple graph G has an odd-parity cover. O
The proof is based upon unnecessary complicated linear algebra argu-
ments, similar to those of Chen in his proof of Gallai’s partition theorem.

Lastly, Manber and Shao [5] considered the following problem: A graph G
is said to have the “odd-cycle property” if there exists a subset @ C E(G),
such that for every cycle C in G, |E(C)NQ| =1 (mod 2). They [5] proved:

Theorem 3. A graph G has the “odd-cycle property” iff every block in G
is either a cycle or an edge. O
The proof is graph theoretical, using an ad-hoc argument.

Our main goal here is to supply very simple proofs to those three parity
theorems, with an emphasis on linear algebra over GF(2), on the algo-
rithmic aspects, and on possible extensions, and relations between those
theorems.

We now introduce some definitions and notation.

Let H(V, E) be a hypergraph with vertex set V and edge set E. The
incidence matrix B = B(H), of H, is an |E| x |V| matrix defined by

bes — 1 vi€ej
Y710 otherwise.

The characteristic linear system of H is the linear system, over GF(2),
BX =1, where 1 is the “all one” vector.

A set of vectors, A, in a linear space over GF(2) is called odd-zero family
(OZF in short) if |A| =1 (mod 2) and Xyc 4 = 0, over GF(2).
Our main tool is the following elementary result from linear algebra.

Theorem 4 [1]. Let BX =1 be a linear system over GF(2). Then there
exists no solution iff there is an odd number of row vectors in B whose sum
(in GF(2)) is the zero-vector O. o

In our notation, theorem 4 implies the following proposition.
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Proposition 1. Let H(V, E) be a hypergraph with an incidence matrix
B. Then BX =1 has no solution, over GF(2), iff E(H) contains an OZF,
namely there exists a subfamily A C E(H) such that |A] =1 (mod 2) and
Yeca = 0 (in GF(2)) where the sum of the edges is actually the sum of
their characteristic vectors.

2 Simple Proofs
We start with a simple proof of theorem 2.
Theorem 2: [6]. Every simple graph G has an odd-parity cover.

Proof: Consider the linear system BX = 1 over GF(2), where B = A+1,
A is the adjacency matrix of G, (see [3]) and I is the unit matrix of order
|V(G)|. Clearly G has an odd-parity cover iff BX = 1 has a solution, and
each solution corresponds to an odd-parity cover. Recall that by theorem
4, BX =1 has no solution iff there is an odd number of row vectors of B
whose sum is O in GF(2).

Suppose such an OZF of row vectors exists. These rows correspond to
vertices in G, say vy, vs,...,vx. Consider the subgraph H of G induced by
these vertices.

Since in B, £¥ 1b;; = 0 for j = 1,...,|G|, and by = 1, it follows that
in H all degrees are odd and |H| = k = 1 (mod 2) which is impossible.
Hence B cannot contain an OZF of row vectors and BX = 1 is solvable
over GF(2), thus G has an odd-parity cover. a

Let us now consider theorem 3 in the light of binary matroids. For a basic
information on matroids we refer to [7]. One of the many characterizations
of binary matroids is: ([7, p. 162]) M is a binary matroid it for every
two distinct circuits of M, say A and B, the symmetric difference AAB
contains a circuit (and is also the union of disjoint circuits).

Lemma 1. Let M be a binary matroid containing two intersecting circuits
A and B. Then there are in M three circuits X, Y, Z forming an OZF.

Proof: Choose from all the pairs of intersecting circuits in M a pair X and
Y for which | X UY| is the minimum possible. Let Z be a circuit in XAY.

Then both X N Z and Y N Z are non-empty, for in the other case a
circuit (Z) would be a proper subset of another circuit (X or Y'), which is
impossible. If (XAY') — Z is not empty, then either | XU Z| < |XUY]or
[YUZ| < |XUY|. In the first case the pair X, Z contradicts the choice
of X, Y. In the second case the pair Y, Z contradicts the choice of X, Y.
Hence XAY =Z and X, Y, Z forms an OZF. a

Let us modify the notion of odd-cycle property to the context of binary
matroids. A binary matroid M is said to have the odd-circuit property if
there exists a subset @ of the elements of M such that for every circuit C
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of M, |CNQ| =1 (mod 2). Note that the cycles of a graph G are the
circuits of the binary graphic matroid (see e.g. (7] chapter 10).
We can now extend theorem as follows:

Theorem 5.

(1) A binary matroid M has the odd-circuit property iff no two circuits
intersect.

(2) A graph G has the odd-cycle property it every two cycles are edge-
disjoint.

