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Anant P. Godbole*

Department of Mathematical Sciences
Michigan Technological University
Houghton, MI 49931

Sandra E. Thompson*

Department of Statistics
Colorado State University
Fort Collins, CO 80523

Eric Vigoda*

Department of Mathematical Sciences
The Johns Hopkins University
Baltimore, MD 21218

Abstract. A t — (n,k,\) covering design consists of a collection of k-
element subsets (blocks) of an n-element set X such that each ¢-element
subset of X’ occurs in at least A blocks. We use probabilistic techniques
to obtain a general upper bound for the minimum size of such designs,
extending a result of Erdds and Spencer [4].

1. Introduction

Let n > k > { and consider a finite set X" with cardinality n. Let B be a
collection of k-element subsets of X. Elements of B are called blocks. The
pair (X, B) is said to form a t — (n, k, A) covering design if each t-element
subset of X is contained in least A blocks. The covering number Ci(n, k,2) is
defined to be the number of blocks in a minimumt—(n, k, A) covering design.
Ci(n, k,t) will be denoted, for brevity, by C(n,k,t). Packing designs are
defined in an analogous fashion, and will not be discussed here. There
is an extensive literature on covering and packing designs; for a survey
of important results, see the recent papers by Mills and Mullin [6] and
Sidorenko (8].

Our goal in this paper will be to derive general upper bounds for the
covering numbers C(n, k,t); Erdés and Spencer .[4] showed almost twenty
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years ago that for each choice of n, & and ¢,
" k
C(n, Ict)<(—)(1+log( )) (1.1)
)
while R3dl [7] proved using probabilistic methods that for each fixed & and
t
() _
hm Cink,ty-=1 (1.2)
(t)
see Speﬁcer [9] for an alternative proof of (1.2), and Alon and Spencer [1]
for a discussion of the general technique (the “Rédl nibble”) employed to
prove this remarkable result first conjectured by Erd6s and Hanani [3]. Tt
is quite another matter, however, to use the proof of (1.2) to derive general
upper bounds for C(n, k,t) that are valid for each choice of the parameters;
consequently (1.1) may yield a better bound than (1.2) when n is relatively
small. For larger values of n, however, it is evident that Rodl’s bound is far

superior. For completeness, we outline the proof of (1.1) using the “method
of alterations”; see [1] for other examples of this method.

Proof of (1.1): We start by selecting an unspecified number X of blocks
at random and “with replacement”. The probability that any specific ¢-set
is uncovered is then equal to

G ox _ - WO
o=y

(2)

(1- (‘—)

<exp(—X-5%) (1.3)

Now the number of uncovered {-sets can be written as

where [; equals 1 if the jth t-set is uncovered and is zero otherwise. It
follows from (1.3) that

(")

E(W) = ZP(I =1)< ( )exp( X(,,) (1.4)

To complete the covering, we next choose, in any ad hoc fashion, one k-set
to cover each uncovered t-set. It follows that the expected number Zx of
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sets in this random covering of the (-sets is at most

X+ (':) exp(—X g,;

for any initial choice X. We next minimize (1.5) over X' to obtain

(") (k)

® )
as the choice for X that minimizes Zx. Since P(Y < E(Y)) > 0 for any
random variable Y, it follows that there actually exists an initial selection

) (1.5)

as outlined above for which the covering number is at most %;%(l +log (f))

The result follows.

Several remarks are in order at this point: We note firstly that it is con-
ceivable that the non-constructive cover produced by the above process
involves replicated blocks. It is immediate, however, that the desired prop-
erty is preserved on elimination of the replicated blocks, so that the bound
(1.1) holds without replication as well. In Section 2, we shall use proba-
bilistic methods (notably exponential probability inequalities for binomial
tails) to provide a generalization of (1.1) for arbitrary values of A\. The
nature of our proof once again does not preclude replication, but we shall
see how the method yields insight into the question of obtaining bounds on
Cx(n, k,t) when replication of blocks is not allowed. Our result will reduce
to (1.1) on setting A = 1 and yields a bound that is far better than the

trivial estimate /\Lr(l + log( )) that can be immediately deduced from

(1.1). Furthermore the upper bound in Theorem 2.1 below exhibits the
nature of the non-linearity in the growth rate (as a function of A) of the
bound for the covering numbers C\(n, k, ).

2. Results

Theorem 2.1. Iflog (¥) > (A - 3)log(A = 1) + 2, then the minimum size
Ca(n, k,t) of a t — (n, k A) covering design with replicated blocks satisfies

(%)
C',\(n,lc,t) S L{A (

(¥) )
where g = 1 - E—% and A = log (¥) +log A —log(A = 1)!+ (A - 1) loglog *);
if k and t are large and log (,:) > A, the estimate in (2.1) is thus of order
of magnitude %,:—%(1 +log (§) + (A — 1) loglog (¥)).

