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Abstract

We present sufficient conditions for the existence of a k-factor
in a simple graph depending on 02(G) and the neighbourhood of
independent sets in our first theorem and on ¢2(G) and a(G) in the
second one.

1. INTRODUCTION

In this paper we consider only finite undirected graphs without loops
or multiple edges. Terms not defined here can be found in [2].
Let G be a graph with vertex set V(G) and edge set E(G). For a ver-
tex v of G, we denote the degree of v in G by dg(v), or just d(v). For
X C V(G), we define d(X) := 3", x d(v). The neighbourhood Ng(v) of v
is the set of all vertices in V(G) adjacent to v and for X C V(G) we define
N(X) := U,ex N(v). For disjoint subsets X,Y of V(G), we denote the
number of edges from X to Y by e(X,Y). Instead of e({z},Y), we just
write e(z,Y). We use § for the minimum degree, o5 for the minimum of
d(v1) + d(v2) over all pairs of independent vertices v; and v of G and «
for the independence number of G. A spanning subgraph I of G is called
k-factor, if dp(v) = & for all v € V(F). If G, and G, are disjoint graphs,
the union is denoted by G, U G» and the join by G1 + Gs.

Egawa/Enomoto [3] and Katerinis [5] proved the following sufficient
condition for the existence of a k-factor.

Theorem 1 (Egawa, Enomoto (3], Katerinis [5]) Let k > 1 be an
inleger and G a graph of order n with kn even and n >4k -5 If

5>

[T~

then G has a k-factor.
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The following two theorems, which are different generalizations of Theo-
rem 1, are also known. Tokushige proved Theorem 2 for the slightly weaker
n> 4k + 1 — 4/k + 2 instead of n > 4k — 6.

Theorem 2 (Tokushige [9], Woodall [11]) Let k > 2 be an integer and
G a graph of order n with n > 4k — 6. If k is odd, then n is even and G is
connecled. Let G satisfy

1

> — - —
Nl 2 5 (X1 + (k= Dn—1)
for every non-emply independent subset X of V(G), and
k-1
6 2 %—_i(n +2) .

Then G has a k-factor.

Theorem 3 (Iida, Nishimura [4]) Let k be a positive integer and G ¢
graph of order n with kn even, n > 4k —5 and 6§ > k. Let G satisfy

02 Z n . (1)
Then G has a k-factor.

For connected graphs satisfying n > 4k — 3 and k > 3, Nishimura (8]
could recently extend Theorem 3 again, replacing (1) by a condition on the
maximum degree of any pair of independent vertices.

Theorem 4 (Nishimura [8]) Let k > 3 be an integer and G e connected
graph of order n such that kn is even, n > 4k — 3 and 6 > k. Suppose that

max {d(x),d(v)} > 3
for each pair of non-adjacent vertices u,v € V(G). Then G has a k-factor.

Niessen [7] proved the following sufficient condition for a k-factor de-
pending on é and o.

Theorem 5 (Niessen [7]) Let k > 2 be an integer and G a graph with n
verlices. If k is odd, then suppose that n is even and G is connected. Let
G satisfy
n>4k+1-4vVk+2 , 2)
k-1

6 Z gm(n-l'z) and

1
(k- —-92) .
5 > 2k—2((k 2)n+2a - 2)
Then G has a k-factor.
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For k > 2, the following result is a generalization of Theorems 2 and 3.

Theorem 6 Let k > 2 be an integer and G a graph of order n with n >
4k —6 and 6 > k. If k is odd, then n is even and G is connected. Lel G

satisfy .
VOOl 2 e (X1 + (k= 1)n - 1) &)

for every independent subset X of V(G) with |X| > 2k, and
2k — 2 4k -5

%2 2 gr-1top oy (4)

Then G has a k-factor.
The following result is an extension of Theorem 5 for n > 4k — 6.

Theorem 7 Let k > 2 be an integer and G a graph of order n with n >
4k — 6 and 6 > k. If k is odd, then suppose that n is even and G is
connecled. Let G satisfy

2k —2 4k -5

%2 2 gpitt oy

S §-k—2_—2((k—2)n+2a—2) . (5)

Then G has a k-factor.

2. PROOFS

To prove Theorems 6 and 7 we need the following result.

Theorem 8 Let k > 2 be an integer and G a graph of order n with n >
4k —6 and § > k. If k is odd, then n is even and G is connected. Suppose
that G satisfies 0 .

