The Fifth Jump of the Point-Distinguishing
Chromatic Index of K, ,

Mirko Horridk and Roman Sotdk

Department of Geometry and Algebra
P.J. Saférik University
Jesennd 5, 041 54 Kosice, Slovakia
email: hornak@turing.upjs.sk, sotak@turing.upjs.sk

ABSTRACT. The point-distinguishing chromatic index xo(G) of
a graph G represents the minimum number of colours in an
edge colouring of G such that each vertex of G is distinguished
by the set of colours of its incident edges. It is known that
Xo(Kn ) is a non-decreasing function of n with jumps of value
1. We prove that xo(Kys,46) = 7 and xo(Ks747) = 8.

Harary and Plantholt [1} introduced the point-distinguishing chromatic
index xo(G) of a graph G (with at most one component K; and without
components K>) as the minimum integer k admitting a k-colouring of edges
of G such that for each pair (z,y) of different vertices of G the colour set
of = - the set of colours of edges incident with z - is different from the
colour set of y. They determined values of this invariant for several classes
of graphs with simple structure (complete graphs, paths, cycles, cubes) and
proved that for any integer n > 2

floga 7] + 1 < x0(Kn,n) < [logan] + 2.

Using results of Zagaglia Salvi [3] it is easy to see that xo(Knn) is a
non-decreasing integer function of » with jumps of value 1. By n; will be
denoted the maximum integer n such that xo(Kn ) = k. Zagaglia Salvi [3]
found first values of nx: n3 = 2, ng = 5, n5 = 11 and ng = 22. The same
author in [4] claims to have determined all values of nx, namely by recurrent
relations ng41 = 2n; for odd k > 5 and ngyy = 2n; + 1 for even k > 6.
However, Horidk and Sotdk [2] proved an assertion contradicting implicitly
results of [4]. The aim of the present paper is to show that ny = 46. This
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is the first contradicting statement as regards the recurrence above: n; is
not equal to 45.

For integers p, g set

[P, q] = Uc‘=p{i}’ [P, °°) = Uzp{i}

and for k € [3,0), n € [2,00) let M, be the set of all square matrices
M of order n with entries from [1, k} such that sets of elements occurring
in lines (rows or columns) of M are pairwise disjoint. As a straightforward
consequence of the definition we get

Proposition 1. If n € [2,00), then xo(Kn,n) = min{k € [3,00): Mxn #
0}.

For a matrix M let £}(M) be the set of all entries of the i-th row of M
and L£'(M) the set of sets £}(M) for i running over all row indices of M;
L2(M) and £?(M) will be analogous sets concerning columns of M.

If M € Mg, then clearly

LY (M)| = | (M)| =n, L'(M)NLYM) =4,
Li(M)n E}(M) #@ foreveryi,je€|(l,n].
Thus, provided PX denotes the set of all subsets of a set X, P2X =
P(PX) and Sk, is the set
{(51,8?) € (PP, K))?: |S'| = |S?| = n, 51 N 8% =0,
vS! € 81 v52% € 8% S1 N S2 £ 0}
with k € (3, 00), n € [2, 00), non-emptiness of My, implies non-emptiness

of Sk . The inverse implication in general does not hold, but according to
[3, Theorem 4.5] it does for n great enough with respect to k:

Theorem 1. If k € [3,00) and n € [[235],2"‘1], then Mg,n # 0 if and
only if Sk # 0.

Since by [3, Corollary 3.5] xo(Kn.) = k for n € [2¢-2,| %’ |], an advan-
tage following from Proposition 1 and Theorem 1 consists in the fact that
deciding whether xo(Kn,n) = k or not for n € [[3;-],2"‘1] we need not
analyze M n, but (more comfortably) Sk n.

Theorem 2. n; = 46.

