Shortest walks in almost claw-free graphs

Odile Favaron!, Evelyne Flandrin!, Hao Lil3, Zdenék Ryjdcek?

1 L.R.I, URA 410 CNRS, Bat. 490, Université Paris- Sud, 91405 Orsay
cedex, France

2 Department of Mathematics, University of West Bohemia, 306 14 Pilsen,
Czechoslovakia

Abstract
There have been many results concerning claw-free graphs and
hamiltonicity. Recently, Jackson and Wormald have obtained more
general results on walks in claw-free graphs. In this paper, we con-
sider the family of almost claw-free graphs that contains the previous
one, and give some results on walks, especially on shortest covering
walks visiting only once some given vertices.

3

Throughout the paper, we deal with simple undirected graphs without
loops and multiple edges. A (z¢,z;)-walk (or simply a walk) in G is a
sequence of vertices C' = z¢z;...2; such that z;z;4, € E(G) for every i =
0, 1,..., I-1. Ifz € V(G) occurs in this sequence, then we write £ € C and
we say that z is visited by C. The number ! will be called the length of C and
denoted by {(C). If zo = z;, then we say that C is a closed walk. For a walk
C = zoz;...7; and z € V(G), we put v(z,C) = |{i;i € {1,...,1},z; = z}|.
If v(z,C) =t then we say that C visils {-times the vertex z. The length of
the closed walk can be expressed as {(C) = Z v(z,C). A closed walk C

T€C
such that v(z,C) > 1 for every ¢ € V(G) is said to be a covering walk of G

(or simply a covering walk). A covering walk C is said to be a k-walk of G
or simply a k-walk (k being an integer), if v(z, C) < k for every z € V(G).
Clearly, every connected graph has a k-walk for some £ > 1 and every
hamiltonian cycle is a 1-walk.

2This research was done while the author was visiting L.R.I.
3Research partially supported by PRC Math.Info.
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We consider every walk to be oriented in the natural way by increasing
subscripts (taken modulo ! for closed walks) and, for any z € C, we denote
by #~ and z* the predecessor and successor of z, respectively, on C in this
orientation. If we consider a walk C in the opposite orientation, then we

denote it by 5

If C is a walk, then every (a,b)-walk P such that P is a subwalk of C
(i.e. a subsequence of consecutive vertices of C)) will be denoted by aCb. If,
moreover, C is a closed walk and for a vertex z we havea™ =z, bt = z and
z ¢ P, then the walk aCb will be called a branch of C at z (i.e. branches
of C at z are the “parts of C” between two consecutive visits of z by C).
The vertices a and b are the endvertices of the branch P. Clearly, for every
z € C, there are v(z, C) branches of C at z.

We say that the vertices = and y are related (denoted z ~ y), ifz =y
or 2y € E(G). When z ~ y then Zy denotes the sequence zy or the single
vertex z, respectively.

For any M C V(G), (M) denotes the subgraph induced by M in G.
For any z € V(G), the neighbourhood of x, denoted by N(z), is the set of
vertices which are adjacent to z. If (N(z)) is connected then we say that
z is a locally connected vertez. The graph G is locally connected if all its
vertices are locally connected.

A set A C V(G) is independent if any z,y € A are non-adjacent. The
size of a maximum independent set in G is denoted by oG and referred to
as the independence number of G. A set B C V(G) is dominating if every
vertex of G belongs to B or has a neighbour in B. The size of a minimum
dominating set is called the domination number of G and denoted by ¥(G).
If v(G) < k, we say that G is k-dominated.

If H is a graph, then G is said to be H-free if G does not contain a copy
of H as an induced subgraph. The complete bipartite graph K; 3 will be
referred to as the claw. Clearly, G is claw-free if and only if a({N(z))) < 2
for every z € V(G).

Claw-free graphs are known to have many interesting properties. Oberly
and Sumner [6] proved the following result:

Theorem A: Every connected locally connected claw-free graph on at
least three vertices is hamiltonian.

Clark [2] showed that, under the same assumptions, G is vertex-pancyclic.
Hendry [3] further strengthened this result showing that G is fully cycle
extendable.

Jackson and Wormald [4] removed the hypothesis “G is locally con-
nected” and obtained the following result:
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Theorem B: Every connected claw-free graph has a 2-walk.