2k — 4k -5
Z%—1"Taw-1- (6)
Then G has a k-factor or there exist disjoint non-empty subsets A, B of
V(G) such that

|X]:= {ve B|da\a(v)=0}| > 2k (7)

(4]

and
w 2 KlAl- k1Bl + deya(B) +2 | (®)

where w denotes the number of components of C := G \ (AU B) with at
least three vertices.
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Proof. The proof is by contradiction. Let G be a graph satisfying the
hypotheses of Theorem 8, and having no k-factor. Then by the k-factor
theorem of Belck [1] and Tutte [10] there exist two disjoint sets A, B C V(G)
such that

g > k|A|- kBl +da\a(B) +2 , (9)

where ¢ denotes the number of components C; of C satisfying
k|C;| + e(Ci,B) = 1 (mod 2) . (10)

We choose A and B so that |A U B| is maximal with respect to (9). From
a lemma by Katerinis and Woodall [6] we can conclude that then every
component of C has at least max{k — |B| + 2,3} vertices. Note that we
also have w > ¢.

Let @ := |A|, b:=|B|, ¢:=|V(C)| and ¢ :=¢/w.
If B # @, we choose a vertex £ € B with

h :=min {dg\a(v) |v € B} = dg\a(z) .
Further, if B\ (Ng(z)U {z}) # @, we define
m := min {dg\a(v)|v € B\ (Na(z) U{z})} ,
and let y € B\(Ng(z)U{z}) be a vertex satisfying dg\a(y) = m. Obviously
o < d(z)+d(y) < 2e+h+m . (11)
Note that, by the choice of A and B and by (9), we have

n > ae+b+3w
> (Bk+1)a—(Bk—1)b+3de\a(B)+6 . (12)

Furthermore, § > k yields
a>k-h. (13)

w> 2, let C; and C; be the smallest components of C and y; and y2 be
vertices of C; and Cj, respectively. Then we obtain

oy < d(;n)+d(ye) < 2a+]|Ci|+|Cal —2+e(y1, B) +e(y2, B) - (14)
If e(z, C) < max{k —b+2,3}, then in every component of C exists a vertex
non-adjacent to z. Let Ci be the smallest component of C and z; be a

vertex of C; non-adjacent to z. Then we have

oy < d(:z:)+d(:c1) < 2a+h+|Cil+6-2 . (15)
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Note that, using (6), n = a + b+ ¢w and (9), we obtain

02 > %——2(a+b+6(ka-—kb+hb+2))+;1:—:‘;) .

= 2k-1 (16)

We shall investigate different cases now.

Casel. B=0.
Inequality (9) yields ¢ > 2. Then according to (10) k is odd, so G is
connected by hypothesis and it follows @ > 1. By (14) and (16), we get
2k —2

26+22-2 > m(a+c(ka+2)) .

From &, k > 3, we obtain the following contradiction.

1 2¢+2a—2 2k -2

52 aré(kat2) 2 -1

Thus we may assume B # Q.

Case2. h>k+1.
Here (9) provides w > 3. Then (14) and (16) yield

gl'::f(a+b+a(ka+b+2))+‘““—“5 e,

2k -1
2ka(l—ké+&)+2b(k—ki+¢)+26—-8k+7 >0 .
But & > 2 and & > 3 give the contradiction

2+26+2a-2 >

2ka (1 — hé+ &)+ 2b(k — ké+6) + 26— 8k +7
< 4a(1-@+26(2-8)+2—-9
< —8a-2-3
< 0.

Cased. h=k.
Applying (9), we have w > 2.

Case3.1. b>k+2.
From (12) we deduce

n > (Bk+1)a—(3k—1)b+3k(k+1)+3mb-k—1)+6 ,ie.

n—a—b—3ka—6
m < k+ 36-F=1) . 17

37



Because of m > k we gel

n—b—6

< n-070
¢S 3y

(18)

Combining (11) and (17), we find

—a—b—3ka—
30— k—1)

os < 2a+2k+ " S _. fi(a) (19)

with f,/(a) = 0 if and only if b= 3k + .

Case3.1.1. b>3k+ 1.
Using (19) and (18), we conclude

40 <2k—2 +4k—5’

n+2k—1 2Ic—1n T

2
3k+1 T 0k+3

o2 <

which is impossible according to (6).
Case3.12. b< 3k+%.
Applying (19) with a = 0, we have
n—-b-6
< —_— = .
o2 < 2t gE s = ) (20)
Since n > max{4k — 6,b+ 6} and b > k + 2, we obtain fo'(b) <0, and

hence 5k—8 2k—2  4k—5
n -— —— —
Syt <g_i"tw-1

which again contradicts (6).

