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ABSTRACT. We completely classify the graphs all of whose neigh-
bourhoods of vertices are isomorphic to P¥ (2 < k < n), where
P¥ is the k-th power of the path P, of length n — 1.

1 Introduction

All graphs considered in this paper are undirected, without loops or mul-
tiple edges. K, denotes the complete graph on n vertices, C, the cycle
of length n, P, the path of length n — 1, Py, the two-way infinite path
of denumerable length and ~ the adjacency relation. We shall say that a
vertex v of degree d in a graph G is a d-vertex of G and we shall denote
by G(v) the neighbourhood of v, that is the subgraph induced by G on the
set of vertices adjacent to v in G. Note that if v; and v; are two adjacent
vertices of G, v; is a d-vertex of G(v;) if and only if v; is a d-vertex of
G(v). If v; ~ v;, N;; will be the set of all neighbours of v; in G(v;), and
SO Ng,j = Nj,i.

Given a positive integer k and a graph G, we denote by G* the k-th power
of G, that is the graph whose vertices are those of G, two vertices being
adjacent in G* iff their distance in G is at most k. Obviously G! = G.

Given a graph G’, a connected graph G is said to be locally G’ if, for
every vertex v of G, the subgraph G(v) is isomorphic to G’. There is an
extensive literature on the determination of all graphs which are locally a
given graph ( see for example the bibliography at the end ). The purpose
of this paper is to answer a question raised by Topp and Volkmann [13]:
which graphs are locally P2? More generally, we will classify the graphs
which are locally P¥ for 2 < k < n. When k = 1, it is already known
(Brown and Connelly [4] [5], Hell [11] ) that for any given n > 3, there are
infinitely many non-isomorphic graphs which are locally P, (it is easy to
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check that there is no locally P graph and that K3 is the only locally P
graph).

Our main result is the following:

Theorem. Let k and n be integers such that 2 < k < n and let G be a
locally P¥ graph.

(i) If n=k+ 1, then G = Kg,2.

(ii) If n =2k + 2, then G has at least 3k + 4 vertices. For every integer
m > 3k + 4, there is a unique locally P%, +2 8raph on m vertices, namely
Ckt+1; the only infinite locally P, ., graph is P{f:‘l.

(iii) If n # k+ 1 and n # 2k + 2, there is no locally P¥ graph.

2 Lemmas

The following properties of the graphs P will be used to establish our
theorem. The proofs are omitted since they are very easy.

Lemma 1. P2 has two adjacent 3-vertices iff n =4 or 5.

Lemma 2. If n > k + 2, P* has exactly two k-vertices and they are
non-adjacent.

Lemma 3. If n > 2k + 2, the subgraph induced by P on the set of
neighbours of any vertex of degree k+1 is a complete graph on k+1 vertices
with one missing edge ( whose end vertices are respectively of degree k and
2k in P¥ ).

If ay,...,an are the vertices and [a;,ai+1] (¢ =1,...,7 — 1) the edges of
P,, we shall say that a; ~ az ~ -+ ~ a, is a basic path of P%.

Lemma 4. If n > 2k + 3, then a; and a,_j41 (F = 1,...,k) are two
(k + 7 — 1)-vertices of Pk, all the other vertices being 2k-vertices.

Lemma 5. If n > 2k + 3 and if v and v' are two adjacent vertices of P,’f
such that v is a (k + r)-vertex (r = 1 or 2) and v’ is a (k + s)-vertex of
Pk withr < s < k-1, then v’ is adjacent to every neighbour of v distinct
from v'.

3 Proof Of The Theorem

Let vo be any vertex of a graph G which is locally P*¥ with 2 < k < n and
let vy, vy, ..., vn be the vertices of G(wp), the edges of G(vg) being those of a
graph P¥ constructed over the basic path v; ~ -+ ~ v ~ 34 ~ -+ ~ .
1) If n =k + 1, then P¥ 2 Kj,, and so obviously G & Kj.2.
2) If k+ 2 < n < 2k + 1, then vy is adjacent not only to vy but also
to the n — 1 vertices of G(vg) distinct from wvi4i. Since vg4y must be of
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degree n in G, it follows that Nii1,1 = {vo,v2,...,vx}. On the other hand,
No,y = {va,...,v%41}. Thus vp and v, are two adjacent k-vertices of
G(v,), contradicting Lemma 2.

3) If n > 2k +2, then G(v,) contains vg, vy, .. ., Uk+1 and no other vertex
of G(vp), and so v; must be adjacent ton —k —1 > k+1 > 3 new
vertices Un41,Un+2, .- -, Von—k—1. Since vy is a k-vertex of G(v;) & P¥, the
set Noj = {ve,...,vk+1} contains exactly one (k + i)-vertex of G(v;) for
every i = 1,...,k. It is no restriction of generality to assume that v, ;
(7 = 1,...,k) is the unique vertex of G(v;) which has an index > n and
which is adjacent to exactly k — j + 1 vertices of Np,; ( thus for example
vn41 is adjacent to all vertices of Np,1).

