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Abstract

Let G be a finite group and let p;(G) denote the proportion
of (z,y) € G? for which the set {z?,zy,yz,y?} has cardinality
i. We show that either 0 < p1(G) + p2(G) < 1/2 or p1(G) +
p2(G) = 1, and that either ps(G) = 0 or 5/32 < p4(G) < 1.
Each of the preceding inequalities are the best possible.

1 Introduction

Given two elements, z,y, not necessarily distinct, in a finite group
G, we define the square of the set {z,y} to be the set {z2, zy, yz, y}.
Let

{@9) € 6%z, yp2 =i}
G |

Pi(G) = I

for 1 < i < 4. The values of the p;’s depend on the proportion of
pairs that commute, the proportion of pairs that have equal squares,
and the proportion of pairs that do both. Brailovsky and Herzog [1]
have shown that

1
G) = —
pl( ) |G|
ki—1
G) = ——
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k+ k., — 2k;
|G|

p4(G) = IGl )

p3(G) =

where k, k,, and k; denote the number of conjugacy classes, real
conjugacy classes (classes of elements that are conjugate to their
inverses), and involution conjugacy classes (including the identity
class) in G, respectively. It is clear that p; (G)+p2(G) = 1 if and only
if G is an elementary abelian 2-group, and all G for which p4(G) =0
have been classified in [2]. In this paper we will find upper and lower
bounds for p1(G) +p2(G) when it is less than 1, and upper and lower
bounds for p4(G) when it is greater than 0.

2 Bounds on p(G) + p2(G)

Since p1(G)+p2(G) = k;/|G]|, to find upper and lower bounds we need
only consider the possible number of involution conjugacy classes in
a group. Since k; = 1 whenever |G| is odd, k;/|G| can be arbitrarily
close to zero. We will find an upper bound for p;(G) + p2(G) for
groups G with p1(G) + p2(G) < 1, since the case where it equals 1
has already been done.

Theorem 1: Ifp1(G)+p2(G) # 1, then 0 < p1(G)+p2(G) < 1/2,
with equality if and only if G = Z4 X (Z3)™, or G = Dy x (Z2)™.

Proof: First we note that, since G % (Z2)", not all the conjugacy
classes of G are involution conjugacy classes, so k; < k. It is known (3]
that ¥/|G| = 1 if and only if G is abelian, and that otherwise 0 <
k/|G| < 5/8. Rusin [5] has shown that if 1/2 < k/|G| < 5/8, then
G/Z(G) = (Z)* for some n > 1. Since we can not have k; > 1/2
unless k > 1/2, we see that if p1(G) + p2(G) > 1/2, then G is
nilpotent, since either G or G/Z(G) is abelian. As a result, G =
Py x S where P is the 2-Sylow subgroup of G and S has odd order.
If S were not trivial, then

ki(G) _ kilP2) ki(S) k(S) _ 1 1
1G] T i T T B

so S must be trivial. Thus, G is a 2-group. We proceed by cases.
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e If G is abelian, then each element forms its own conjugacy class,
so to maximize k;/|G| it suffices to maximize the ratio of the
number of involutions in G to |G|. Since G % (Z3)™", the set of
involutions, I, forms a proper subgroup, so k;/|G| = |I|/|G| <
1/2. Equality in this case occurs only when G & Z; x (Z,)",
since no other abelian group has an involution subgroup half
its size.

o If G is not abelian, then, as shown by Miller in [4], |I| < 2|G]|.

Thus,
ko< HINZG)|+ 51— 2(G))
< 12(6)]+ 3111 - 12(6))
= J12©@)1+511)
< lel+3lel

1
= ;lal

As for the equality condition, Miller [4] has shown that I =
3|G| implies that G = Dy x (Z2)™. Since p1(G) + p2(G) = 1/2
in this case, the proof is complete.

3 Bounds on p(G)

We note that |{z2, 2y, yz,y?}| = 4 if and only if z and y neither com-
mute nor have equal squares. Freiman [2] has shown that p4(G) =0
if and only if G is abelian or G = Q x Z%, where Q is the quaternion
group of order eight. In this section we will demonstrate both upper
and lower bounds for p4(G) when it is nonzero, and we will show the
sharpness of each.

Theorem 2: The least upper bound for ps(G) is 1.