Case3.2. b<k+1.

Case 3.2.1. B\ (Ng(z)U{z}) # 9.
In this case (12) yields

n > (3k+1)a—(3k—1)b+3k(b—1)+3m+6 ,ie.

mgk—ka—2+n—_g—_—b. (21)

Then, using (11), (21), a > 0 and b > 1, we obtain the contradiction

6k—7<2k—2n+4k—5
3 2k —1 2%k—-1 "~

n
02S§+
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Case 3.2.2. B\ (Ng(z)U{z})=0

Case 3.2.2.1. a>1.
Combining (14) and (16), we find

% +2+2—2 > ;’: 2(a+b+c(ka+2))+ ’“ ‘;’

2ka(l —ké+E)+2kb+26-8k+7 > 0 .
But b<k+1and k > 2 yield

, .e.

%a (1 — ké+ &) + 2kb+ 26 — 8k + 7
2ka (1l — k&+&)+ 22— 6k + 28+ 7
4a(1-8)+2+3

792 .

IN N IA

Hence, we get a contradiction except whené=3,a=1,k =2 and b = 3.
In this case, by (9), we have w > 4, this means n > 16. Then (15) and (16)
give 8 > 35/3, which is impossible.

Case 3.2.2.2. a=0.
Note that ¢ > max{3k—7, 6},since n > 4k—6. Using e(z,C) = k—b+1
and |C;| > k — b+ 2 for all components C; of C, by (15) we get

9%k —2 4k 5
=1 Ottty

, le.

k+b+§-2 >

2%2 — 9k — Icc+b+-3-c+7 >0.

But because of b < k + 1 we get the contradiction
2Ic2—9k—kc+b+gc+7 < 2k2—8k+8+c(g—k) < 0.
Cased. 1<h<k-1

Cased.l. b>h+2.
From (12) we deduce

n > @k+1)a—(3k—1)b+3h(h+1)+3m(b-h—1)+6 , ie.

n—a—b—3ka+3kb—3h2—-3h—6

36— h—1) (22)

m <
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Then m > h yields
n—3hb+3kb—b—6

¢= 3k +1 (23)
Combining (11) and (23), we see
n—a—b—3ka+3kb—3h2—3h-6
o3 < 2a+h+ 3G—h=T) =: fa(a) (24)

with f3’(a) =0ifand only ifb=h + £+ L.
Case4.1.1. b>h+%+ 1.

Case4.1.1.1. b> (kn+2)/(2k — h).
Using (24), e <n —band h > 1, we obtain

- —h2_h —
oy < h+2n—2b+2kb kn—h"-h-2

b—h—1
9k Ent2 _ fp — h2 — h— 2
< hyon—gknt? 2k=h "
% —h Ent? ]
o =2 4E-6

k—1" " 2k—1
which is impossible by (6).

Case4.1.1.2. b< (kn+2)/(2k —h).
By (24), (23) and h > 1, again we have the contradiction

2
< — —_ph -
72 S b+ g (n=Shb+3kb—b—6)+h
% — 2h 4
< on g
o -2 4k-6

%—1" " 2%k—1"

Case4.12. b<h+ £+ 1.

Case4.12.1. n>3(k—h)2—2k+3h+7.

In this case (24), e > k—h,b>h+2and h <k —1 give

5k—5 2k-—2 4k -5

n
rSgt—g—<gm-i"tar-1

contradicting (6).
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Case4.1.2.2. n<3(k—h)2—2k+3h+7.
By (11), (22),a > k—h,and b < h+ £ + I, we have

— —6h2 —
02§k+3h—1+2n+6k 10h — 6h 14,

3 3k+1
the right-hand side taking its maximum value for h = 3 k- 12, ie.
v < 2 n 153k% + 18k — 295
2= 3%+l 72k + 24
2k -2 4k -5
n+

2k -1 2k-1"
contradicting (6) again.

Cased4.2. b<h+1.

Case4.2.1. B\ (Ng(z)U{z}) # Q.
Applying (12), we get

n> @k+1)a—@k—1)b+3h(b—1)+3m+6 ,ie

m < kb—ka—hb+h—2+n—_§—_b )

Then, using (11), a > k — h, and h < k — 1, it follows

5k—7 2k—2  4k—5
"2<3+ 3 “%-1"tok-1

contradicting (6).

