NEIGHBOURHOOD AND DEGREE CONDITIONS FOR THE EXISTENCE OF REGULAR FACTORS

Ursula Lenkewitz and Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany, email: volkm@math2.rwth-aachen.de

Abstract

We present sufficient conditions for the existence of a k-factor in a simple graph depending on $\sigma_2(G)$ and the neighbourhood of independent sets in our first theorem and on $\sigma_2(G)$ and $\alpha(G)$ in the second one.

1. INTRODUCTION

In this paper we consider only finite undirected graphs without loops or multiple edges. Terms not defined here can be found in [2]. Let G be a graph with vertex set V(G) and edge set E(G). For a vertex v of G, we denote the degree of v in G by $d_G(v)$, or just d(v). For $X \subseteq V(G)$, we define $d(X) := \sum_{v \in X} d(v)$. The neighbourhood $N_G(v)$ of v is the set of all vertices in V(G) adjacent to v and for $X \subseteq V(G)$ we define $N(X) := \bigcup_{v \in X} N(v)$. For disjoint subsets X, Y of V(G), we denote the number of edges from X to Y by e(X, Y). Instead of $e(\{x\}, Y)$, we just write e(x, Y). We use δ for the minimum degree, σ_2 for the minimum of $d(v_1) + d(v_2)$ over all pairs of independent vertices v_1 and v_2 of G and G for the independence number of G. A spanning subgraph F of G is called G-factor, if G-fixed G-for all G-

Egawa/Enomoto [3] and Katerinis [5] proved the following sufficient condition for the existence of a k-factor.

Theorem 1 (Egawa, Enomoto [3], Katerinis [5]) Let $k \geq 1$ be an integer and G a graph of order n with kn even and $n \geq 4k - 5$. If

$$\delta \geq \frac{n}{2} ,$$

then G has a k-factor.

The following two theorems, which are different generalizations of Theorem 1, are also known. Tokushige proved Theorem 2 for the slightly weaker $n > 4k + 1 - 4\sqrt{k+2}$ instead of $n \ge 4k - 6$.

Theorem 2 (Tokushige [9], Woodall [11]) Let $k \ge 2$ be an integer and G a graph of order n with $n \ge 4k - 6$. If k is odd, then n is even and G is connected. Let G satisfy

$$|N(X)| \geq \frac{1}{2k-1}(|X|+(k-1)n-1)$$

for every non-empty independent subset X of V(G), and

$$\delta \geq \frac{k-1}{2k-1}(n+2) .$$

Then G has a k-factor.

Theorem 3 (Iida, Nishimura [4]) Let k be a positive integer and G a graph of order n with kn even, $n \geq 4k - 5$ and $\delta \geq k$. Let G satisfy

$$\sigma_2 > n . (1)$$

Then G has a k-factor.

For connected graphs satisfying $n \ge 4k - 3$ and $k \ge 3$, Nishimura [8] could recently extend Theorem 3 again, replacing (1) by a condition on the maximum degree of any pair of independent vertices.

Theorem 4 (Nishimura [8]) Let $k \geq 3$ be an integer and G a connected graph of order n such that kn is even, $n \geq 4k-3$ and $\delta \geq k$. Suppose that

$$\max \left\{ d(u), d(v) \right\} \geq \frac{n}{2}$$

for each pair of non-adjacent vertices $u, v \in V(G)$. Then G has a k-factor.

Niessen [7] proved the following sufficient condition for a k-factor depending on δ and α .

Theorem 5 (Niessen [7]) Let $k \ge 2$ be an integer and G a graph with n vertices. If k is odd, then suppose that n is even and G is connected. Let G satisfy

$$n > 4k + 1 - 4\sqrt{k+2} ,$$

$$\delta \ge \frac{k-1}{2k-1} (n+2) \text{ and}$$

$$\delta > \frac{1}{2k-2} ((k-2) n + 2\alpha - 2) .$$
(2)

Then G has a k-factor.

For $k \geq 2$, the following result is a generalization of Theorems 2 and 3.