In [5], the class of claw-free graphs was extended in the following way:
we say that G is almost claw-free if there is an independent set A C V(G)
such that a({N(z))) < 2 for ¢ ¢ A and y({N(z))) < 2 < a({(N(z))) for
z € A. Equivalently, G is almost claw-free if the centres of induced claws
are independent and their neighbourhoods are 2-dominated. In the rest
of the paper, A will be used to denote the set of the centres of the claws.
Clearly, every claw-free graph is almost claw-free.

It can be shown (see [5]) that every almost claw-free graph is K s-
free and K 3-free and that, for every z € A, y({N(z)}) = 2. In [5] and
[1], several results for claw-free graphs are extended to the class of almost
claw-free graphs.

In the present paper we proceed with the investigations which were done
in [4]. Our Theorem 7 is a common generalization of Theorems A and B.

First we show that in almost claw-free graphs every covering walk can
be shortened until it becomes a 2-walk.

Proposition 1 (reduction lemma): Let G be an almost claw-free graph,
¢ € V(G) and C a covering walk. If v(z,C) > 3, then there exists a
covering walk C' such that I(C") < {(C) — 1, v(z,C’) = v(2,C) — 1 and
vy, C') < v(y,C) Vy # 2.

Proof. Suppose that v(z, C') > 3 and denote by P,..., ( > 3) the
branches of C at z and by ¥ the endvertices of P; (i = 1 5 k=1, 2)
in accordance with the onentatlon of C.

If there are integers i, j, k, h such that i # j and zf ~ z?, then we can
suppose without loss of generality (changing if necessary the orientation of
some branches and the order of the/bianches) thati=1,7=2,k=2and

h = 1. The closed walk C' = zPz}z}PazPsz... Pz, obtained from C by

deleting the edges zz and zz} and adding the edge or vertex z2z}, has
the required property.

We thus suppose that z§ and = are not related for all i # j, i, j €
{1, 2,..,s} and for all k, h € {1, 2} (but z} and =7 can be related). This
implies © € A. Hence there are vertices d; and da in N(z) such that every
vertex in N(z) is adjacent to d; or d2. As the set A is independent, neither
dy nor da can centre a claw and therefore at least one of them (say, d;) is
adjacent, to both endvertices of some P; (say, P) and to at least one other
vertex :c (say, z1). Since C is a covering walk, there exists a branch P,
that VlSltS dy. Clearly d; ¢ {z} , z},} for otherwise endvertices of different
branches would be related.

lo’
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If df ~ di‘, then C' is obtained from C by replacing the subwalk
dy dydf by df d"’ and the subwalk z}zz} by zid,z}.
Henceforth assume that d] and d7 are not related.

If d; € Py, then, consndermg (dl, dy, df, z}) and the fact that
dy ¢ A, we _see that di ~ :c2 or df ~ z}. In the first case we take
C'= :clPldl z} Pox Pax...Pyz Pl dyz} Whlch is obtained from C by deleting
the edges zz}, zz}, df d1 and addmg dl z} and d;z}. In the second case
similarly C' = zP1d,z? P1 dt x%chchrc P,zx.

If dy e P; for some i > 2, then, considering (dl, dy, df, z}), we
see that dy ~ a:l ord} ~ z}. In the first case C' = 2} Pyz}di Piz Py 12... Py
Poz...P;_ 1:!:P,d1 z}is obtained from C by deleting the edges zz}, 22z, d d1
and addlng z3d; and d1 . In the second case, C' = Pyz Psz...Pid 3 P1
wldl PizP;yqz.. Pz is obtamed from C by deleting the edges zz}, z?z,
dyd} and adding z%d; and z} d+

In all cases, the new walk C’ has the required properties. 1
If we apply the reduction lemma while there exists some vertex which is

visited at least three times by C, we obtain the following three corollaries.
The second one extends Theorem B.

Corollary 2: Every shortest covering walk of a connected almost claw-free
graph is a 2-walk.

Corollary 3: Every connected almost claw-free graph has a 2-walk.

Corollary 4: In a connected almost claw-free graph, if there is a covering
walk visiting exactly once the vertex z, then there is a 2-walk visiting z
exactly once.

In the following, we are interested in those vertices which are visited
exactly once by some 2-walk. It is easy to see that such vertices cannot
be cutvertices of G. The next proposition shows that in almost claw-free
graphs this trivial necessary condition is also sufficient.

Proposition 5: Let G be a connected almost claw-free graph and = €
V(G). Then there is a 2-walk C such that v(z,C) = 1 if and only if z is
not a cutvertex of G.