Case4.2.2. B\ (Ng(z)U{z})=0
By (9),e>k—h,b<h+land h<k-1, wehavew > 2.

Case4.2.2.1. a>k—h+1.
Applying (14) and (16), we obtain
2% — 4k 5
2% — %—1

2ka(1—Ic6+6)+21cb(l+lcc—c)+2hbc(1—Ic)+2c—81c+7 >0.
But é>3,b<h+1and h<k-—1yield

2ka(l — k& + &) + 2kb(1 + ké — &) + 2hbE(1 — k) + 26 — 8k + 7

2ka (4 — 3k) + 2kb (3k — 2) + 6hb (1 — k) — 8k + 13
2k2 — 6k3 — 8hk + 6hk? + b (6k% — 4k — 6hk + 6h) + 13
8k? — 6k — 4k + 13 + h2 (6 — 6k) + h (12k% — 18k + 6)
—4k? + 2k 4+ 13,

26+2b+2a-2 > 2(a+b+c(ka-—kb+hb+2))+ , le.

IANIAIN A
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getting a contradiction except when k =2, h=1,b=a=2and ¢ = 3.
But in this case, applying (9), we obtain w > 4, which implies n > 16.
Then (15) yields 8 > 35/3, which is impossible.

Case4.22.2. a=k—h.
Note that again, by n > 4k — 6, we have ¢ > max{3k — 7,6}. Using
e(2,C)=h—b+1and |Ci| > k—b+2>h—b+1 for all components C;

of C, by (15) and (16) we get
2k —

2(k—h)+htb+g-22> T e R R R R

lc 5

l )
which analogously to case 3.2.2.2 yields a contradiction.

Caseb5. h=0.

Let X := {v € Bldg\a(v) = 0}. Byn—a—b >w > ka—kb+b—|X|+2
and b < n — a, we have

1
a < EF——I(|X|+(k—1)n_2)' (25)

According to (7), we may assume | X| < 2k — 1.

Case5.1. |X|>2.
Combinig (11), (25) and |X| < 2k — 1, we find

o2 < 2a
-2  2X|-
S ottt ko
9%k —2  dk—6
< n+

2k -1 2k—-1"
which contradicts (6).

Case5.2. |X|=1.

Caseb5.2.1. b>2.
Applying (12), we get

n> Bk+1)a-Bk-1)b+3m(b-1)+6 ,ie

n—a—b—3ka+3kb—6
m < 3= 1) . (26)
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[X| =1 implies m > 1, which yields

n+3kb—4b—3
¢ = 3k + 1 (27)
By (11) and (26), we have
oy < 2a+n—a—b—3ka+3kb—-6 = fu(a) , (28)

3(b—1)
yielding f4'(a) =0 if and only if b= £ + I.
Case5.2.1.1. b> %541

Case 5.2.1.1.1. b> (kn+1)/(2k - 1).
In this case (28) and a < n — b give

oy < 2n—2b+2kbb-_#
2k kntl _ fp — 2
< et SR
- a1~ L
_ 2k_2n+2k_3,

2k -1 2k —1

which is impossible according to (6).

Case 5.2.1.1.2. b< (kn+1)/(2k-1).
By (28), (27) and b < (kn + 1)/(2k — 1), here again we have

o2 < 3k+1(n+(3k 4)b-13)
2 kn+1
< 3k+1(n+(31<: 4) =T -3)
_ 2k — 2n+2k_3,

2k -1 2k -1
contradicting (6).

Case52.1.2. b< k £+ 1
Using (9), we have w > 1 and hence (15) implies

2k —
2k —

2Ica—2k6(ka—kb+b)+2é(lca—kb+b+1)—8k+b+7—6 >0 .

k 5

2(a+b+c(ka—kb+b+l))+ =1

2a+é+b—-2 > ie.
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On the other hand, a > &, b < §+ % and ¢ > 3 give the contradiction

2ka — 2ké(ka — kb+b) +2¢(ka —kb+b+1)—8k+b+7—¢
< 2k2—2k5(k2—-lcb+b)+25(k2—lcb+b+1)—8k+b—5+7

K22, 7 13, 15, 49
< 2_2-___ ! ~ 29~
< 2% ké( 3lc+ )+2c( 3lc+6) 2lc+6 ¢
< —3k349k% - 37 k+%

0.

A

Case5.22. b=1.
Condition (9) yields w > 1. Then (15) together with (16) provides

2a+é—1 > 2k — 2

> ST (a+1+E(ka—k+2) .