Theorem 6 Let $k \geq 2$ be an integer and G a graph of order n with $n \geq 4k-6$ and $\delta \geq k$. If k is odd, then n is even and G is connected. Let G satisfy

$$|N(X)| \ge \frac{1}{2k-1} (|X| + (k-1)n - 1) \tag{3}$$

for every independent subset X of V(G) with $|X| \geq 2k$, and

$$\sigma_2 \geq \frac{2k-2}{2k-1}n + \frac{4k-5}{2k-1} . \tag{4}$$

Then G has a k-factor.

The following result is an extension of Theorem 5 for $n \ge 4k - 6$.

Theorem 7 Let $k \geq 2$ be an integer and G a graph of order n with $n \geq 4k-6$ and $\delta \geq k$. If k is odd, then suppose that n is even and G is connected. Let G satisfy

$$\sigma_2 \ge \frac{2k-2}{2k-1}n + \frac{4k-5}{2k-1}$$
 and
$$\sigma_2 > \frac{2}{2k-2}((k-2)n + 2\alpha - 2) . \tag{5}$$

Then G has a k-factor.

2. PROOFS

To prove Theorems 6 and 7 we need the following result.

Theorem 8 Let $k \geq 2$ be an integer and G a graph of order n with $n \geq 4k-6$ and $\delta \geq k$. If k is odd, then n is even and G is connected. Suppose that G satisfies

$$\sigma_2 \ge \frac{2k-2}{2k-1}n + \frac{4k-5}{2k-1} .$$
(6)

Then G has a k-factor or there exist disjoint non-empty subsets A,B of V(G) such that

$$|X| := |\{v \in B \mid d_{G \setminus A}(v) = 0\}| \ge 2k$$
 (7)

and

$$\omega \ge k|A| - k|B| + d_{G \setminus A}(B) + 2 , \qquad (8)$$

where ω denotes the number of components of $C := G \setminus (A \cup B)$ with at least three vertices.

Proof. The proof is by contradiction. Let G be a graph satisfying the hypotheses of Theorem 8, and having no k-factor. Then by the k-factor theorem of Belck [1] and Tutte [10] there exist two disjoint sets $A, B \subseteq V(G)$ such that

$$q \ge k|A| - k|B| + d_{G \setminus A}(B) + 2 , \qquad (9)$$

where q denotes the number of components C_i of C satisfying

$$k|C_i| + e(C_i, B) \equiv 1 \pmod{2} . \tag{10}$$

We choose A and B so that $|A \cup B|$ is maximal with respect to (9). From a lemma by Katerinis and Woodall [6] we can conclude that then every component of C has at least $\max\{k-|B|+2,3\}$ vertices. Note that we also have $\omega \geq q$.

Let a := |A|, b := |B|, c := |V(C)| and $\tilde{c} := c/\omega$. If $B \neq \emptyset$, we choose a vertex $x \in B$ with

$$h := \min \{ d_{G \setminus A}(v) \mid v \in B \} = d_{G \setminus A}(x) .$$

Further, if $B \setminus (N_G(x) \cup \{x\}) \neq \emptyset$, we define

$$m := \min \left\{ d_{G \setminus A}(v) \mid v \in B \setminus (N_G(x) \cup \{x\}) \right\} ,$$

and let $y \in B \setminus (N_G(x) \cup \{x\})$ be a vertex satisfying $d_{G \setminus A}(y) = m$. Obviously

$$\sigma_2 < d(x) + d(y) \le 2a + h + m$$
 (11)

Note that, by the choice of A and B and by (9), we have

$$n \geq a + b + 3\omega \geq (3k + 1) a - (3k - 1) b + 3d_{G\backslash A}(B) + 6 .$$
 (12)

Furthermore, $\delta \geq k$ yields

$$a \geq k - h . (13)$$

If $\omega \geq 2$, let C_1 and C_2 be the smallest components of C and y_1 and y_2 be vertices of C_1 and C_2 , respectively. Then we obtain

$$\sigma_2 \leq d(y_1) + d(y_2) \leq 2a + |C_1| + |C_2| - 2 + e(y_1, B) + e(y_2, B)$$
 (14)

If $e(x, C) < \max\{k-b+2, 3\}$, then in every component of C exists a vertex non-adjacent to x. Let C_1 be the smallest component of C and x_1 be a vertex of C_1 non-adjacent to x. Then we have

$$\sigma_2 \leq d(x) + d(x_1) \leq 2a + h + |C_1| + b - 2$$
 (15)

Note that, using (6), $n = a + b + \tilde{c}\omega$ and (9), we obtain

$$\sigma_2 \geq \frac{2k-2}{2k-1} \left(a + b + \tilde{c} \left(ka - kb + hb + 2 \right) \right) + \frac{4k-5}{2k-1} . \tag{16}$$

We shall investigate different cases now.

