Locally P_n^k Graphs ## Dominique Buset Université Libre de Bruxelles Faculté des Sciences Appliquées, C.P. 165 50, Avenue F. Roosevelt - B-1050 Bruxelles Belgium ABSTRACT. We completely classify the graphs all of whose neighbourhoods of vertices are isomorphic to P_n^k $(2 \le k < n)$, where P_n^k is the k-th power of the path P_n of length n-1. #### 1 Introduction All graphs considered in this paper are undirected, without loops or multiple edges. K_n denotes the complete graph on n vertices, C_n the cycle of length n, P_n the path of length n-1, P_{\aleph_0} the two-way infinite path of denumerable length and \sim the adjacency relation. We shall say that a vertex v of degree d in a graph G is a d-vertex of G and we shall denote by G(v) the neighbourhood of v, that is the subgraph induced by G on the set of vertices adjacent to v in G. Note that if v_i and v_j are two adjacent vertices of G, v_i is a d-vertex of $G(v_j)$ if and only if v_j is a d-vertex of $G(v_i)$. If $v_i \sim v_j$, $N_{i,j}$ will be the set of all neighbours of v_i in $G(v_j)$, and so $N_{i,j} = N_{j,i}$. Given a positive integer k and a graph G, we denote by G^k the k-th power of G, that is the graph whose vertices are those of G, two vertices being adjacent in G^k iff their distance in G is at most k. Obviously $G^1 \cong G$. Given a graph G', a connected graph G is said to be locally G' if, for every vertex v of G, the subgraph G(v) is isomorphic to G'. There is an extensive literature on the determination of all graphs which are locally a given graph (see for example the bibliography at the end). The purpose of this paper is to answer a question raised by Topp and Volkmann [13]: which graphs are locally P_n^2 ? More generally, we will classify the graphs which are locally P_n^k for $2 \le k < n$. When k = 1, it is already known (Brown and Connelly [4] [5], Hell [11]) that for any given n > 3, there are infinitely many non-isomorphic graphs which are locally P_n (it is easy to check that there is no locally P_3 graph and that K_3 is the only locally P_2 graph). Our main result is the following: **Theorem.** Let k and n be integers such that $2 \le k < n$ and let G be a locally P_n^k graph. - (i) If n = k + 1, then $G \cong K_{k+2}$. - (ii) If n = 2k + 2, then G has at least 3k + 4 vertices. For every integer $m \ge 3k + 4$, there is a unique locally P_{2k+2}^k graph on m vertices, namely C_m^{k+1} ; the only infinite locally P_{2k+2}^k graph is $P_{N_0}^{k+1}$. - (iii) If $n \neq k+1$ and $n \neq 2k+2$, there is no locally P_n^k graph. #### 2 Lemmas The following properties of the graphs P_n^k will be used to establish our theorem. The proofs are omitted since they are very easy. **Lemma 1.** P_n^2 has two adjacent 3-vertices iff n=4 or 5. **Lemma 2.** If $n \ge k+2$, P_n^k has exactly two k-vertices and they are non-adjacent. **Lemma 3.** If $n \ge 2k+2$, the subgraph induced by P_n^k on the set of neighbours of any vertex of degree k+1 is a complete graph on k+1 vertices with one missing edge (whose end vertices are respectively of degree k and 2k in P_n^k). If a_1, \ldots, a_n are the vertices and $[a_i, a_{i+1}]$ $(i = 1, \ldots, n-1)$ the edges of P_n , we shall say that $a_1 \sim a_2 \sim \cdots \sim a_n$ is a basic path of P_n^k . **Lemma 4.