But from a > k, ¢ > 3 and k > 2 we get the following contradiction, which
completes the proof.

1 2a+c-1 2k — 2

> .
2% atl+é(ka—k+2) = 2%k—1

With the help of Theorem 8 we will now proof Theorems 6 and 7.

Proof of Theorem 6. The proof is by contradiction. Let G be a graph
satisfying the hypotheses of Theorem 6, which has no k-factor. Then, by
Theorem 8 there exist two disjoint non-empty sets A, B C V(G) such that
(7) and (8) hold.

Analogously to (25), we have

@ < 2k 7 (XI+(k=-1)n-2).

Since X is an independent set with |X| > 2k and N(X) C A, we obtain

NI < g (IXT+ (k=D n=2)

contradicting (3), so the proof is complete.

The proof of Theorem 7 runs analogously to that of Niessen in [7]. For
reasons of completeness we shall give it here again.

Proof of Theorem 7. This proof is by contradiction. Let G be a
graph without k-factor satisfying the conditions of Theorem 7. Again, by
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Theorem 8 there exist two disjoint non-empty sets A, B C V(G) such that
(7) and (8) hold.
Using (7), we observe together with (11) that

> 2 (29)

Let Y := {‘l) €B | dG\A(v) = 1}
Furthermore let C}, ..., C,,, be the components of G\ (AU B) with at least
three vertices, having a vertex without neighbour in Y. Let S; be a set
containing one such vertex from every Cj, i = 1,...,w;. The remaining
components of G \ (A U B) with at least three vertices are denoted by
Dy, ..., Dy,.
Let Yy := {v € Y | Ng\a(v) C B} and Y := Y \ Y;. Then the graph
induced by Y} in G has maximum degree at most 1. Let S3 be a. maximum
independent set of this graph. Then it is obvious that lSz| > 3 Nl
Since every vertex of every D; has a neighbour in Y3 and since these neigh-
bours are distinct, we have

w2

Y2l > D IV(Di)| 2 3wz > 2w . (30)

i=1
According to our definitions, X US; U Sz UY> is an independent set of G.
By (30), we have

> X|+ w1+ 5 5 Mil+35 L Yal 4w = 1 X|+w+3 PN
Now, applying (31), (8) and (29) we get
o > w+IXI+ Y]

k|A| - k|B|+dc\A(B)+2+|X|+ Yl

> k2Bl +do\a(B\(XUY) +2+X]+ 5 [V]
> kg—k|B|+2|B\(XUY)|+2+|X|+ Y|
> kZ-(k-2)|Bl+2-a

which means -
(k—2)|B|2k?2—2a+2. (32)

If k = 2, then (32) is equivalent to o2 < 2a — 2, contradicting (5). If £ > 3,
then (29), (32) and (5) yield the contradiction

0 < n—-|A|-|B]<n- ?——(k -2a+2)<0 .
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3. REMARKS

Because of 05/2 > § it is clear that Theorem 6 implies Theorem 2 and
for n > 4k — 6 Theorem 7 implies Theorem 5. We now show that for k > 2
Theorem 6 also implies Theorem 3.

Theorem 6 implies Theorem 3. Let G satisfying the hypotheses of
Theorem 3 with & > 2. Obviously, G is connected. (1) implies that one of
every two independent vertices has degree at least n/2, which means that
for every independent set X C V(G) with |X| > 2k, we have

X| < g
and
NI 2 gm
1
= 2k 1(2n+(lc—-1)n)
> - —
> o (XI+(k=Da=1) |
Furthermore, by n > 4k — 5, we get
02 Z n
o 2(k=1D(n+2)+(n—4k+4)
- 2k— 1
> 2k—2n+4k—5

2k -1 2k -1~

So G satisfies the conditions of Theorem 6.

Examples showing that Theorems 6 and 7 do not imply each other can
be found in [7].
Last we will show that the conditions of Theorems 6 and 7 are best possible.
The connectedness of G, when k is odd is needed to avoid that G is the
disjoint union of two odd complete graphs of roughly equal order.
Tosee that conditions (3), (4) and (5) of Theorems 6 and 7 are best possible,
we consider graphs of the form

G 1= Kypagek-s—1) + (rK1 U (sk—1) K)

with » > 0 and s > 2, which do not contain a k-factor.
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Choosing r = 2k, we see that condition (3) in Theorem 6 and condition
(5) in Theorem 7 are best possible. For r = 0, we see that condition (4) in
both theorems is needed.
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