Case 1. $B = \emptyset$.

Inequality (9) yields $q \ge 2$. Then according to (10) k is odd, so G is connected by hypothesis and it follows $a \ge 1$. By (14) and (16), we get

$$2\tilde{c} + 2a - 2 \ge \frac{2k-2}{2k-1} (a + \tilde{c}(ka+2))$$
.

From $\tilde{c}, k \geq 3$, we obtain the following contradiction.

$$\frac{1}{2} \geq \frac{2\tilde{c} + 2a - 2}{a + \tilde{c}(ka + 2)} \geq \frac{2k - 2}{2k - 1} .$$

Thus we may assume $B \neq \emptyset$.

Case 2. h > k + 1.

Here (9) provides $\omega \geq 3$. Then (14) and (16) yield

$$2b+2\tilde{c}+2a-2 \ \geq \ \frac{2k-2}{2k-1} \left(a+b+\tilde{c} \left(ka+b+2\right)\right) + \frac{4k-5}{2k-1}$$
 , i.e.

$$2ka(1-k\tilde{c}+\tilde{c})+2b(k-k\tilde{c}+\tilde{c})+2\tilde{c}-8k+7 \geq 0$$
.

But $k \geq 2$ and $\tilde{c} \geq 3$ give the contradiction

$$2ka(1 - k\tilde{c} + \tilde{c}) + 2b(k - k\tilde{c} + \tilde{c}) + 2\tilde{c} - 8k + 7$$

$$\leq 4a(1 - \tilde{c}) + 2b(2 - \tilde{c}) + 2\tilde{c} - 9$$

$$\leq -8a - 2b - 3$$

$$< 0$$

Case 3. h = k.

Applying (9), we have $\omega \geq 2$.

Case 3.1. b > k + 2.

From (12) we deduce

$$n \ge (3k+1)a - (3k-1)b + 3k(k+1) + 3m(b-k-1) + 6$$
, i.e.

$$m \le k + \frac{n - a - b - 3ka - 6}{3(b - k - 1)} . \tag{17}$$

Because of $m \geq k$ we get

$$a \leq \frac{n-b-6}{3k+1} . \tag{18}$$

Combining (11) and (17), we find

$$\sigma_2 \le 2a + 2k + \frac{n-a-b-3ka-6}{3(b-k-1)} =: f_1(a)$$
 (19)

with $f_1'(a) = 0$ if and only if $b = \frac{3}{2}k + \frac{7}{6}$.

Case 3.1.1. $b \ge \frac{3}{2}k + \frac{7}{6}$. Using (19) and (18), we conclude

$$\sigma_2 \le \frac{2}{3k+1} \; n + 2k - 1 - \frac{40}{9k+3} < \frac{2k-2}{2k-1} \; n + \frac{4k-5}{2k-1} \; \; ,$$

which is impossible according to (6).

Case 3.1.2. $b < \frac{3}{2}k + \frac{7}{6}$. Applying (19) with a = 0, we have

$$\sigma_2 \le 2k + \frac{n-b-6}{3(b-k-1)} =: f_2(b)$$
 (20)

Since $n \ge \max\{4k - 6, b + 6\}$ and $b \ge k + 2$, we obtain $f_2'(b) \le 0$, and hence

$$\sigma_2 \le \frac{n}{3} + \frac{5k-8}{3} < \frac{2k-2}{2k-1} n + \frac{4k-5}{2k-1}$$
,

which again contradicts (6).

Case 3.2. $b \le k + 1$.

Case 3.2.1. $B \setminus (N_G(x) \cup \{x\}) \neq \emptyset$. In this case (12) yields

$$n \ge (3k+1)a - (3k-1)b + 3k(b-1) + 3m + 6$$
, i.e.
$$m \le k - ka - 2 + \frac{n-a-b}{2}$$
. (21)

Then, using (11), (21), $a \ge 0$ and $b \ge 1$, we obtain the contradiction

$$\sigma_2 \le \frac{n}{3} + \frac{6k-7}{3} < \frac{2k-2}{2k-1} n + \frac{4k-5}{2k-1}$$

Case 3.2.2. $B \setminus (N_G(x) \cup \{x\}) = \emptyset$.