Proof: As [46,47) C [[%-], 26}, to show that xo(K4s,6) = 7 and xo(K4,47)
= 8 it suffices to find a pair (S?, S?) in S746 and to derive a contradiction
from the assumption S7 47 # 0.
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(a) Put

S ={{1,2},{2,3}, (3.4}, {4,1}},
S} ={{2,6,7},{4,6,7},{5,6, 7} U{AU {i}: A€ 8}, i€ [1,7)\A},

8‘-1 = {[l, 7]\A: A e 871_"}, i= 4) 5’
S? = {{1,3,6},{1,3,7},{2,4,5}, {2,4, 6}, {2,4,7}},
S,-2={AQ[1,7]Z|A|=i,A¢S,-1}, i1=4,5,
S} ={AC,7): |4 =3}, i=67,
8' = Ui,

7 2
82 = U‘-=38i .

One can easily check that (S!,8%) € Sy46. (S7 is the intersection of S
with P;[1, 7], the set of all i-element subsets of [1,7).)

(b) Suppose X()(K47,47) = 7 and take (Sl, 82) € 87,47. If 7;]' is the set of
cardinality ¢;; of all those A C [1, 7] for which A € S1US? has truth-value i
and [1,7]\A € S!'US? has truth-value j, i, j = 0, 1, then {T0, To1, 710, 711}
is a decomposition of P([1, 7},

too + o1 + ti0 + 11 = 128,
tio+t11 = ST US? =94,
too + tor1 = 34.

As evidently to; = t10, we have
t1; =94 — (34 — tgo) > 60.
Setting for j € (1, 2]
Th=Tun&, ¢;=|T

we get t}, +t3) = t1; and t}, = 0 (mod 2) (consider that A € T3} implies
[1,7]\A € T{)), hence |S7| = 47 and ¢, > 60 yields

14 < t{, < 46.
For

si =89 nPiL,7, s =15},
S = 8.'] Usi2$ 8 = Ist'la t€ [01 7]’ JE€ [1’2]’
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we obtain immediately so = 0, according to [3, Theorem 3.3] sy =0 and as

a consequence
7
E 8 = 94.

=2

Let G’% be the graph ([1,7],8{), 7 = 1,2. With respect to the obvi-
ous symmetry of the set S747 we can suppose without loss of generality
A(G}) < A(G)).

(1) A(G3) = 4 1f {{1,2},{1,3},{1,4},{1,5}} C &% and A € T;}, then
AN|1,5] must be either {1} or [2,5]; since for AN [6,7] there are 4 possi-
bilities, ¢}, < 2-4=8 < 14 - a contradiction.

(2) A(G3) = 3: As in the case (1), for {{1,2},{1,3},{1,4}} C 52 the
assumption A € T} implies AN[1,4] € {{1}, [2,4]} and the number of sets
fulfilling the last condition is 2-8 = 16. However, according to s; = 0 A must
be different from {1} and [2, 7). Furthermore, {{1,5},{1,6},{1,7}} C T3}
would analogously mean &3, < 16 —2 = 14 and ¢y; = t}, +¢3, < 28 in
contradiction with ¢;; > 60. Thus ¢}, < 16 — 3 = 13, which is impossible.

(3) A(G3) <2

(31) s3s3 > 0: Let {1,2} € 83, {1,3} € S2. If A€ Sz and AN[L,3] =
{i} € {{2}, {3}}, then necessarily A € S37%; since [2,7]\A is a 3-element
subset of [1,7] and its intersection with [1,3] is {5 — i} € {{2},{3}}, it
does not belong to S3 (it would be obliged to be in S = 5i-? but
then it would be disjoint with A € S3* # S3~!). Thus, as there are twelve
3-element sets A C [1, 7] fulfilling AN([1, 3] € {{2}, {3}}, at least six of them
do not belong to S3. Moreover, [4, 7] as well as each of its subsets (four of
them are of cardinality 3) is missing in 8! U §2. These two observations
lead to

< (;) — (6+4) =25.

In general, if A € S} and B € S, then |ANB| =1, |AU B| = 3 and the
4-element set [1,7]\(AUB) is not in S;. At most one pair (4’, B’) € 8§} x 8%
different from (A, B) determines the same 4-element set [1,7]\(4’U B’) =
[1,7]\(AU B) - there are only three 2-element subsets of AU B and at most

two ordered pairs of them are in S! x 82. That is why at least [5;2—"%]
4-element subsets of [1, 7] are not present in S and

7 shs?
< - | —=1.
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From the obtained inequalities with respect to s; < (;’) = 5,6,7, we have

8182
94 < 50+ 25+35— [_u] +21 4741,

2
sys3
5<sy+s;- [—’2—2]

and, since (s} —1)(s2 — 1) > 0 implies s}s% > s] +s2 -1,

1 2 _ 1 2
5<sl4ad- [f’.zi;z__‘] = [MJ _ [82;-1J’

so that finally s; > 9.