71 (2.1)
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Proof: We use the method of alterations. Assume that X k-sets have been
selected randomly and with replacement. Then the probability that the ith
t-set has been covered just j times (0 < j < A — 1) equals

X\ )
()[()1[1 e, 22)

so that the expected number of t-sets that are covered only j times (and
thus undercovered) equals

OG- e

Now for each such undercovered set we choose, in any ad hoc fashion, an
additional A — j blocks to complete the covering; it follows that if .X blocks
are initially drawn, we expect to need a total of at most

x+(7) g(x - )pa (2.4)

k
blocks to form the A-cover, where p = (,'.) and ¢ = 1 — p. As in the
t

proof of (1.1), we observe that this process is potentially inefficient, but
we will see that this inefficiency is not excessive [recall, for example, that
the contribution to (1.5) of the initial drawing X was “almost” sufficient
to form the entire cover, especially for large values of k£ and ¢]. We need,
next, to minimize (2.4) over X. Towards this end, we bound (2.4) above
by the more tractable quantity

n (A —j) Xp, .
X+ (t)exp{—Xp}ng(T)’ (2.5)

and set ¢(X) = X + (}) exp{—Xp} Z)‘ ! L'—”(Xp)j,’a = Xp. It is easy
to show that the following result holds
Lemma 2.2. ¢'(a) =0 if

Sood/it 1
T e TR
e (x)
(2.6) does not have an easily obtainable solution in general; before contin-

uing with the proof of Theorem 2.1, we consider some special cases using
approximate solutions:

a (2.6)

214



(a) For A = 2, the extremely suboptimal choice & = log (%) [ie. X =
L—,.—log ()] yields, when substituted into (2.5), the result

Ca(n, k,t) < ——(log (I:)(l + %) +2) (2.7)

which is slightly more than twice the Erdés-Spencer bound (1.1). We clearly
need to do better.

(b) For A = 2 again, the choice X = Llog (%)3) (8 > 0) yields,
when substituted into (2.5), the bound

Caln, k1) < 8 (@ Lytos (£) + 1+ Lytegs+ 3

with a typical “good” choice for 3 being log((%) log[e(*) log{e(%)}]). This
yields Ca(n, k,t) of the order of magnitude of %;%(l + log (z) + loglog (’:))
t

(c) For A > 3, the minimization problem (2.6) does not get any easier.
We prove, however, that the bound obtained in (a) above can be extended
as follows:
k
Proposition 2.3. For each t,n, k and A satisfying % <3
n
Ca(n, k,t) < E)) 210g( )+2log/\+2A—log4); (2.8)

note that (2.8) “almost” reduces to (2.7) on setting A = 2.
Proof: We bound (2.4) above by

() () o

and use the fact that the cumulative binomial probabilities B(X,p,r) :=

Yoo ( )P (1 — p)X—7 satisfy
B(X,p,r) < exp{—(Xp—-r)*/2Xp(1 -p)} (r < Xp< X/2) (2.10)
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(see, e.g. Barbour et al [2]) to conclude that for A — 1 < Xp,

Caln, k,0) Sinf{X +A (’:) exp{—(Xp — A + 1)2/2Xp(1 - p)}}

si?(f{:u,\(’;) exp{A-1- XQ”}}, (2.11)

n A-1(k

which yields, (with X = ‘2((;‘;% log(%)), the required result; note that
¢

the condition Xp > A — 1 is satisfied with this choice of X. a

We now continue with the proof of Theorem 2.1: (2.4) can be rewritten,
on simplification, as

X+ ('t’) AB(X,p,A—1) - ('t') XpB(X —1,p,A—2); (2.12)
if Xp > A, (2.12) reveals that an upper bound on Ci(n, k,t) is given by
Ck(n)k:t)

n n 17X -1\ . Xg
< b - A X-l-g 2 _
<x+ (Pucxpa-n+ (T (7 rer-if -

n
<X+ (t)/\b(X,p,z\ -1)

ny ) Xpy\A-1,-pX
<X+ () ((;—)1)!6 , (2.13)

where b(.X,p,r) denotes the point binomial probability (¥)p"¢X~". There
are several choices for X that may be used to suboptimize over X in (2.13);
we use

() |, (D Alog "} (§)

to conclude that

Ca(n, k,t) < %{ log (f) +log A — log(A = 1)! + (A = 1) loglog (’:)
+(log (5) +log A —log(A — 1)! + (A = 1) loglog ()

qlog (})

1,
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establishing the required bound. Note that the condition .Xp > ) is satisfied
if

log (I:) +log A —log(A — 1)1 + (A — 1) loglog (l:) > A (2.14)

(2.14) may be simplified somewhat on ignoring the contribution of the
second and fourth terms on the left hand side and using the estimate
(A=D1 < (A= 1)*~2e2"* (see, e.g., [2]). This leads to the condition
log (’f) > (A= %)log(/\ — 1) + 2 that is quoted in the statement of the
theorem. a

Example. For n = 50,k = 30,¢{ = 20 and A = 3, (2.1) yields the bound
C5(50, 30,20) < 33.37(1568620) = 33.378‘%; the Erdés-Spencer bound for
A = 1 works out to be 18.22(156 8620).