(3) If G has the odd-cycle property, and girth g(G) > k, then |E(G)| <
[(n — 1)/(k — 1))

Proof: Consider the hypergraph H(V, E), with V' the elements of M and £
the circuits of M. Let B be the incidence matrix of E and consider BX = 1.
Clearly M has odd-circuit property iff BX = 1 has a solution which holds
(by proposition 1 and by lemma 1) iff M contains no intersecting circuits.

This establishes the proof of the first two parts of the theorem.

Lastly, let G be a graph with the odd-cycle property and girth ¢(G) > k.
We proceed by induction on n = |G|.

For n < k claim (3) holds trivially. Consider an end-block D of G. This
block D is either an edge or a cycle C;, t > k by part (2) of the theorem.

Consider two cases.

Case 1: D is an edge with an end-vertex v. Consider F = G\{v}, and
apply induction on F to obtain |E(G)| = |E(F)|+1 < |k(n-2)/(k-1)| +
1=[k(n—2)/(k—-1)] + |k/(k-1)] < |k(n - 1)/(k—1)}.

Case 2: D is a cycle C,, t > k. Consider F = G\{C,}. Clearly |F| =

—t+1 and by induction |E(G)| = |E(F)|+t < |k(rn—t)/(k-1)] +t =
Tk — £/ — 1) + (k= Dt/ (k — 1)) [ (k(r— ) + (& — D) (& — D=
| (kn —¢)/(k1)] < | k(n = 1)/(k —1)] completing the proof.

Our last result relates Gallai’s partitions and odd-parity covers thereby
producing another simple indirect proof of Gallai’s theorem.

Theorem 6. The following two statements are equivalent.
(1) Every graph G has a Gallai’s partition.

(2) Every graph G has an odd parity cover.
Proof: (1) — (2). Consider G and let Vp be the set of vertices of even
degree in G. Form a graph H from G by adding a new vertex w which is

adjacent to all vertices of Vp. Apply Gallai’s partition on H to obtain two
parts A and B inducing subgraphs with all degrees even.
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Suppose w € A then B is an odd parity cover of G. Indeed all degrees
in B are even hence for every vertex v in B |[N(v) N B| —1 (mod 2), recall
that v € N(v). For every vertex v in A, v # w, the degree of v in A is even
but the degree of v in (A\w) is even iff (w,v) € E(A) which holds it v has
odd degree in G. Hence every vertex v € A, v # w is adjacent to an odd
number of vertices in B, namely [N|v|N B| — 1 (mod 2) and B is indeed
an odd-parity cover.

(2) — (1). Consider G and to every vertex v of even degree attach a new
vertex v’ which is adjacent only to v. In the resulting graph H all degrees
are odd. Let D = V(H)\V(G). Since it has odd-parity cover say A, put
B = V(H)\A. B is also an odd-parity cover because in H all degrees are
odd and the degrees in (A) and (B) are all even. Hence for every vertex v
of even degree in G, it follows that v€ Aiff v’ € Bandv € Biff v/ € A.

Hence in (A\D) and (B\D) all degrees are even producing the Galas
partition of G. O

Remarks:

(1) Since and odd parity cover can be found solving BX =1 (as in the
proof of theorem 2), and since the confirmation of the graph H in
the proof of the second part of theorem 6 can be implemented in
time O(n3) respectively O(n2). It follows that we can find a Gallai’s
partition and an odd-parity cover in time O(n3).

(2) The upper bound |k(n—1)/(k—1)] in part 3 of theorem 5 is essentially
best possible. It is not hard to give a construction that realizes this
bound. However, I refer to a theorem of Bollobas [2, p. 32] which
states that the maximum number of edges in a graph G without a
pair of vertices z, y having three vertex disjoint paths between them
is |3(n — 1)/2] and this bound is sharp. Clearly this is exactly a
graph in which every two cycles are edge-disjoint which shows that
our bound is exact for k = 3.

179



References

[1] Alon, N., Caro, Y.: On three zero-sum Ramsey-type problems. Journal
of Graph Theory. 17(1993) 177-192.

{2] Bollobas, B.: Extremal graph theory. Academic Press 1978.

[3] Harary, F.: Graph theory. Addison-Wesley Publishing Company. Third
Printing 1972.

[4] Lovasz, L.: Combinatorial problems and exercises. North-Holland,
Amsterdam. 1979.

[5] Manber, R., Shao, J.Y.: On digraphs with the odd cycle property.
Journal of Graph Theory 10(1986) 155-165.

[6] Sutner, K.: Linear cellular automata and the Garden-of-Eden. The
Mathematical Intelligencer, Vol. 11, No. 2 (1989) 49-53.

[7] Welsh, D.: Matroid Theory. Academic Press 1976.

180