There exists i € {1,2} with s} > 5, hence at least three sets from S§ have
the same intersection with {1,4 — i} € S3~* which means that A(G}) > 3
- a contradiction.

(32) s} =0

(321) G% contains a path P, on 4 vertices with non-adjacent endver-
tices: If {{1,2}, {2, 3}, {3,4},{4,5}} C &%, then A € T}, fulfills AN[1,5) €
{{2,4},{1,3,5}} and t}, < 2.4 =8 < 14.

(322) The length of any path in G% with non-adjacent endvertices is at
most 2.

(3221) G3 contains a cycle C3: The inclusion {{1, 2}, {2,3}, {3,1}} C 53
would imply ¢}, =0 < 14.

(3222) G} contains Cy: From {{1,2},{2,3},{3,4},{4,1}} € &% and
A € T}, we obtain AN[1,4] € {{1,3},{2,4}} and 3 < |A| <4 (A € S} for
i € [5,7] leads to [1,7]\A € T} NS}_; in contradiction with sp = s; = s} =
0), hence 1 < |AN[5,7)| <2and t}; <2-(3+3)=12< 14.

(3223) G3 is acyclic (C; has a subgraph P,_; with non-adjacent endver-
tices) and its components are paths of lengths at most 2.

(32231) s2 > 4: G% has c components, 2 < ¢ < 3. If P, is a connected
component of G3 with E(P) = {{i,i+1}: i € [m, m+1—2]}, then for any
A € T}, we have only two possibilities for AN [m,m + 1 — 1), namely sets
consisting of all elements of [m, m + I — 1] of the same parity. Thus we can
claim ¢}, <2° <8 < 14.

(32232) s2 < 3: In the remaining part of our analysis it is unimportant
that s}s3 = 0. We also release the assumption A(G}) < A(G3) - we suppose
only s, < 3. Then t{; > 14 together with s} = s} = 0 implies s} + s§ > 4}
and s5 >4,i=1,2.

Consider the Kneser graph K(7, 3) with vertex set P31, 7] and with edges
Jjoining just disjoint triples depicted in Fig.1. It is convenient for the study
of the structure of S} and S% due to the fact that the subgraphs of K(7,3)
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induced by S} and S% are vertex-disjoint. However, before using it we point
to some of its properties relevant for our proof.

67. 451 236 714 562 347 25

573 614 725 136 247 351 462

Figure 1. The Kneser Graph K(7,3)

Define the ordered difference modulo 7 of a set {ai,a2,a3} C [1,7] with
a; < ay < ag as the minimum ordered triple from among (az—a,, az—a2, 7+
a1 — a3), (asz — a2,7+ a1 — a3, a2 — a;) and (7 + a; — a3, a2 — a;,a3 — az)
with respect to lexicographic ordering. Each of five possible differences,
ie. (1,1,5), (2,2,3), (1,3,3), (1,2,4) and (1,4, 2), corresponds to seven
members of P31, 7).

If C; is the set of all members of P3[1,7] with difference containing two
i’s, then the subgraph of K(7,3) induced on C; is C7 and that induced
on C; UCyUC3 is 3C7. The set K = P3[1,7]\(C; U Ca U C3) induces 7K>.
(From now on we will use 3C7 and 7K exclusively for subgraphs of K (7, 3)
induced on C; UCy UCj or K, respectively.) For i € [1,7] let K; be the set
of vertices of the i-th component of 7K3. One part of the bipartite graph
7K, corresponds to the difference (1,2,4), the other one to (1,4, 2). Every
vertex of K has exactly one neighbour in C;, i = 1,2, 3, and every vertex of
C; has exactly one neighbour in both parts of 7K», j =1,2,3.