Proof: First note that p4s(G) < 1 because p;(G) > 0 for all G.
We construct a sequence (G,) of groups for which py(G,) — 1. Let
G = (D4)™. Since k(D4) =5 and k(G x H) = k(G)k(H), there are
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exactly 5" conjugacy classes in Gy. Since ps(G) > (|G| — 2k)/|G| for
any group G, this gives

pa(Ga) > 1-2- (D,

and the result follows. Clearly, D4 can be replaced here by any
nonabelian group G.

Theorem 3: If p4(G) > 0, then ps(G) > 5/32.
We begin by proving four lemmas that deal with the structure of
potential counterexamples.

Lemma 1: Ifn > 1 and Q is the quaternion group of order eight,
then py(Zan+1 X Q) 2 1/4.

Proof: Let (z,y) be a pair of elements in Zs, 41 X Q. The pair
does not commute if and only if its projections in @ do not commute,
and this happens with probability 3/8. Since all non-commuting
elements of Q have the same square, a non-commuting pair in Zap 41 X
Q has unequal squares if and only if its projections in Zp;11 are
distinct. This happens in exactly 2n/(2n + 1) of the pairs. It follows

that
(5) (51
8 2n+1
3n
8n+4’

P4(Z2n41 X Q)

I

which is an increasing function of n and takes the value 1/4 at n = 1.

Lemma 2: If N is a normal subgroup of G, then ps(G/N) <
p4(G).

Proof: If two elements in G have the same square, so do their
images in G/N. If two elements of G commute, so do their images in
G/N. Thus, p1(G/N)+p2(G/N)+p3(G/N) 2 p1(G)+p2(G) +p3(G),
and the result follows.

Lemma 3: If p4s(G) < 5/32, then k(G) > %|G|.
Proof: We recall that p4(G) = (|G| — k — k. + k) /|G| > (|G| —
2k)/|G|. Thus, if k < %|G|, then p4(G) > 5/32.
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Rusin [5] has shown that the only groups with k(G) > %|G | are
those G such that G/Z(G) is isomorphic to (Z2)", Dy, or S3. Now
p4(D4) = 1/4 and p4(S3) =1/3, so by Lemma 2, G/Z(G) cannot be
either Dy or S3 if p4(G) < 5/32. Thus if 0 < ps(G) < 5/32, we know
that G/Z(G) is an elementary abelian 2-group.

Lemma 4: If G is a group of minimal order such that 0 <
P4(G) < 5/32, then G is a 2-group.

Proof: As we have seen, G/Z(G) is an elementary abelian 2-
group, so G is nilpotent. As a result, we may write G = P; x --- X
Pp,, where the P;’s are the unique p;-Sylow subgroups of G. Since
G/Z(G) is a (non- trivial) 2-group, we may assign P, to be the 2-
Sylow subgroup of G. We will show that there are no other Sylow
subgroups. Suppose instead that Py,..., P, are non-trivial. Every
Sylow subgroup is a quotient group of G, so by Lemma 2 they each
have a p4 value that is no greater than that of G. By the minimality
of G, this means that ps(P;) = 0 for all i. By [2], this can only
happen if P; is abelian for every ¢ > 1, and either P; is abelian or
Py = Q x (Z5)" for some integer . If P is abelian, then G is the
direct product of abelian groups, so G is abelian, an impossibility.
Thus P = Q x (Z32)". But P, is the direct product of cyclic groups
of odd order, so the group Q X Z2,41 is a quotient group of G for
some positive n. But by Lemma 1, this has a p4 value that is at least
1/4, so by Lemma 2, p4(G) > 1/4, contradicting p4(G) < 5/32.

Proof of Theorem: Let G be a group of minimal order for which
0 < p4(G) < 5/32. From the previous lemmas, we know that G must
be a 2-group with more than %%IG | conjugacy classes. Rusin [5] has
shown that G must be one of the following two types:

1. G'=(22)% G' C Z(G), G/Z(G) = (2,)? or (Z5)*,
2. G'= 25, G' C Z(G), G/Z(G) = (Z3)**, where n > 1.

Case 1: The group G is of type 1 in the above list. In such
groups, k = &|G|, so k, < %|G|. Now if Z(G) is not elementary
abelian, then at least half of the elements in Z(G) have order at
least four. Hence at least |Z(G)|/2 conjugacy classes are not real, so
kr < k= 31Z(G)| < k ~ %I|G| = $|G|. But then k + k. < |G|,
and since there are at least four involution conjugacy classes (those
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in G'.), k+ k. — ki < Z|G|, so pa(G) > 5/32. Thus if ps(G) < 5/32,
Z(G) = (Z2)". But then, if n > 2, we may write Z(G) = G' x H,
where H & (Z;)"~2. We note that H is a normal subgroup of G, and
that (G/H) = Z(G/H) = Zy x Z5. By [5], the number of conjugacy
classes of G/H is still 7/16 the size of the group (the proportion of
conjugacy classes cannot decrease when taking quotients, and there
is no higher fraction of conjugacy classes possible in a non-abelian
group if the center is Z3 x Z3. But then p4(G/H) > 0, since k¥(G/H) =
%|G/H|, and p4(G/H) < p4(G), contradicting the minimality of G.
Thus n = 2, so Z(G) = G' = (Z2)%. But this means that |G| < 64,
while k; > 4, so k; > %|G|. Thus

IG| = k — ky + k;
p4(G) =
IG|

|G| — 2k + k;
- |G|

IG| — G| + |G|
- |G|
- 3
- 16’

contradicting p4(G) < 5/32, so this case is complete.

Case 2: The group G is of type 2 in the above list, and n = 1.
In this case, |G| = 2™*3, where |Z(G)| = 2™}, and k = 5|G|/8 =
5(2™). We write G' = {e, z}, where 2% = e, and we denote by I the
involution subgroup of the center (note that |Iz| divides 2™*!). We
again denote the number of cosets of Z(G) that contain an involution
by A, and note that, as before, an element y not in Z(G) that is not
an involution is in a real conjugacy class if and only if y2 = z. Let z be
an involution not in the center. Then an element of the form ¢, with
t € Z(G), is an involution if and only if e = (zt)? = 22t2 = ¢2, that is,
t is an involution. Similarly, if w? = z, then an element of the form
wt, with t € Z(G), has square z if and only if z = (wt)? = w?t? = 212,
that is, ¢ is an involution. Thus, if a coset contains an involution, it
contains exactly |Iz| involutions, and if it contains an element whose
square is 2, then it contains exactly |Iz| such elements. We consider
two cases, based on whether z is the square of an element in Z(G).

1. There exists t € Z(G) such that t> = z. Then |Iz| < 2™, since
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|[Iz| # | Z(G)|. We prove that a coset contains involutions if and
only if it contains elements whose square is 2. Suppose that
is an involution. Then zt € z2(G), and (xt)? = 2%t = 2.
Now suppose that y is an element whose square is z. Then
yt € yZ(G) and (yt)? = y*t?> = 22 = e. Thus the total number
of involution conjugacy classes is exactly k; = %(A —1)|Iz| +
[Iz| = (A + 1)|Iz|, and the total number of real conjugacy
classes which are not involution conjugacy classes is k, — k; =
3(A —1)|Iz|. Then

|G| - k- (kr - ki)

p4(G) =
|G|
_ 32— HA-1) ||
- 9m+3
S 3.2m— 1(3-2m)
= 9m+3
- 3
16

. There is no element in Z(G) whose square is z. We prove that
no coset of Z(G) contains both an involution and an element
whose square is z. Otherwise there would be an involution z
such that (zt)2 = z for some t € Z(G), in which case z =
(xt)? = 2%t? = t2, a contradiction. We denote by B the number
of cosets of Z(G) that contain an element whose square is z, and
note that B + A < 4, and since A > 1, B < 3. The number of
real conjugacy classes that are not involution conjugacy classes
is then k, — k; = B|Iz|/2. Now if |Iz| < 2™, this gives the same
series of inequalities as the last case (with B replacing A — 1),
so we need only consider |Iz| = |Z(G)|, that is, the case in
which Z(G) = (Z2)™*!. Then

m+3 _ om+2 _9gm _ 1 m+1
@) = TR r o py

3—-B

8

If B = 3, then p4(G) = 0, and if B = 1, then p4(G) =1/4 >
5/32, so we need only show that B cannot equal 2. Suppose
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instead that it does. Then let z and y be two elements whose
squares are z but which are in different cosets of the center.
Now 2 commutes with all of Z(G) and all of Z(G), so it cannot
commute with y, since then it would commute with over half of
the elements of the group. As a result, [z,y] = zyz~1y~! = 2.
Butz? =y’ =z, ' =zzand y~! = yz, 50 z = zy(z2)(y2) =
zyryz? = (zy)(zy). This means that the fourth coset of the
center, zyZ(G), also contains an element whose square is z,
namely zy, contradicting B = 2. This completes the proof of
this case.