Case 3.2.2.1. $a \ge 1$.

Combining (14) and (16), we find

$$2\tilde{c}+2b+2a-2 \geq \frac{2k-2}{2k-1} (a+b+\tilde{c}(ka+2)) + \frac{4k-5}{2k-1}$$
, i.e.
$$2ka(1-k\tilde{c}+\tilde{c})+2kb+2\tilde{c}-8k+7 \geq 0$$
.

But $b \le k + 1$ and $k \ge 2$ yield

$$2ka(1 - k\tilde{c} + \tilde{c}) + 2kb + 2\tilde{c} - 8k + 7$$

$$\leq 2ka(1 - k\tilde{c} + \tilde{c}) + 2k^2 - 6k + 2\tilde{c} + 7$$

$$\leq 4a(1 - \tilde{c}) + 2\tilde{c} + 3$$

$$< 7 - 2\tilde{c} .$$

Hence, we get a contradiction except when $\tilde{c}=3$, a=1, k=2 and b=3. In this case, by (9), we have $\omega \geq 4$, this means $n \geq 16$. Then (15) and (16) give $8 \geq 35/3$, which is impossible.

Case 3.2.2.2. a = 0.

Note that $c \ge \max\{3k-7, 6\}$, since $n \ge 4k-6$. Using e(x, C) = k-b+1 and $|C_i| \ge k-b+2$ for all components C_i of C_i , by (15) we get

$$k+b+\frac{c}{2}-2 \geq \frac{2k-2}{2k-1} (b+c) + \frac{4k-5}{2k-1}$$
, i.e.
$$2k^2-9k-kc+b+\frac{3}{2}c+7 \geq 0$$
.

But because of $b \le k + 1$ we get the contradiction

$$2k^2 - 9k - kc + b + \frac{3}{2}c + 7 \le 2k^2 - 8k + 8 + c(\frac{3}{2} - k) < 0$$
.

Case 4. $1 \le h \le k-1$

Case 4.1. $b \ge h + 2$.

From (12) we deduce

$$n \ge (3k+1)a - (3k-1)b + 3h(h+1) + 3m(b-h-1) + 6$$
, i.e.

$$m \leq \frac{n-a-b-3ka+3kb-3h^2-3h-6}{3(b-h-1)} . (22)$$

Then $m \ge h$ yields

$$a \le \frac{n - 3hb + 3kb - b - 6}{3k + 1} \tag{23}$$

Combining (11) and (23), we see

$$\sigma_2 \leq 2a + h + \frac{n - a - b - 3ka + 3kb - 3h^2 - 3h - 6}{3(b - h - 1)} =: f_3(a)$$
 (24)

with $f_3'(a) = 0$ if and only if $b = h + \frac{k}{2} + \frac{7}{6}$.

Case 4.1.1. $b \ge h + \frac{k}{2} + \frac{7}{6}$.

Case 4.1.1.1. b > (kn+2)/(2k-h). Using (24), $a \le n-b$ and $h \ge 1$, we obtain

$$\sigma_{2} \leq h + 2n - 2b + \frac{2kb - kn - h^{2} - h - 2}{b - h - 1}$$

$$< h + 2n - 2\frac{kn + 2}{2k - h} + \frac{2k\frac{kn + 2}{2k - h} - kn - h^{2} - h - 2}{\frac{kn + 2}{2k - h} - h - 1}$$

$$\leq \frac{2k - 2}{2k - 1}n + \frac{4k - 6}{2k - 1},$$

which is impossible by (6).

Case 4.1.1.2. $b \le (kn+2)/(2k-h)$. By (24), (23) and $h \ge 1$, again we have the contradiction

$$\sigma_2 \leq h + \frac{2}{3k+1} (n - 3hb + 3kb - b - 6) + h$$

$$\leq \frac{2k-2h}{2k-h} n + 2h - \frac{4}{2k-h}$$

$$\leq \frac{2k-2}{2k-1} n + \frac{4k-6}{2k-1}.$$

Case 4.1.2. $b < h + \frac{k}{2} + \frac{7}{6}$.