Note that the 2k vertices vo,v1,...,Vk—1, Vk42, ..., V2k, Un+1 are all ad-
jacent to vk and vk41. Since 2k is the maximal degree of a vertex in P¥, it
follows that {vo,vl, eo vy Vkm1y Vket2y 0009 vzk,v,H.l} = Nk‘k+1.

We claim that vy is a (k+1)-vertex of G(vy). This s clear if n = 2k+2
because the n neighbours of v, in G are then exactly vo,v1, ..., vk, V42,
ooy U2kt1, Unt1. Ifn > 2k+3 and if vy isa (k+:)-vertex of G(v;) for some
i > 2, then vg4y ~ vp42 and so vg % vp42 ( because we have just proved
that vp4+2 cannot be a common neighbour of v, and vi+1). Therefore vy is
a (k + 1)-vertex of G(v;), and so v; is a (k + 1)-vertex of G(vi). But v is
clearly a (2k — 1)- vertex of G(vx) and vy ~ vp. If k¥ > 3, Lemma 5 implies
that vy is adjacent to every neighbour of v, distinct from vp in G(wg); in
particular vg ~ v,41, a contradiction. If k = 2, v and v, are two adjacent
3-vertices of G(vz) & P2 with n > 7, contradicting Lemma 1.

Thus we have proved that for every n > 2k + 2, vy, is a (k + 1)-vertex
of G(v,); more precisely, Nk+1,1 = {vo,v2,...,Vk, Unt+1}- It follows that all
vertices of Np,1 — {vk+1} are adjacent to vp4+1 and vn 2.

Since v # vk41, v2 is a (k + j)-vertex of G(v,) for some j € {2,...,k},
or equivalently v, is a (k+ j)-vertex of G(vz) for some j € {2,..., k}. Since
No2 = {v1,v3,...,vk42}, vo is a (k + 1)-vertex of G(v2) & P¥ and so, by
Lemma 3, the subgraph induced by G(vs) on Np 2 is a complete graph with
one missing edge whose end vertices are respectively of degree k and 2k in
G(vz2). But this missing edge is clearly [v1, vg+2]. We conclude that v, is a
2k-vertex of G(v2), or equivalently that vg is a 2k-vertex of G(v1).

Casel:n>2k+3

If k =2, vz is a 4-vertex of G(v,), thus G(v2) contains vp, v1, 3, V4, Un+1,
Vn42 and no other vertex of G(wp) U G(v1). In G(vz), v is a 3-vertex and
v1, vg are 4-vertices with v; ~ vp ~ v3. Since v4 ~ vp, v4 must be a 2-
vertex of G(vs) and so Ng2 = {vo,v3} = Nz 4. Since vp is a 4-vertex of
G(vy), it follows that w3 is a 3-vertex of G(vs). On the other hand, No3 =
{‘Dl,‘UQ,‘Uq,‘U5}, N1,3 = N3.l = {‘001‘"2,‘%“} and N2,3 = {vO: 'Uly'U4y'Un+1}x
thus v, is a 3-vertex and vg, v are 4-vertices of G(v3) with v ~ vy ~ ws.
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Since v4 is adjacent to vp and v2 and since » > 7, v4 must be a 4-vertex of
G(v3) & P2, contradicting the fact that v is a 3-vertex of G(vy).

If k > 3, va is distinct from vk and vy, and so vs is a (k + s)-vertex of
G(v,) for some s € {2,...,k — 1} (remember that v, ; and v, are already
known to be vertices of degree k+1 and 2k respectively in G(v;)). Therefore
vy is a (k + s)-vertex of G(v3) for some s € {2,...,k — 1}. On the other
hand, v is clearly a (k + 2)-vertex of G(vs). If k = 3, v and v, are two
adjacent 5-vertices of G(v3) & P3, a contradiction because n > 9. If k > 4,
vp and v, are two adjacent vertices of degree k+ 2 and k+ s respectively in
G(vs), with 2 < s < k—1 (s = 2 is impossible because P¥ does not contain
two adjacent (k+2)-vertices when n > 2k+3). By Lemma 5, v; is adjacent
to every vertex of No3 — {v}; in particular, v; ~ vi,2, a contradiction.

CaseII: n =2k +2

Clearly G has at least 3k +- 4 vertices (namely v, vy,...,v3x+3) and G(v,)
consists of the following 2k + 2 vertices: vo,v2,...,Vkt1, V2543, - - -, V3k+3
where vg and vsi43 are the only two k-vertices of G(vy).