Proof: Clearly if v(z,C) = 1 for some 2-walk, then z is not a cutvertex.
So suppose that z is not a cutvertex and v(z,C) = 2 for every 2-walk.
Let C be a 2-walk. Denote by P, @ the two branches of C' at x and by
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P1, P2, 41, g2 their endvertices, respectively.

If p; ~ g; for some i,j € {1,2}, for example p» ~ ¢1, then the walk
C' = zp1 Pp2¢1Qq2z, obtained from C by deleting the edges zps, zq; and
adding p2q; satisfies v(z,C’) = 1; thus vertices p; and g¢; are not related
vi,j € {1,2}.

If py ~ p2, then we observe that, as 2 is not a cutvertex of G, there are
vertices a € P and b € @ such that a ~ b. If we put C' = plPaquzmquba
Pp3p; (deleting from C the edges zp1, zp; and adding j»p; and twice ab),
then v(z, C') = 1 and, by Corollary 4, there is a 2-walk that visits z exactly
once. Consequently, p; and p, are not related and similarly ¢; and ¢y are
not related.

Hence no two of the vertices p;, p2, ¢1, g2 are related and thus = €
A. As G is almost claw-free, (N(z)) is 2-dominated. Let {d,d2} be a
dominating set of (N(z)).

Suppose first that d; is adjacent to some p; and ¢, 7,7 € {1,2}; e.g.
to p2 and ¢;. In this case, for the walk C' = zp; Ppad1¢1Qqg2z (which
is obtained from C' by deleting the edges zp2, zq: and adding d;p; and
d1¢1) we have v(z,C’) = 1 and using, if necessary, Corollary 4, we get a
contradiction.

Thus some of the d;’s (say d;) dominates p; and p» and the other one,
dz, dominates ¢; and ¢2. We again find vertices ¢ € P and b € Q such that
a ~ b ( note that the edge ab may be one of the edges dig; or dap;). If we
put C' = xpchﬁqudquQl;Eszzz (deleting from C the edges zq1, zq2 and
adding d»q;, d2q2 and twice «fb), then v(z,C’) = 1 and, by Corollary 4, we
can again construct a 2-walk that visits z exactly once. This contradiction
achieves the proof of Proposition 5. ]

We now turn our attention to shortest covering walks which are, by
Corollary 2, 2-walks with as few edges as possible. The number of vertices
which are visited twice by such a 2-walk is smallest possible. The following
lemma studies the structure of the neighbourhood of vertices which are
visited twice by a shortest 2-walk.

Lemma 6: Let G be a connected almost claw-free graph, C a shortest
covering walk of G and z a vertex of G which is visited twice by C. Let
P and @ be the two branches of C at z with endvertices p1, p2, 01, q2,
respectively. Then:

(7) Vi, j € {1,2}, p; and g; are not related;

(#) if, moreover, x ¢ A, then py ~ p2, ¢1 ~ g2 and Vi, j € {1,2} every
vertex of

N(pi) N N(gj) N N(z) centres a claw.
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Proof. Assume that G, C, ¢, P and @ fulfil the hypotheses of Lemma 6.

(i) If p1 ~ q1, then the covering walk C' = p; Ppazq2 Q ¢1p1 is shorter
than C.

(i) Since z ¢ A, (z,p1,p2,q1) is not a claw and by (#), p1 ~ p2. Simi-
larly, g1 ~ g2. Let a be a vertex of N(p;)N N (q,) N N(z); we can suppose
without loss of generahty thate€e Pandi=j= 1. Ifa” ~at, then the

walk p; Pa~ a+Ppg:cq2 Q napy is shorter than C. If ¢~ z € E(G) oratz e
E(G) then the walk a~xzgs Q q1aPpapi Pa~ or atzgy Q qia P Pipe Pat
is shorter than C, respectively. Therefore a centres the claw (a,z,a”,at).
1

In the 2-connected almost claw-free graph of Figure 1, the length of
a shortest 2-walk is 17 (e.g. bedefnoghijaxmézkb). In accordance with
Proposition 5, the vertex z is visited once by some 2-walk (e.g. by abcdecbkz
¢mnofghija of length 18), but it is visited twice by every shortest 2-walk.

a b c d
¢

Figure 1

This example shows that, in the statement of Proposition 5, “2-walk”
cannot be replaced by “shortest 2-walk”. This, however, becomes possible
with a good choice of the vertex z. Note that, in our counterexample,
(N(z)) is not connected. Motivated by Theorem A, we strengthen in The-
orems 7 and 10 the result of Proposition 5 for locally connected vertices of
G, first restricting our considerations to those ones which do not centre a
claw.
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Theorem 7: Let G be a connected almost claw-free graph and put
B = {z € V(G)\ A; (N(z)} connected}.
Then there is a shortest 2-walk C' such that v(z,C) = 1 for every = € B.

