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Let G be a finite group of order g. If K = (a,b) is a couple of elements
of G - distinct or not - then the multiplication table

a® ab
ba b2

of K is of one of the following types:

A A A B A B
n-(34) 75 2) »=(52)
A B A B
n-(c ) %= (¢ 3)
where equal (distinct) letters denote the same (different) elements of K2.
Denote by P;(G) = P; the number of couples K of elements of G of type
T:,1=0,1,2,3,4. In this note we determine the values of the P; in terms
of g = |G| and the number of certain conjugacy classes in G. It turns out
that each P; is a multiple of g. Moreover, we characterize groups satisfying
P; = 0 for all ¢ except ¢ = 3. Our final remark lists certain properties of
groups satisfying P3 = 0.
The results of this note are used in the forthcoming paper [3].
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Proposition 1. Let G be a finite group. Then

(1) Po=g

(2) P1 = kgg

(3) Py=(k—1—ks)g

4) Py = (k. —1—ks)g

(5) Py=(g+1+ka—k—k)g

where k, ks, k, denote the number of conjugacy classes of G, the number
of conjugacy classes of involutions in G and the number of real conjugacy
classes of G (classes containing an element and its inverse), respectively.

Proof: It is clear that Po = g.

Suppose that K = (a,b) is of type Ty; then a? = b and ab = ba, but
a # b Let b = ca; then ¢ € Cg(a) and ¢ = 1, so c is an involution.
Conversely, if c is an involution and a € Cg(c), then (a,ca) is of type T.

Thus
Pi= Y |Ce(d)l=keg .
2=1,c#£1

In order to compute P,, we shall compute M = Py + P; + P», which is
the number of K = (a,b) with ab = ba. Thus

M= |Cc(x)l=kg

z€G

and using the previous formulas we get (3).

In order to finish the proof, it clearly suffices to evaluate P3. Consider
N = Py + P, + P3; then N is the number of K = (a,b) with a? = b2. For
any z € G let

b2(z) = |[{h€ G: h* ==} ;

then
N=Y 6(z%.
z€C
Since 8, is a class function, we conclude that
02 = Z V2(X)X )
x€Irr(G)

where Irr(G) is the set of irreducible characters of G and v, is a complex
function on Irr(G). Hence

N=Y Y wixe= Y w0 x:=?.

z€G x€Irr(G) x€Irr(G) z€G
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It is known [2, 4.4] that

w00 = 157 Z x(z?) ,

z€CG

SO

=16l . (e())?.

x€Irr(G)

Now (x(x))? = 1 if x is real valued and (12(x))? = O otherwise [2, 4.5].
Moreover, the number of real valued irreducible characters of G is equal to
the number of real conjugacy classes of G [2, Problem 6.13]. Thus

N =k.g

and (4) follows by (1) and (2). O

Corollary 2. Let G be a finite group and let Qg denote the quaternion
group of order 8. Then

(6) P, =0+«= G is of odd order
(7) P=0= G (Zz)"'
(8) P, =0« ecither G is abelian or G = Qg x (Z3)"

Proof: Clearly (2) implies (6). It follows by (3) that P, = 0 if and only if
the non-trivial conjugacy classes of G consist of involutions, which is clearly
equivalent to G being isomorphic to (Z;)*. Finally, by (5), Py = 0 if and
only if g+ 1+ ks — k — k. = 0. Since each real class with elements of order
larger than two contains at least two elements, it is clear that in any group
G we have

g2k+(kr—1—kp)

with equality if and only if two elements of G are conjugate only if they
are the inverses of each other. Thus if Py = 0 then every subgroup of G is
normal in G and hence G = Qg % (Z2)™ X A, where A is an abelian group of
odd order. Moreover, it follows from the above mentioned condition that
A = 1. Conversely, in Qs x (Z2)" two elements are conjugate only if they
are the inverses of each other. The proof of (8) is complete. 0

Remarks:

(9) Another proof of (8) can be found in [1].

(10) The problem of characterizing groups satisfying P; = 0 remains open.
The following remarks will contain some properties of such groups.

209



(11) Denote G € ES if 22 =y forz,y € G 1mp11w zy = yz, and denote
G eClifz-lyz =y ! for z,y € G implies y* = 1. It follows from
the definition of T3 and from (4) that

P3(G)=0+<=GeES<«<=GeClI.

(12) If P3(G) = 0 and H =< y > is a cyclic subgroup of G of order 4, then
Ng(H) = Cg(H). Indeed, if n € Ng(H) then it follows from (11)
that G € CI and hence if n € Ng(H) then n~'yn = y. In particular
if H is also normal in G then H £ Z(G).

(13) If P3(G) = 0 then the involutions of G generate an abelian subgroup
of G of exponent 2. Indeed, it follows from (11) that G € ES and
hence if z, y are involution in G, then zy = yz.
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