Case 4.1.2.1. $n \ge 3(k-h)^2 - 2k + 3h + 7$. In this case (24), $a \ge k - h$, $b \ge h + 2$ and $h \le k - 1$ give

$$\sigma_2 \le \frac{n}{3} + \frac{5k-5}{3} < \frac{2k-2}{2k-1} n + \frac{4k-5}{2k-1}$$
,

contradicting (6).

Case 4.1.2.2.
$$n < 3(k-h)^2 - 2k + 3h + 7$$
.
By (11), (22), $a \ge k - h$, and $b < h + \frac{k}{2} + \frac{7}{6}$, we have

$$\sigma_2 \leq k + 3h - \frac{1}{3} + \frac{2n + 6k - 10h - 6h^2 - 14}{3k + 1}$$
,

the right-hand side taking its maximum value for $h = \frac{3}{4} k - \frac{7}{12}$, i.e.

$$\sigma_2 \leq \frac{2}{3k+1} n + \frac{153k^2 + 18k - 295}{72k + 24} < \frac{2k-2}{2k-1} n + \frac{4k-5}{2k-1} ,$$

contradicting (6) again.

Case 4.2. b < h + 1.

Case 4.2.1.
$$B \setminus (N_G(x) \cup \{x\}) \neq \emptyset$$
.

Applying (12), we get

$$n \ge (3k+1)a - (3k-1)b + 3h(b-1) + 3m + 6$$
, i.e.

$$m \leq kb - ka - hb + h - 2 + \frac{n-a-b}{3}.$$

Then, using (11), $a \ge k - h$, and $h \le k - 1$, it follows

$$\sigma_2 \le \frac{n}{3} + \frac{5k-7}{3} < \frac{2k-2}{2k-1} n + \frac{4k-5}{2k-1}$$
,

contradicting (6).

Case 4.2.2.
$$B \setminus (N_G(x) \cup \{x\}) = \emptyset$$
.

By (9),
$$a \ge k - h$$
, $b \le h + 1$ and $h \le k - 1$, we have $\omega \ge 2$.

Case 4.2.2.1. $a \ge k - h + 1$.

Applying (14) and (16), we obtain

$$2\tilde{c} + 2b + 2a - 2 \ge \frac{2k-2}{2k-1} (a+b+\tilde{c}(ka-kb+hb+2)) + \frac{4k-5}{2k-1}$$
, i.e.

$$2ka(1-k\tilde{c}+\tilde{c})+2kb(1+k\tilde{c}-\tilde{c})+2hb\tilde{c}(1-k)+2\tilde{c}-8k+7 \ge 0$$
.

But $\tilde{c} \geq 3$, $b \leq h+1$ and $h \leq k-1$ yield

$$2ka(1 - k\tilde{c} + \tilde{c}) + 2kb(1 + k\tilde{c} - \tilde{c}) + 2hb\tilde{c}(1 - k) + 2\tilde{c} - 8k + 7$$

$$\leq 2ka(4-3k)+2kb(3k-2)+6hb(1-k)-8k+13$$

$$\leq 2k^2 - 6k^3 - 8hk + 6hk^2 + b(6k^2 - 4k - 6hk + 6h) + 13$$

$$\leq 8k^2 - 6k^3 - 4k + 13 + h^2(6 - 6k) + h(12k^2 - 18k + 6)$$

$$\leq -4k^2 + 2k + 13 ,$$

getting a contradiction except when k=2, h=1, b=a=2 and $\tilde{c}=3$. But in this case, applying (9), we obtain $\omega \geq 4$, which implies $n \geq 16$. Then (15) yields $8 \geq 35/3$, which is impossible.

Case 4.2.2.2. a = k - h.

Note that again, by $n \ge 4k - 6$, we have $c \ge \max\{3k - 7, 6\}$. Using e(x, C) = h - b + 1 and $|C_i| \ge k - b + 2 > h - b + 1$ for all components C_i of C, by (15) and (16) we get

$$2(k-h)+h+b+\frac{c}{2}-2 \ge \frac{2k-2}{2k-1}(k-h+b+c)+\frac{4k-5}{2k-1}$$

which analogously to case 3.2.2.2 yields a contradiction.