** If $n \ge 2k+3$, then a_j and a_{n-j+1} $(j=1,\ldots,k)$ are two (k+j-1)-vertices of P_n^k , all the other vertices being 2k-vertices. **Lemma 5.** If $n \ge 2k+3$ and if v and v' are two adjacent vertices of P_n^k such that v is a (k+r)-vertex (r=1 or 2) and v' is a (k+s)-vertex of P_n^k with $r < s \le k-1$, then v' is adjacent to every neighbour of v distinct from v'. #### 3 Proof Of The Theorem Let v_0 be any vertex of a graph G which is locally P_n^k with $2 \le k < n$ and let v_1, v_2, \ldots, v_n be the vertices of $G(v_0)$, the edges of $G(v_0)$ being those of a graph P_n^k constructed over the basic path $v_1 \sim \cdots \sim v_i \sim v_{i+1} \sim \cdots \sim v_n$. - 1) If n = k + 1, then $P_n^k \cong K_{k+1}$, and so obviously $G \cong K_{k+2}$. - 2) If $k+2 \le n \le 2k+1$, then v_{k+1} is adjacent not only to v_0 but also to the n-1 vertices of $G(v_0)$ distinct from v_{k+1} . Since v_{k+1} must be of degree n in G, it follows that $N_{k+1,1} = \{v_0, v_2, \ldots, v_k\}$. On the other hand, $N_{0,1} = \{v_2, \ldots, v_{k+1}\}$. Thus v_0 and v_{k+1} are two adjacent k-vertices of $G(v_1)$, contradicting Lemma 2. 3) If $n \geq 2k+2$, then $G(v_1)$ contains $v_0, v_2, \ldots, v_{k+1}$ and no other vertex of $G(v_0)$, and so v_1 must be adjacent to $n-k-1 \geq k+1 \geq 3$ new vertices $v_{n+1}, v_{n+2}, \ldots, v_{2n-k-1}$. Since v_0 is a k-vertex of $G(v_1) \cong P_n^k$, the set $N_{0,1} = \{v_2, \ldots, v_{k+1}\}$ contains exactly one (k+i)-vertex of $G(v_1)$ for every $i=1,\ldots,k$. It is no restriction of generality to assume that v_{n+j} $(j=1,\ldots,k)$ is the unique vertex of $G(v_1)$ which has an index > n and which is adjacent to exactly k-j+1 vertices of $N_{0,1}$ (thus for example v_{n+1} is adjacent to all vertices of $N_{0,1}$). Note that the 2k vertices $v_0, v_1, \ldots, v_{k-1}, v_{k+2}, \ldots, v_{2k}, v_{n+1}$ are all adjacent to v_k and v_{k+1} . Since 2k is the maximal degree of a vertex in P_n^k , it follows that $\{v_0, v_1, \ldots, v_{k-1}, v_{k+2}, \ldots, v_{2k}, v_{n+1}\} = N_{k,k+1}$. We claim that v_{k+1} is a (k+1)-vertex of $G(v_1)$. This is clear if n=2k+2 because the n neighbours of v_{k+1} in G are then exactly $v_0, v_1, \ldots, v_k, v_{k+2}, \ldots, v_{2k+1}, v_{n+1}$. If $n \geq 2k+3$ and if v_{k+1} is a (k+i)-vertex of $G(v_1)$ for some $i \geq 2$, then $v_{k+1} \sim v_{n+2}$ and so $v_k \not\sim v_{n+2}$ (because we have just proved that v_{n+2} cannot be a common neighbour of v_k and v_{k+1}). Therefore v_k is a (k+1)-vertex of $G(v_1)$, and so v_1 is a (k+1)-vertex of $G(v_k)$. But v_0 is clearly a (2k-1)- vertex of $G(v_k)$ and $v_1 \sim v_0$. If $k \geq 3$, Lemma 5 implies that v_0 is adjacent to every neighbour of v_1 distinct from v_0 in $G(v_k)$; in particular $v_0 \sim v_{n+1}$, a contradiction. If k = 2, v_0 and v_1 are two adjacent 3-vertices of $G(v_2) \cong P_n^2$ with $n \geq 7$, contradicting Lemma 1. Thus we have proved that for every $n \ge 2k+2$, v_{k+1} is a (k+1)-vertex of $G(v_1)$; more precisely, $N_{k+1,1} = \{v_0, v_2, \ldots, v_k, v_{n+1}\}$. It follows that all vertices of $N_{0,1} - \{v_{k+1}\}$ are adjacent to