Proof: Suppose, on the contrary, that for every shortest 2-walk C' the set
Mc = {2 € B|v(z,C) = 2} is not empty. Let C be a shortest 2-walk
for which the cardinality of M¢ is minimum and z a vertex of Mg. Let
P and @ be the branches of C' at = with endvertices p;, p» and q;, g2
respectively. Since (N(x)) is connected, there is a shortest path Rin (N (x))
which joins one of p,, p2 to one of g1, g2. Assume that C is chosen so that,
among all shortest 2-walks with z € M¢ and |M¢| minimum, R is shortest
possible. We can assume without loss of generality that R is a (p1,q1)-
path and none of the vertices ps,q2 is on R. Let py,zy,..., 2k, q1 be the
vertices of R. Since z ¢ A and R is a shortest path, & < 2 (otherwise
(z,p1,22,q1) is a claw). By Lemma 6(i), ¥ > 1. If £ = 1, then, by

Lemma 6(7:), the vertex z; belongs to A and the walk p; Ppazqs Q q1z1p1
contradicts the minimality of M¢c. Therefore ¥ = 2. Again by Lemma
6(#), p1 ~ p2 and ¢q; ~ ¢2. Suppose now that z, € P. If 22 € A, then for

the walk ¢’ = 2y Q q1z2PFapi Praz we have I(C') = I(C) and |Mc1| <
|Mc|. Hence z; ¢ A. We consider/tile induced subgraph (z2,z;,2¥,z).

If 25 ~ :c'{ , then the walk zp, Py :c'{ Pzx2g:Qqox is shorter than C or

contradicts the minimality of R. If 25 & € E(G), then the walk C' = z¢2 @
@122 Ppop1 P25 z is shorter than C and the same holds if 23z € E(G) for
the walk C' = zz} Pjpopi Pz2g1Qqg22. Thus (z2, 25,23, z) is a claw, which
contradicts the fact that z, ¢ A. Hence x5 ¢ P and similarly z; ¢ Q.
As C is a covering walk, ; € P and z; € Q. Since 2122 € E(G), at
least one of z;,z2 (say, £;) is not in A. We now consider (z,z7,z7,z).
If 27z} € E(G), then the walk zz1p; Pz] z{ Ppazq1Qg2z contradicts the

minimality of R. The same holds for the walk zz7T F P12 Pr1291Qg27 or
zz} Ppapi Px12¢1Qqex if 27z € E(G) or 2}z € E(G), respectively. Thus
(z1,27,27,2) is a claw, a contradiction. 1

We notice that Theorem 7 is a common extension of Theorems A and
B and it also admits the following corollary.

Corollary 8: Let G be a connected almost claw-free graph on n vertices
and put '

B ={z € V(G)\ A;{N(z)) connected}.
Then G can be vertex-covered by at most n — |B| + 1 elementary cycles
(where a closed walk of length 2 is considered as an elementary cycle of
length 2).

229



Proof By Theorem 7, there is a shortest 2-walk C that visits every vertex
of B exactly once. We may obtain elementary cycles by cutting the 2-walk
at any vertex z with v(z,C) = 2 in such a way that if P and @ are the
two branches at z, then we cut the walk into zPz and zQz. There are at
most n— | B|+ 1 such elementary cycles for we have at most n —|B| vertices
with v(z,C) = 2. The graph G is vertex-covered by these cycles since their
union gives a covering walk. 1

In the study of locally connected vertices which belong to A we use the
following lemma.

Lemma 9: Let G be a connected almost claw-free graph, = a non-separating
vertex which is visited twice by every shortest covering walk of G and C a
shortest covering walk. Then, with the same notation as in Lemma 6:

(1) pr # p2 and 1 # g2,

(“) VI:J € {1! 2}! N(pt) N N(Qj) = {I}

Proof. Assume that G, z and C fulfil the hypotheses of Lemma 9.