Case 3: The group G is of type 2 in the above list with n >
2. Note that every conjugacy class in such a group has size either
1 or 2. We show that Z(G) must be cyclic. Assume instead that
Z(G) & Za x H, where G' € Zsa. Then py(G/Za:) > 0, since G/Zza
is not isomorphic to Q x (Z2)™ (since the index of its center is larger
than four), and ps(G/Z2:) < psa(G), contradicting the minimality of
G. Thus, in a minimal G with |G/Z(G)| > 16, Z(G) is cyclic. We
write Z(G) = (z), with |z| = 2™*! = |Z(G)|. The order of G is thus
22n+m+1 the number of conjugacy classes in G is 22*t™4+2™ and G’
consists of e and 22", the only two involutions in Z(G). We consider
the 227 cosets of Z(G), and we show that the number of involutions
in a given coset is equal to either two or zero. Suppose that  is an
involution. If zz* is an involution, then e = (zz?)(z2%) = 222% = 2%,
so either ¢ = 0 or 7 = 2™. Either of these values for 7 clearly yields an
involution, so there are exactly two involutions in the coset zZ(G).
We note also that since G/Z(G) is abelian, cosets of Z(G) are fixed
under conjugation, so the two involutions in the coset zZ(G) must
be conjugate, since they are the only elements in the coset to have
order 2. If we denote the number of cosets of the center containing
an involution by A, this means that k; = (A — 1) +2 = A + 1, since
there are two involution conjugacy classes in the center. Now we
consider the number of real conjugacy classes. Since all conjugacy
classes outside the center of G have size two, the only possible real
conjugacy classes that are not involution conjugacy classes are those
containing only an element and its inverse. Now suppose y is in a real
conjugacy class and is not an involution. There must be some element
w € G such that w—lywy~1 = 22", since the derived group contains

188



only two elements. But then w™lyw = y22",and y~ ! = y2%", so the

order of y is four. Since G/Z(G) is an elementary abelian 2-group,
the square of each element is in the center, so an element has order
four if and only if its square is 22™, the only element in the center
with order two. Thus, the number of real conjugacy classes that
are not involution conjugacy classes must equal half the number of
elements not in the center with order four. We now divide the proof
into two cases, depending on the value of m.

1. First we consider the case m > 1. We will show that if an ele-
ment has order four, then its coset of the center also contains an
involution. Suppose that |y| = 4. Then y? = 22" = (22" "),
so yz~ (2" ") is an involution in the coset containing y. But if
z is an involution, then (z2%)2 = 22" if and only if i = 2™~ ! o
i = 3-2™"!, Thus there are exactly two elements with order
four in each coset containing an involution, so the total number
of elements of order four that are not contained in the center
equals 2(A — 1), and k, = k; + (4 — 1) = 24. Thus

IG| = k — ky + k;
ps(G) =
G|
22n+m+1 —92n+m _ 2™ _ 24+ A+1
= 22n+m+1
22n+m_2m_A+1
= 22n+m+1
2m(22n — 1) _ (22n _ 1)
2 22n+m+1

- 3(5) (%)
> (3)(3) (%)

E
64’
contradicting p4(G) < 5/32.

2. Now we consider the case m = 0. Here Z(G) = G' = 2,
|G| = 22°+1) and k = 22" + 1. Since conjugation fixes cosets
of the center, and each element shares a coset of the center
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with its inverse, all conjugacy classes are real, so k, = 22" 4 1.
Since every element’s square is either e or z, the number of
pairs with equal squares is (number of elements with square
e)? + (number of elements with square z)2. The total number
of involutions is still 24, so this is (24)2+(22"+!-24)%. By [1],
the number of pairs with equal squares is k,|G| = 2471227 +1)
so

24n+l + 22n+1 = 4A2 + 24n+2 _ 22n+3A + 4A2
0 — A2 - 22nA + 241’1—2 — 2211—2
A = 22n—1 + 2n—1.

Thus, k; > 22"~1 - 27"1 + 1, s0

22n+1 _ 2(22n + 1) + 22n—1 —on-1 +1

p4(G) 2 92n+1
22n—1 _ 2u—l -1
= 92n+1
> 2
- 32

with equality only if n = 2. Using the computer algebra system
CAYLEY, we found a group of order 32 with p4(G) = % that
had these properties, namely the central product of @ and Dj.
Since we have shown the existence and sharpness of the lower
bound, the proof is complete.
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