v_{n+1} and v_{n+2} . Since $v_2 \neq v_{k+1}$, v_2 is a (k+j)-vertex of $G(v_1)$ for some $j \in \{2, \ldots, k\}$, or equivalently v_1 is a (k+j)-vertex of $G(v_2)$ for some $j \in \{2, \ldots, k\}$. Since $N_{0,2} = \{v_1, v_3, \ldots, v_{k+2}\}$, v_0 is a (k+1)-vertex of $G(v_2) \cong P_n^k$ and so, by Lemma 3, the subgraph induced by $G(v_2)$ on $N_{0,2}$ is a complete graph with one missing edge whose end vertices are respectively of degree k and 2k in $G(v_2)$. But this missing edge is clearly $[v_1, v_{k+2}]$. We conclude that v_1 is a 2k-vertex of $G(v_2)$, or equivalently that v_2 is a 2k-vertex of $G(v_1)$. # Case I: $n \ge 2k + 3$ If k = 2, v_2 is a 4-vertex of $G(v_1)$, thus $G(v_2)$ contains $v_0, v_1, v_3, v_4, v_{n+1}, v_{n+2}$ and no other vertex of $G(v_0) \cup G(v_1)$. In $G(v_2)$, v_0 is a 3-vertex and v_1 , v_3 are 4-vertices with $v_1 \sim v_0 \sim v_3$. Since $v_4 \sim v_0$, v_4 must be a 2-vertex of $G(v_2)$ and so $N_{4,2} = \{v_0, v_3\} = N_{2,4}$. Since v_0 is a 4-vertex of $G(v_4)$, it follows that v_3 is a 3-vertex of $G(v_4)$. On the other hand, $N_{0,3} = \{v_1, v_2, v_4, v_5\}$, $N_{1,3} = N_{3,1} = \{v_0, v_2, v_{n+1}\}$ and $N_{2,3} = \{v_0, v_1, v_4, v_{n+1}\}$, thus v_1 is a 3-vertex and v_0 , v_2 are 4-vertices of $G(v_3)$ with $v_0 \sim v_1 \sim v_2$. Since v_4 is adjacent to v_0 and v_2 and since $n \ge 7$, v_4 must be a 4-vertex of $G(v_3) \cong P_n^2$, contradicting the fact that v_3 is a 3-vertex of $G(v_4)$. If $k \geq 3$, v_3 is distinct from v_{k+1} and v_2 , and so v_3 is a (k+s)-vertex of $G(v_1)$ for some $s \in \{2, \ldots, k-1\}$ (remember that v_{k+1} and v_2 are already known to be vertices of degree k+1 and 2k respectively in $G(v_1)$). Therefore v_1 is a (k+s)-vertex of $G(v_3)$ for some $s \in \{2, \ldots, k-1\}$. On the other hand, v_0 is clearly a (k+2)-vertex of $G(v_3)$. If k=3, v_0 and v_1 are two adjacent 5-vertices of $G(v_3) \cong P_n^3$, a contradiction because $n \geq 9$. If $k \geq 4$, v_0 and v_1 are two adjacent vertices of degree k+2 and k+s respectively in $G(v_3)$, with $2 < s \leq k-1$ (s=2 is impossible because P_n^k does not contain two adjacent (k+2)-vertices when $n \geq 2k+3$). By Lemma 5, v_1 is adjacent to every vertex of $N_{0,3} - \{v_1\}$; in particular, $v_1 \sim v_{k+2}$, a contradiction. ### Case II: n = 2k + 2 Clearly G has at least 3k + 4 vertices (namely $v_0, v_1, \ldots, v_{3k+3}$) and $G(v_1)$ consists of the following 2k + 2 vertices: $v_0, v_2, \ldots, v_{k+1}, v_{2k+3}, \ldots, v_{3k+3}$ where v_0 and v_{3k+3} are the only two k-vertices of $G(v_1)$. For any $i \in \{2, \ldots, k+1\}$, $G(v_i)$ contains at least the k+i vertices $v_0, v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k+i}$ (among which exactly k are adjacent to v_1) and so, since v_i is of degree n=2k+2 in G, v_i cannot be adjacent to more than k-i+2 vertices in the set $\{v_{2k+3}, \ldots, v_{3k+3}\} \subseteq G(v_1)$. Thus v_i is of degree $\leq k+(k-i+2)=2k-i+2$ in $G(v_1)$. But we know that $N_{0,1}=\{v_2,\ldots,v_{k+1}\}$ contains exactly one (k+j)-vertex of $G(v_1)$ for every $j=1,\ldots,k$. Therefore, for any $i\in\{2,\ldots,k+1\}$, v_i is a (2k-i+2)-vertex of $G(v_1)$ and, since v_i is