Case 5. h=0.

Let $X := \{v \in B | d_{G \setminus A}(v) = 0\}$. By $n-a-b \ge \omega \ge ka-kb+b-|X|+2$ and b < n-a, we have

$$a \le \frac{1}{2k-1} (|X| + (k-1)n - 2)$$
 (25)

According to (7), we may assume $|X| \leq 2k - 1$.

Case 5.1. $|X| \ge 2$. Combining (11), (25) and $|X| \le 2k - 1$, we find

$$\begin{array}{rcl} \sigma_2 & \leq & 2a \\ & \leq & \frac{2k-2}{2k-1} \; n + \frac{2|X|-4}{2k-1} \\ & \leq & \frac{2k-2}{2k-1} \; n + \frac{4k-6}{2k-1} \; , \end{array}$$

which contradicts (6).

Case 5.2. |X| = 1.

Case 5.2.1. $b \ge 2$. Applying (12), we get

$$n \ge (3k+1)a - (3k-1)b + 3m(b-1) + 6$$
, i.e.
 $m \le \frac{n-a-b-3ka+3kb-6}{3(b-1)}$. (26)

|X| = 1 implies $m \ge 1$, which yields

$$a \le \frac{n + 3kb - 4b - 3}{3k + 1} \ . \tag{27}$$

By (11) and (26), we have

$$\sigma_2 \leq 2a + \frac{n-a-b-3ka+3kb-6}{3(b-1)} =: f_4(a) ,$$
 (28)

yielding $f_4'(a) = 0$ if and only if $b = \frac{k}{2} + \frac{7}{6}$.

Case 5.2.1.1. $b \ge \frac{k}{2} + \frac{7}{6}$.

Case 5.2.1.1.1. b > (kn+1)/(2k-1). In this case (28) and $a \le n-b$ give

$$\sigma_{2} \leq 2n - 2b + \frac{2kb - kn - 2}{b - 1}$$

$$< 2n - 2\frac{kn + 1}{2k - 1} + \frac{2k\frac{kn + 1}{2k - 1} - kn - 2}{\frac{kn + 1}{2k - 1} - 1}$$

$$= \frac{2k - 2}{2k - 1}n + \frac{2k - 3}{2k - 1},$$

which is impossible according to (6).

Case 5.2.1.1.2. $b \le (kn+1)/(2k-1)$. By (28), (27) and $b \le (kn+1)/(2k-1)$, here again we have

$$\sigma_2 \leq 1 + \frac{2}{3k+1} (n + (3k-4)b - 3)$$

$$\leq 1 + \frac{2}{3k+1} (n + (3k-4)\frac{kn+1}{2k-1} - 3)$$

$$= \frac{2k-2}{2k-1} n + \frac{2k-3}{2k-1} ,$$

contradicting (6).

Case 5.2.1.2. $b < \frac{k}{2} + \frac{7}{6}$. Using (9), we have $\omega \ge 1$, and hence (15) implies

$$2a + \tilde{c} + b - 2 \ge \frac{2k-2}{2k-1} (a+b+\tilde{c}(ka-kb+b+1)) + \frac{4k-5}{2k-1}$$
, i.e.

$$2ka - 2k\tilde{c}(ka - kb + b) + 2\tilde{c}(ka - kb + b + 1) - 8k + b + 7 - \tilde{c} \ge 0$$
.

On the other hand, $a \ge k$, $b < \frac{k}{2} + \frac{7}{6}$ and $\tilde{c} \ge 3$ give the contradiction

$$\begin{array}{lll} 2ka-2k\tilde{c}\left(ka-kb+b\right)+2\tilde{c}\left(ka-kb+b+1\right)-8k+b+7-\tilde{c}\\ &\leq& 2k^2-2k\tilde{c}\left(k^2-kb+b\right)+2\tilde{c}\left(k^2-kb+b+1\right)-8k+b-\tilde{c}+7\\ &\leq& 2k^2-2k\tilde{c}\left(\frac{k^2}{2}-\frac{2}{3}k+\frac{7}{6}\right)+2\tilde{c}\left(\frac{k^2}{2}-\frac{2}{3}k+\frac{13}{6}\right)-\frac{15}{2}k+\frac{49}{6}-\tilde{c}\\ &\leq& -3k^3+9k^2-\frac{37}{2}k+\frac{109}{6}\\ &<& 0 \end{array}.$$

Case 5.2.2. b = 1.