Remarks.

(2) It is quite possible that for certain values of the parameters, our sub-
optimal choice of X can be bettered: see {10} for bounds on Ci(n,k,t)

n k A=1g(k A=-1/k
obtained by using other X’s including X = ((r;- log[ {)10g™ {()ieg™ ' ()}

(=17

and X = E—.}—; log[(*)log*~' ()].
(b) It may be verified that the incorporation, into our calculations, of the
third term on the right hand side of (2.13) vastly complicates the situation
without yielding an appreciable improvement in the final result. The basic
reason for this is that the (lower-tail) cumulative binomial probabilities are
dominated by the last included term (see [2] for more details).

(¢) Our bound (2.1) reduces to the Erdés-Spencer bound (1.1) on setting

A = 1, and, moreover, can be seen to be far smaller than A times the latter.

We now turn to the question of estimating the number of blocks in a A-
cover that are not replicated; the non-constructive process used by us does
not guarantee that the blocks are distinct. We shall argue, however, that
since the original choice of X sets (which could equally well have been made
without replication) constitutes a vast majority of the cover, the support of
the latter almost equals its size. More specifically, we have

Theorem 2.4. Iflog (¥) > (A= 1) log(A—1)+2, there exists a t—(n, k, )
covering design with at most
(7) D

LD+ A(
{ 7log (%)

(k) )»\-l}
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blocks and in which at least

blocks are distinct, where D = log (‘) +log A—log(A=1)1+(A—1)loglog ('f)
82 k

and A is a constant of order of magnitude 1+ 412(,,_.

Proof: We start by choosing X blocks randomly but without replacement

from the (}) k-subsets of X¥. Set A = (32;) and B = (})—(} 1), and denote
A B

the cumulative and point hypergeometric probabilies Z;=o L?ﬁ—,\j_)t! and
X

A B
G)xz)) by H(A, B, X,r) and h(A, B, X, j) respectively. It is clear then
NGRON

X

that the probability that the ith t-set is covered just j times (0 < j <
A —1) equals h(A, B, X, j) for each i, so that the expected number of t-sets
that are covered j times equals (7)h(A, B, X,j). For each such set, we
now select (A — j) blocks to complete the cover (in any arbitrary fashion).
These additional sets may be replicates of previously chosen ones, but the
original X blocks are all distinct. As in the proof of Theorem 2.1, the
e\(pected number of sets in the cover formed by using this process equals,
for A+B > A,

1

A
X+ (") — j)h(A, B, X, j)
j=0

AH(A, B, X, A—1)- ()Z]h(AB X,

(1) AX

x ()

=X+(?)/\HA,B,X,A—) S HA-1B,X ~1,A-2)
()t
(%)

n
t

n
t
n
¢

I/\

X+ (" )AH(A, B, X, A~ 1) - (JAH(A—I,B,X—I,A—?)

=X+ A(A, B, X, A-1)

+(’:>,\{H(A B,X,A—2)— H(A-1,B,X —1,A—2)}

=X + (';) AR(A, B, X, A = 1)
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n\ | 2 AX(B-X+j+1) .
+(t)AZh( -1,B, X - ){(4 AR AT D) —1}; (2.15)

in addition, it may easily be verified that the last term on the right hand
k

side of (2.15) is non-positive if Xp > A, where, as before, p = -%))- = ﬁg.

This is true since i‘—g'—,‘x;ij'-’;*'—l—) < Bif Xp > A, so that

{ AX(B-X+j+1) “1}< XB 1= Xq —1<0
(A-(X -j)A+B) (X -j)(A+B) X-ij -
if Xp > A. It follows that for any such X,
Ca(n,k,t) < X + ('tl) A(A, B, X, A-1) (2.16)

Several strategies may be used to further simplify (2.16); we use a result of
Burr (see, e.g., [5], eq. (6.76),) to bound the hypergeometric point proba-
bility in (2.16) by a multiple of a binomial probability:

h(A, B, X, A= 1)

A l—(/\—l—.\’p)2 1
which simplifies to
h(A,B,X,A-1)
(-1-(A-1- ,\'p)2)(’,‘) (")
<O(X,p, A-1{1+ n +0
P (1)
<H(X,p, A= 1){1
_( p ){ + (,’:)(}:) + ( 2)}
Y2 (k
=b(X,p, A — 1){1 + () + O( (2.18)

00 o ,)2”

where the second inequality above followssince A—1 < (A—=1)?and A—1 <
Xp, so that by (2.13) and (2.16).
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n x*(%)
(M1 + gy + O

A-lg-pX
e AR

Ca(n k) < X + = 1)

(2.19)

If we now choose

_ D) (D) Nogh ()
X = (tT)Iog[W']
and set
-2k
e ) oL o

"\k)(’t) (:::)

it follows that

C,\(n,k,t)<i':;{D+ A( o8 ())* '}

where D is as in the statement of Theorem 2.1. Note that A = 1+ lo(g,,_(, ).
This completes the proof of Theorem 2.4. O
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