of degree n=2k+2 in G, it follows that $G(v_i)=\{v_0,v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_{k+i},v_{2k+3},\ldots,v_{3k+4-i}\}$. From all the adjacencies known at present, we easily deduce that the subgraph $G(v_2)\cong P_{2k+2}^k$ is necessarily constructed over the basic path $v_{k+2}\sim v_0\sim v_{k+1}\sim \cdots \sim v_3\sim v_1\sim v_{2k+3}\sim \cdots \sim v_{3k+2}$. It follows that $v_{k+2}\not\sim v_{2k+3},\ldots,v_{3k+2}$. More generally, the examination of each subgraph $G(v_i)$ for $i\in\{2,\ldots,k+1\}$ shows that $v_{k+i}\not\sim v_{2k+3},\ldots,v_{3k+4-i}$ for these values of i. Observe now that G contains a subgraph isomorphic to P_{3k+4}^{k+1} , constructed over the basic path $v_{3k+3} \sim v_{3k+2} \sim \cdots \sim v_{2k+3} \sim v_1 \sim v_2 \sim \cdots \sim v_{k+1} \sim v_0 \sim v_{k+2} \sim \cdots \sim v_{2k+2}$ and that there is exactly one missing vertex in the subgraph $G(v_{2k+3})$. Let w_1 be this missing vertex. The known adjacencies and non-adjacencies imply immediately that there are only two possibilities for w_1 : either $w_1 = v_{2k+2}$ or w_1 is a new vertex v_{3k+4} . If $w_1 = v_{2k+2}$, then in the subgraph $G(v_{2k+3})$ (which must be isomorphic to P_{2k+2}^k) there is exactly one missing edge through each of the k vertices $v_{2k+4}, \ldots, v_{3k+3}$ and there are exactly k missing edges through the vertex v_{2k+2} . Therefore v_{2k+2} must be adjacent to $v_{2k+4}, \ldots, v_{3k+3}$. Note that each vertex v_{k+i} (i = 2, ..., k+1) is already adjacent to 2k+3-i vertices in G, and so v_{k+i} has at most i-1 new neighbours in G. On the other hand, in the subgraph $G(v_{2k+2})\cong P_{2k+2}^k$, the two vertices of degree k are necessarily v_0 and v_{2k+3} (because all their neighbours in G are already known) and each vertex $v_{k+i}\in N_{0,2k+2}$ ($i=2,\ldots,k+1$) must have i-1 new neighbours in the set $\{v_{2k+4},\ldots,v_{3k+3}\}=N_{2k+3,2k+2}$. Therefore v_{k+i} ($i=2\ldots,k+1$) must have exactly i-1 new neighbours in G and, since we already know that $v_{k+i}\not\sim v_{2k+3},\ldots,v_{3k+4-i}$, these i-1 new neighbours are uniquely determined in the set $\{v_{2k+4},\ldots,v_{3k+3}\}$. It follows that G itself is now completely determined and it is easy to check that $G\cong C_{3k+4}^{k+1}$. If $w_1 = v_{3k+4}$, then $v_{2k+2} \not\sim v_{2k+3}$ and, reasoning as before in the subgraph $G(v_{2k+3})$, we see that v_{3k+4} must be adjacent to $v_{2k+4}, \ldots, v_{3k+3}$. Thus G contains a subgraph isomorphic to P_{3k+5}^{k+1} , constructed over the basic path $v_{3k+4} \sim v_{3k+3} \sim \cdots \sim v_{2k+3} \sim v_1 \sim v_2 \sim \cdots \sim v_{k+1} \sim v_0 \sim v_{k+2} \sim \cdots \sim v_{2k+2}$. Note that $v_{2k+1} \not\sim v_{2k+4}$ because, if we assume that v_{2k+1} is adjacent to v_{2k+4} , then v_{2k+1} is necessarily a k-vertex of $G(v_{2k+4})$ and so v_{2k+1} is adjacent to $v_{2k+5}, \ldots, v_{3k+4}$, which implies that the degree of v_{2k+1} in G is at least 2k+3 > n, a contradiction. From this and the other known adjacencies and non-adjacencies, we deduce that there are only two possibilities for the missing vertex w_2 of the subgraph $G(v_{2k+4})$: either $w_2 = v_{2k+2}$ or w_2 is