Condition (9) yields $\omega \geq 1$. Then (15) together with (16) provides

$$2a + \tilde{c} - 1 \ge \frac{2k-2}{2k-1} (a+1+\tilde{c}(ka-k+2))$$
.

But from $a \ge k$, $\tilde{c} \ge 3$ and $k \ge 2$ we get the following contradiction, which completes the proof.

$$\frac{1}{2} \geq \frac{2a + \tilde{c} - 1}{a + 1 + \tilde{c}(ka - k + 2)} \geq \frac{2k - 2}{2k - 1}.$$

With the help of Theorem 8 we will now proof Theorems 6 and 7.

Proof of Theorem 6. The proof is by contradiction. Let G be a graph satisfying the hypotheses of Theorem 6, which has no k-factor. Then, by Theorem 8 there exist two disjoint non-empty sets $A, B \subseteq V(G)$ such that (7) and (8) hold.

Analogously to (25), we have

$$a \leq \frac{1}{2k-1} (|X| + (k-1) n - 2)$$
.

Since X is an independent set with $|X| \ge 2k$ and $N(X) \subseteq A$, we obtain

$$|N(X)| \leq \frac{1}{2k-1} (|X| + (k-1) n - 2)$$
,

contradicting (3), so the proof is complete.

The proof of Theorem 7 runs analogously to that of Niessen in [7]. For reasons of completeness we shall give it here again.

Proof of Theorem 7. This proof is by contradiction. Let G be a graph without k-factor satisfying the conditions of Theorem 7. Again, by

Theorem 8 there exist two disjoint non-empty sets $A, B \subseteq V(G)$ such that (7) and (8) hold.

Using (7), we observe together with (11) that

$$|A| \geq \frac{\sigma_2}{2} . \tag{29}$$

Let $Y := \{v \in B \mid d_{G \setminus A}(v) = 1\}.$

Furthermore let $C_1, ..., C_{\omega_1}$ be the components of $G \setminus (A \cup B)$ with at least three vertices, having a vertex without neighbour in Y. Let S_1 be a set containing one such vertex from every C_i , $i = 1, ..., \omega_1$. The remaining components of $G \setminus (A \cup B)$ with at least three vertices are denoted by $D_1, ..., D_{\omega_2}$.

Let $Y_1 := \{v \in Y \mid N_{G \setminus A}(v) \subseteq B\}$ and $Y_2 := Y \setminus Y_1$. Then the graph induced by Y_1 in G has maximum degree at most 1. Let S_2 be a maximum independent set of this graph. Then it is obvious that $|S_2| \ge \frac{1}{2} |Y_1|$.

Since every vertex of every D_i has a neighbour in Y_2 and since these neighbours are distinct, we have

$$|Y_2| \ge \sum_{i=1}^{\omega_2} |V(D_i)| \ge 3\omega_2 \ge 2\omega_2$$
 (30)

According to our definitions, $X \cup S_1 \cup S_2 \cup Y_2$ is an independent set of G. By (30), we have

$$\alpha \geq |X| + \omega_1 + \frac{1}{2}|Y_1| + \frac{1}{2}|Y_2| + \omega_2 = |X| + \omega + \frac{1}{2}|Y|$$
 (31)

Now, applying (31), (8) and (29), we get

$$\alpha \geq \omega + |X| + \frac{1}{2}|Y|$$

$$\geq k|A| - k|B| + d_{G\setminus A}(B) + 2 + |X| + \frac{1}{2}|Y|$$

$$\geq k\frac{\sigma_2}{2} - k|B| + d_{G\setminus A}(B\setminus (X\cup Y)) + 2 + |X| + \frac{3}{2}|Y|$$

$$\geq k\frac{\sigma_2}{2} - k|B| + 2|B\setminus (X\cup Y)| + 2 + |X| + \frac{3}{2}|Y|$$

$$\geq k\frac{\sigma_2}{2} - (k-2)|B| + 2 - \alpha ,$$

which means

$$(k-2)|B| \ge k \frac{\sigma_2}{2} - 2\alpha + 2$$
 (32)

If k = 2, then (32) is equivalent to $\sigma_2 \le 2\alpha - 2$, contradicting (5). If $k \ge 3$, then (29), (32) and (5) yield the contradiction

$$0 \le n - |A| - |B| \le n - \frac{\sigma_2}{2} - \frac{1}{k-2} (k \frac{\sigma_2}{2} - 2\alpha + 2) < 0$$
.