K (7,3) is a 4-regular vertex-transitive graph — for {a,, az, a3}, {a}, a3, a3}
C [1,7] any permutation =: [1,7] — [1,7] with 7(a;) = a{, i = 1,2,3, in-
duces an automorphism of K(7,3) mapping {e,, az, a3} to {a},a),a3}. It
is easy to see that a shortest cycle of K(7,3) is of length 6.

The sets Cy,C2,C3 are equivalent with respect to the structure of K(7, 3):
The permutation i — (2¢)7 of [1,7], where (2i)7 = 2i (mod 7), induces a
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permutation ¢ of P[1,7] which restricted on P3[l1,7] is an automorphism
of K(7,3) interchanging components of 3C; by the following scheme of
changes of differences:

(1,1,8) = (2,2,3) = (1,3,3) — (1,1,5);
if it is applied twice, the corresponding scheme is
(1,1,5) — (1,3,3) — (2,2,3) — (1,1,5).

Moreover, the i-th power of g evidently transforms a pair (S?, 8?) € 8747
to the pair (¢*(5"),¢'(5%)) € Sra7, i =1,2.

Put
cl=Cns?, i=1,2,3 j=1,2
Cr =C\(Cl ucd), i=1,23,
Ki=Kn§, i=1,2

K- =K\(K'uk?),
S5 = (Ps[1,7I\(S3 U S3);

corresponding cardinalities will be c,’ 1 Gy k7, k= and 83 . From s, <3 we

have
(7
>9-3-— = 27.
s3>9 E (1) 27

i=4

The contradiction will be reached by showing that s; > 9, since then
7 -
35 = 3 =83 + 583 227+ 9=236.

Our analysis is based mainly on some simple observations.

(i) First of all, as sets A € S! and B € S§? are not disjoint, for i € {1,2}
in K(7,3) any neighbour of a set from S§ must belong to S§ U S5 .

(ii) For A C S} and B C 82 let K(A, B) be the set of all I € [1,7] such
that the distance d(A, K;) in K(7,3) between A and K, is at most 1 (either
ANK; # 0 or A has a neighbour in X;) simultaneously with d(B,Kr) < 1.
Each | € K(A, B) corresponds to a path joining a vertex of A C S} to a
vertex of B C S with all interior vertices in Ky; evidently, K; N S5 # 0,
since at least one interior vertex of such a path must serve according to (i)
as a “transition” between S} and S? and is therefore in S5 . Thus |[K(A, B)|
is a lower bound for k—.
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(iii) One can easily check that two different vertices of 3C; have neigh-
bours in 3 or 4 components of 7K5. For i € [1, 3] any component of 7K has
two neighbours in C; whose distance (it is realized in C;) is 3 - remember
that the girth of K(7,3) is 6. That is why a subpath of C; on j vertices
has neighbours in 25 components of 7K for j € [1,3] and in all seven
components of 7K for j € [4,7].

(iv) For each A € P;[1,7] there exists a permutation & of the set [1,3]
such that A is disjoint with exactly i members of C,(;), 1 = 1,2, 3.

(v) On the other hand for every i € [1,3] and every 6-element subset C
of C; there is exactly one set B € P,[1,7] such that B has a non-empty
intersection with each member of C;.

[1] ¢t = 7, ¢ = ¢f = 0: The set of neighbours of C} = C, is K which
implies k2 = 0. By (iv) we have also s3 = 0, hence the inequality 3, > 14
implies s3 > 7, in other words ¢ + ¢ > 7. Then ¢ = max{c}, 3} > 4.

[11] & > 5: Each of C? neighbours of Cf in K is in K2 U K~ so that
k* = 0 supplies s3 >k~ > 2c? > 10 which is sufficient for a contradiction.

[12] ¢ = 4: As above, k= > 8. Moreover, for j € [2,3] the set C? (with
at most four vertices) has at least two neighbours in Cj;; of course, these
neighbours are in C; and we have s3 >8+2-2=12.

[2] With respect to the interchangeability of C;, C2 and C3 and the sym-
metry of C7 47 we can suppose c} <6, c? < 6 and consequently ¢; > 1,
1=1,2,3.

[21] ¢} =6, & =0, c; = 1: From among vertices of K only neighbours
of C7 can be in 82 so that k? < 2. With respect to (v) s2 < 1, s2 > 6 and
using (iii) the set C] has neighbours in all components of 7K.