a new vertex v_{3k+5} . If $w_2 = v_{2k+2}$, then in the subgraph $G(v_{2k+4}) \cong P_{2k+2}^k$ there is exactly one missing edge through each of the k vertices $v_{2k+5}, \ldots, v_{3k+4}$ and there are exactly k missing edges through the vertex v_{2k+2} . Therefore v_{2k+2} must be adjacent to $v_{2k+5}, \ldots, v_{3k+4}$. Note that each vertex v_{k+i} $(i=2,\ldots,k+1)$ is already adjacent to 2k+3-i vertices in G, and so v_{k+i} has at most i-1 new neighbours in G. Similarly, v_{2k+3-i} $(i=2,\ldots,k+1)$ is already adjacent to 2k+3-i vertices in G, and so v_{2k+3-i} has at most i-1 new neighbours in G. On the other hand, in the subgraph $G(v_{2k+2}) \cong P_{2k+2}^k$, the two vertices of degree k are necessarily v_0 and v_{2k+4} (because all their neighbours in G are already known); moreover, $N_{0,2k+2} = \{v_{k+2},\ldots,v_{2k+1}\}$ and $N_{2k+4,2k+2} = \{v_{2k+5},\ldots,v_{3k+4}\}$. Using the preceding two remarks, we deduce that each vertex $v_{k+i} \in N_{0,2k+2}$ must have exactly i-1 new neighbours in the set $N_{2k+4,2k+2}$ and that these new neighbours are necessarily $v_{3k+6-i},\ldots,v_{3k+4}$. It follows that G is now completely determined and that $G \cong C_{3k+5}^{k+1}$. If $w_2 = v_{3k+5}$, reasoning as before, we are led to only two possibilities for the missing vertex w_3 in $G(v_{2k+5})$: either $w_3 = v_{2k+2}$ or w_3 is a new vertex v_{3k+6} . An easy induction argument finishes the proof. #### References - [1] A. Blass, F. Harary and Z. Miller, Which trees are link graphs? J. Combin. Theory Ser. B. 29 (1980) 277-292. - [2] A. Blokhuis and A.E. Brouwer, Locally 4-by-4 grid graphs, J. Graph Theory 13 (1989) 229-244. - [3] A. Blokhuis, A.E. Brouwer, D. Buset and A.M. Cohen, The locally icosahedral graphs, in C.A. Baker and L.M. Batten, eds., Finite Geometries, Proc. Winnipeg 1984, Lecture Notes in Pure and Applied Math. 103, Marcel Dekker, New York, 1985, 19-22. - [4] M. Brown and R. Connelly, On graphs with a constant link I, in New Directions in the Theory of Graphs. (F. Harary, ed.), Academic Press, New York (1973) 19-51. - [5] M. Brown and R. Connelly, On graphs with a constant link II. Discrete Math. 11 (1975) 199–232. - [6] F. Buekenhout and X. Hubaut, Locally polar spaces and related rank 3 groups, J. Algebra 45 (1977) 391-434. - [7] D. Buset, Graphs which are locally a cube, Discrete Math. 46 (1983) 221-226. - [8] J.I. Hall, Locally Petersen graphs, J. Graph Theory 4 (1980) 173-187. - [9] J.I. Hall, Graphs with constant link and small degree or order, J. Graph Theory 9 (1985) 419 -444. - [10] J.I. Hall, A local characterization of the Johnson scheme, Combinatorica 7 (1987) 77-85. - [11] P. Hell, Graphs with given neighbourhoods I. Problèmes Combinatoires et Théorie des Graphes (Colloq. Orsay, 1976). CNRS, Paris (1978) 219-223. - [12] P. Johnson and E. Shult, Local characterizations of polar spaces, Geom. Dedicata 28 (1988) 127-151. - [13] J. Topp and L. Volkmann, Antineighbourhood graphs, *Mathematica Slovaca* 42 (1992) 153-171. - [14] P. Vanden Cruyce, A finite graph which is locally a dodecahedron, Discrete Math. 54 (1985) 343-346. - [15] A. Vince, Locally homogeneous graphs from groups, J. Graph Theory 5 (1981) 417-422.