3. REMARKS

Because of $\sigma_2/2 \ge \delta$ it is clear that Theorem 6 implies Theorem 2 and for $n \ge 4k - 6$ Theorem 7 implies Theorem 5. We now show that for $k \ge 2$ Theorem 6 also implies Theorem 3.

Theorem 6 implies Theorem 3. Let G satisfying the hypotheses of Theorem 3 with $k \geq 2$. Obviously, G is connected. (1) implies that one of every two independent vertices has degree at least n/2, which means that for every independent set $X \subseteq V(G)$ with $|X| \geq 2k$, we have

$$|X| \leq \frac{1}{2} n$$

and

$$|N(X)| \geq \frac{1}{2} n$$

$$= \frac{1}{2k-1} \left(\frac{1}{2} n + (k-1) n \right)$$

$$\geq \frac{1}{2k-1} \left(|X| + (k-1) n - 1 \right) .$$

Furthermore, by $n \ge 4k - 5$, we get

$$\sigma_{2} \geq n$$

$$= \frac{2(k-1)(n+2) + (n-4k+4)}{2k-1}$$

$$\geq \frac{2k-2}{2k-1} n + \frac{4k-5}{2k-1}.$$

So G satisfies the conditions of Theorem 6.

Examples showing that Theorems 6 and 7 do not imply each other can be found in [7].

Last we will show that the conditions of Theorems 6 and 7 are best possible. The connectedness of G, when k is odd is needed to avoid that G is the disjoint union of two odd complete graphs of roughly equal order.

To see that conditions (3), (4) and (5) of Theorems 6 and 7 are best possible, we consider graphs of the form

$$G := K_{r+2(sk-s-1)} + (rK_1 \cup (sk-1) K_2)$$

with $r \ge 0$ and $s \ge 2$, which do not contain a k-factor.

Choosing r = 2k, we see that condition (3) in Theorem 6 and condition (5) in Theorem 7 are best possible. For r = 0, we see that condition (4) in both theorems is needed.

ACKNOWLEDGEMENT We would like to thank Thomas Niessen for handing us a preprint of [7], which gave birth to parts of this paper. In addition, he supported our work by lots of valuable remarks.

References

- H.B. Belck, Reguläre Faktoren von Graphen. J. Reine Angew. Math. 188 (1950), 228-252.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, MacMillan & Co., London and Amer. Elsevier, New York, 1976.
- [3] Y. Egawa and H. Enomoto, Sufficient conditions for the existence of k-factors. Recent Studies in Graph Theory, V.R. Kulli, Ed., Vishwa International Publication, India (1989), 96-105.
- [4] T. Iida and T. Nishimura, An Ore-type condition for the existence of k-factors in graphs. Graphs Combin. 7 (1991), 353-361.
- [5] P. Katerinis, Minimum degree of a graph and the existence of k-factors. Proc. Indian Acad. Sci. Math. Sci. 94 (1985), 123-127.
- [6] P. Katerinis and D.R. Woodall, Binding number of graphs and the existence of k-factors. Quart. J. Math. Oxford Ser. (2) 38 (1987), 221-228.
- [7] T. Niessen, Nash-Williams conditions and the existence of k-factors. Ars Combin. 34 (1992), 251-256.
- [8] T. Nishimura, A degree condition for the existence of k-factors. J. Graph Theory 16 (1992), 141-151.
- [9] N. Tokushige, Binding number and minimum degree for k-factors. J. Graph Theory 13 (1989), 607-617.
- [10] W.T. Tutte, The factors of graphs. Canad. J. Math. 4 (1952), 314-328.
- [11] D.R. Woodall, k-factors and neighbourhoods of independent sets in graphs. J. London Math. Soc. (2) 41 (1990), 385-392.