[211] 2 = max{c2,3} =6, ¢} = 0, c; = 1: Twelve neighbours of C? in
K are from 82 U S; and twelve neighbours of C} in K are from S} U S7,
hence |K| = 14 implies s3 > 10.

[212] 2 <5,i=2,3

[2121] ¢} = max{c},c}} =6, & = 0, ¢; = 1: From (iv) it follows s3 = 0,
hence 7<sf=c+c+cE ;+k=c_;+kandk>>7-_;>2in
contradiction with the fact that only common neighbours of 1-element sets
C; and C; can be in K2 and K(7,3) does not contain cycles of length 4.

[2122] ¢} < 5, i = 2,3: For any i € [2,3] from max{c},c} < 5 we can
conclude that ¢ > 2, since from ¢ € [1, 5] it follows that C] has at least
two neighbours in C;, each of them in C;”, j = 1,2. From k2 < 2 and s§ >6

we obtain ¢z = max{d, 4} > 2.

[21221] If the subgraph of K(7,3) induced on C? for some ! € [1,3] is
connected, C? has neighbours in at least min{2¢?,7} > 4 components of
7K>, (iv) yields the inequality k= > |K(C},C?)| > 4 and s5 = c] +¢; +
&g +k™29.
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[21222] If the subgraph above has at least two components, then C7 has
at least three neighbours in C; and c;” > 3 together with k= > |K(C],C})| >
3 is sufficient for a contradiction, too.

[22] Now we may suppose ¢} <5, ¢ <Sand ¢; >2,i=1,2,3.

[221] ¢ = 2: As ¢} + & = 5, without loss of generality (the symmetry
of S747) c! > 3 and the graph induced by C{ is a path on at least three

vertices. Then C} has neighbours in at least six components of 7K>.

[2211] ¢ = max{c}, &, 3} > 2

[22111] There are two distinct vertices of C? whose distance (realized in
C;) is at most 2: The set C} has neighbours in four components of 7K3,
hence k= > |K(C},C?)| >3 and s3 23:2+3=09.

[22112] C? has two vertices and their distance is 3: Now k~ > | K(C{,C?)|
> 2, each of four neighbours of C? in C; is in S5, ¢; =>4 and s3 > 10.

[2212] 2 <1,i=1,2,3

[22121] There exists i € [1,3] such that one of the components (paths)
induced by C} has at least four vertices: The set C} has neighbours in all
components of 7K>.

[221211] & + & + ¢ > 2: €2 UCZ UC} has neighbours in at least three
components of 7K>, hence k= > |K(C},C?uC3UC?)| > 3and s3 > 3-2+3 =
9.

[221212] & + & + & < 1: From s2 > 4 we have k? > 3, k= >
|K(C!,K?)| > 3 and again s3 > 9.

[22122] Each of the components induced by C} has at most three vertices,
1=1,2,3: In this case cf =0andC ,‘ induces two components, one on three
vertices, the other one on two vertices (c? = 1 would force two neighbours
of C} to be in C; and, since remaining four vertices of C; are not all in
Cl, i would be at least 3 contrary to the assumption [221]). Thus C] has
neighbours in six components of 7K3.

[221221] & = & = 1: Proceeding as above we see that ¢; > 3, ¢35 > 3.
Moreover, CZ U C3 has neighbours in at least three components of 7Kj,
k- > |K(C},C2UC2)| > 2 and s5 > 10.

[221222] G+ 3 =1: Asc; +c3 = 5 and k% > 3, we get k= >
|K(C},K?)| > 2 and s3 > 9.

[221228] & = ¢ = 0: From k2 > 4 we obtain k= > |K(C},X?)| > 3 and
once more s > 9.

[222] Inequalities ¢ > 3, i = 1,2, 3, lead immediately to s3 > 9.

: a
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We have proved among others that min{k € [3,00): ng41 = 2ne+2} = 6.
Using results of [2] one can see that there are k, | € [7,00) such that
Ng+1 2 2ni+3 and ny4y < 2n+2. It could be interesting to decide whether
there exists p € [3,00) fulfilling Ny 41 < 20, + p for every m € [3,00).
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