For any ¢ € {2,...,k + 1}, G(v;) contains at least the k + i vertices
V0, V1, -« +y Vi~1,Vit1, - - -, Vk+i (@mong which exactly k are adjacent to v;)
and so, since v; is of degree n = 2k + 2 in G, v; cannot be adjacent to
more than k — i 4+ 2 vertices in the set {voky3,...,v3k+3} € G(v;1). Thus
v; is of degree < k+ (k- i+2) =2k — i+ 2 in G(v;). But we know that
No,1 = {v2,...,vk4+1} contains exactly one (k+ j)-vertex of G(v,) for every
Jj =1,...,k. Therefore, for any i € {2,...,k+ 1}, v; is a (2k — i + 2)-
vertex of G(v;1) and, since v; is of degree n = 2k + 2 in G, it follows that
G(vi) = {V0, V1, -+ Vim1, Vi 1y -+ o Ukhis U2k 3, - - - UBkpd—i}

From all the adjacencies known at present, we easily deduce that the
subgraph G(vz) & P, is necessarily constructed over the basic path
Vg2 ~ Vg ~ Vgg] ~ *+ 0~ U3 ~ U ~ Uggy3 ~ -+ ~ Uzgsa. It follows that
Vk42 % V2k43, ..., V3k4+2. More generally, the examination of each subgraph
G(v;) for i € {2,...,k + 1} shows that vey; o vaks3,. .., v3ke4—; for these
values of i.

Observe now that G contains a subgraph isomorphic to P;,:’_,_ﬂ, con-
structed over the basic path vaki3 ~ vaksz ~ - ~ voppz ~ v ~ vp ~
sre N Ugt] N U~ k42 ~ v v ~ Ugk42 and that there is exactly one missing
vertex in the subgraph G(vgi43). Let w; be this missing vertex. The known
adjacencies and non-adjacencies imply immediately that there are only two

possibilities for w;: either w; = vax42 or wy is a new vertex vakys.

If wy = vgry9, then in the subgraph G(vak+3) ( which must be isomorphic
to P, ,) there is exactly one missing edge through each of the k vertices
U2k44, ..., V3k+3 and there are exactly k missing edges through the vertex
v2k+2. Therefore va,2 must be adjacent to vak4a,...,vaks3.

Note that each vertex wiyi (1 = 2,...,k + 1) is already adjacent to
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2k + 3 — i vertices in G, and so vk has at most { — 1 new neighbours in
G. On the other hand, in the subgraph G(vax12) & Py .5, the two vertices
of degree k are necessarily vg and vax3 (because all their neighbours in
G are already known ) and each vertex vxi; € Nogkt2 (1 = 2,...,k+1)
must have i — 1 new neighbours in the set {vaxi4,...,v3k3} = Nokis 2k+2.
Therefore vx4i (i =2...,k+ 1) must have exactly i — 1 new neighbours in
G and, since we already know that veii 7% v2k43,..., V3k+4—i, these 1 — 1
new neighbours are uniquely determined in the set {vexiq,... ,Usky3}. It
follows that G itself is now completely determined and it is easy to check
that G = C&HL,.

If wy = v3k44, then voki2 % vort+s and, reasoning as before in the sub-
graph G(vgk3), we see that vgki4 must be adjacent to vagys,... ) U3k+3-
Thus G contains a subgraph isomorphic to P‘-,",:fs, constructed over the ba-
sic path vsk4q ~ Vgk4a ~ - N VR4 N UL~V Vg~ e~ gy ~ Y~
U2 ~ - ~ U2k,

Note that vpx,1 7 vary4 because, if we assume that vy, ; is adjacent
to v2k+4, then vokyy is necessarily a k-vertex of G(vak+4) and so voi4; is
adjacent to vz, ..., U3k+4, Which implies that the degree of vok+1 in G is
at least 2k + 3 > n, a contradiction.

From this and the other known adjacencies and non-adjacencies, we de-
duce that there are only two possibilities for the missing vertex ws of the
subgraph G(vak+4): either wy = k42 OF wo is a new vertex V3k+5.

If wy = var42, then in the subgraph G(veryq) = P2kk +2 there is exactly
one missing edge through each of the k vertices vax.s, ..., Usk+q and there
are exactly k missing edges through the vertex vai,5. Therefore U4 MUSt
be adjacent to V2k+5)« -+ U3kt4-

Note that each vertex vy (i = 2, ..., k+1) is already adjacent to 2k+3—i
vertices in G, and so vk4; has at most i — 1 new neighbours in G. Similarly,
Vok+3—i (1 = 2,...,k+1) is already adjacent to 2k+ 3 —i vertices in G, and
50 v2k+3—¢ has at most i —1 new neighbours in G. On the other hand, in the
subgraph G(vak12) & Py, ,, the two vertices of degree k are necessarily vy
and vak4 4 (because all their neighbours in G are already known ); moreover,
Nogzk+2 = {vk+2,...,v2k41} and Nokyaoks2 = {vakss, ..., v3k+4}. Using
the preceding two remarks, we deduce that each vertex Vi € No2ki2
must have exactly i — 1 new neighbours in the set Naki 42642 and that
these new neighbours are necessarily vsk+6—i,. .., vaksq. It follows that G

is now completely determined and that G = C§¥l..

If wp = w35, reasoning as before, we are led to only two possibilities
for the missing vertex w3 in G(uzkts): either w3 = voryo or w3 is a new
vertex vsk+6. An easy induction argument finishes the proof.
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