(i) Since z is not a cutvertex of G, there are vertices a € P and b € Q
such that a ~ b. If, e.g., p1 = p2, then for the walk C' = quQbaPpg(—
pl)Paqugz whlch is obtained from C by deleting the edges p,, zp2 and
adding twice ab, we have I(C’) < I(C) and v(z,C") = 1, a contradiction.

(#) If, e.g., a € N(p1) N N(q1) and a # z, then the walk C' = zp, P
p1aq1Qg2z also yields a contradiction. 1

Theorem 10: Let G be a connected almost claw-free graph and z € V(G).
If (N(z)) is connected, there is a shortest 2-walk C such that v(z,C) = 1.

Proof: Let z € V(G) be such that (N(z)) is connected and v(z,C) = 2
for every shortest 2-walk C. By Theorem 7, it is sufficient to consider the
case £ € A. Choose C in such a way that, among all shortest 2-walks C
with branches P and Q at z and endvertices p;, p2 and q;, g2, respectively,
the py, q1-path R in {N(z)) is shortest possible (i.e., there is no shortest
2-walk C' containing a path in (N(z)) between the disjoint sets {p1,p2}
and {q1,g2} that is shorter than R). Let p1, z1, ..., Tk, q1 be the vertices of
R. Note that, since £ € A and G is almost claw-free, no vertex of N(z)
centres a claw.

We first show that &k = 2.

Let {d1,d2} be a dominating set of (N(z)). By Lemma 9(ii), one of
dy, d» (say, d;) dominates p; and p» and the other, i.e. d2, dominates ¢,
and ¢».

Suppose now that z; € P and consider (zx,z;,zF,z). If zf ~ :c;:',
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then the walk :cp.Pa:;a:k Ppyxxiq1 Qg2 is shorter than C or contradicts

the minimality of R. In the case z, ¢ € E(G) the walk C' = zp, Pz, = P
21q1Qg2z and in the case :ck z € E(G) the walk C' = zp, Pz:q1Qqaxz} Ppax
contradicts Lemma 6(i) or Lemma 9(i3) since p; and p, are endvertices of
two different branches of C’ that are dominated by the same vertex d;.
Thus (zx,z5,z},z) is a claw, which is a contradiction. Hence, as C is a
covering walk, necessarily z; € @ and, by symmetry, z € P. This implies
that z; and z] are not related for otherwise zz:q1Qz; z§ Qgazpy Ppoz is
shorter than C or contradicts the minimality of R. Similarly, ] and =7}
are not related.

We show that p;ps ¢ E(G) and q192 ¢ E(G) Let, e.g., q192 € E(G)
and consider (z,zj,z},z). fz;z € E(G) or zfz € E'(G) then the walk
z21Qq2q1Qx xp  Ppoz or 2z +Qq291Qz1xp, Ppaz, respectively, contradicts
the minimality of R. Thus (z¢,z; ,:t;:", z) is a claw, a contradiction which
implies ¢q192 ¢ E(G) and, by symmetry, p1p2 ¢ E(G).

Necessarily, d; is not in R since otherwise, as R is shortest possible, dy
would centre a claw. Moreover, z; is the only vertex among z;,z2, ..., 2k
which can be adjacent to dy (if z;, ¢ > 1, was adjacent to d;, then, from the
hypothesis on R, (dy, p1, p2, ;) would be a claw). Similarly, z; is the only
vertex among z1, Z2, ..., £ Which can be adjacent to d2 and hence k = 2.

We now consider the induced subgraphs (z), 27, z7, z2) and (z2, z7, 23, z1).
We know from above that neither 27 and z¥ nor z; and z3 are related.
As ¢ € A, neither z; nor z5 can centre a claw and then we have, up to
symmetry, the following three possibilities.

Case The walk C'
z7 z2 € E(G) and z;z, € E(G) zp1 Pz 22Qq2z P z12y Q az
z¥z, € E(G) and z¥ 2, € E(G) :tplP:rl:c2 Qaz P -’1:1 z7 Q nz

z}z, € E(G) and 25z, € E(G) zp1Pzizy Q qzp2 P z¥2,Qqg02

In each of these cases, p) and p; are endvertices of different branches
of C' at ¢, which contradicts Lemma 9. This contradiction completes the
proof of Theorem 10. [ |

Corollary 11: Let G be a connected locally connected almost claw-free
graph. Then for every z € V(G) there is a shortest 2-walk C such that
v(z,C)=1.
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