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ABSTRACT. The quantity B(G) = min max{|f(u)—f(v)|: (u,v)
€ E(G)} is called the bandwidth of a graph G = (V(G), E(G))
where min is taken over all bijections f: V(G) — {1,2,...,
[V(G)|} called labelings. L.H. Harper presented an important
inequality related to the boundary 8S of subsets § C V(G).
This paper gives a refinement of Harper’s inequality which will
be more powerful in determining bandwidths for several classes
of graphs.

1 Introduction
Let G = (V(G), E(G)) be a simple connected graph with vertex set V(G)
and edge set E(G), and |[V(G)| = n. A bijection (one-to-one mapping)
f:V - {1,2,...,n} will be called a labeling. The bandwidth of a labeling
f for G is defined by

B(G, f) = max{|f(u) - f(v)|: (w,v) € E(G)};
and the bandwidth of G is defined by

B(G) = min{B(G, f): f is a labeling of G}.

Here, a labeling that attains the minimum is called an optimal labeling.
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The bandwidth problem for graphs arises from sparse matrix computa-
tion, code theory and the circuit layout of VLSI designs. The recognition
version of determining the minimum bandwidth of a graph has been proved
to be N P-hard [8], so people make efforts to find bandwidth representations
or algorithms for as many special graphs as possible. In this direction, the
following inequality due to L. H. Harper [4] is significant.

Theorem 1.

BG) 2 l<k<|V| |S|= k|8.S’|,
where S = {x € S: thereisay € V — S such that (z,y) € E(G)} denotes
the boundary of S C V(G).

This lower bound is decisive in solving the bandwidth problem for n-
cubes, Py x Py, Cpn X Py, Cn x Cy, (m,n)-multipaths and others (See
[1,4,7]). In the present paper, we try to strengthen this theoretic tool so
as to solve different problems more efficiently. In Section 2, we present a
generalization of Theorem 1. In Section 3, we illustrate how the generalized
inequality works. Some of the applications are simplifications of known
results, some are new.

2 The Boundary Inequality

For a labeling f, let u; = f~1(i) (1 £ i < n) be the vertex of label i. Denote
Sk = {u1,ug,...,ux} = f71({1,2,...,k}) for 1 < k < n. Theorem 1 can
be written as

Theorem 1°. For any labeling f of G,

B(G,f) 2  Jhax |0Sk|-

Here, the inner boundary 3S can be replaced by the outer boundary,
that is the neighbor set N(S) = {y € V — S: there is an z € S such
that (z,y) € E(G)}. In order to get a more accurate lower bound, we will
extend the range of boundaries. The sets

D™ (Sk) = {uj € Sk: thereis a u; such that i < j < k and u; € 85k},
D*(Si) = {u; € V — Si: there is a u; such that k <i < j and u; € N(S)}
will be called the backward boundary and the forward boundary of Sy re-
spectively. Obviously 8S, C D~(Sk), N(Sx) € D*(Si). Furthermore, if
X C D=(Sk), Y C D*(Sy) satisfy

(i) ze X,ye Y = (z,y9) € E(G),

252



(ii) | X U Y| is maximum,

then X UY is called an intersection boundary of Sy, denoted by D°(Sy). In
other words, the subgraph of G induced by D°(S}) represents a maximum
complete bipartite subgraph between D~(Si) and D*(Si). By using this
notation, we have a generalization of Theorem 1’ as follows.

Theorem 2. For any labeling f of G,

BG.f)> max max(ID™(Su)l, [D*Su)l ID°(Sk)l - 1}

Proof: For any labeling f, recall that
ui=f714), i=12,...,n
and
Sk = {u1,u2,...,ux}.

Let @ = min{i: u; € D7(Sk)}. Then u, is adjacent to a ug € V — Sy.
Note that a < k —|D~(Sy)|+1, 8> k+1. So
B(G,f) 2 |f(ua) — f(up)|
=B-a2 D" (S
Similarly for D*(Sk). It remains to show B(G, f) > |D°(Sk)| — 1.
Suppose that D%(Sx) = X UY with X C D (Sx), Y C D*(Sk) and
X xY C E(G). Let « = min{i: u; € X}, § = max{j: u; € ¥}. Then
B 2 a+|D%Sk)| — 1. Note that u, is adjacent to ug. We have
B(G, ) 2 |f(ua) — f(up)|
=p-a2|D%(S) - 1.

By the arbitrariness of k, Theorem 2 follows. a

In next section, we shall explain how to use this generalized boundary
inequality to get sharp lower bounds.

3 Applications

We first concentrate on the result of complete k-partite graphs which is a
typical application of Theorem 2.

Proposition 1 (P.G. Eitner [3]). If ny > ny > --- > ny, then

ny+1
B(Knl an2'-~'|"k) =n- I- :

B
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where n = XX n; is the number of vertices.

Proof: Let V; be the vertex set of the i-th part of G = Kp, n,,...nu: Vil =
ni(i =1,2,...,k). For a given labeling f, suppose that u; € V;. Then take
k = [(n; + 1)/2]. If Sy intersects more than one part, then

IN(Sk)| =n — Skl
rn‘+1
>n— l.nq;-l.l.

Otherwise S C Vi, then D°(S;) contains all vertices in G except the |(n; —
1)/2] vertices of V; — Si. So

0 -
|D 5
_ n,--i-l
n1+1
2n— .

In any case, it follows from Theorem 2 that

B(G, f) 2 max{|D*(Sk)l, 1D°(Sk)| -1}

n +1
-1
On the other hand, the following labelmg f* attains the above lower bound
) 1<5< |3,
f*(vlj) J . n l 2 J )
n- n1+J, [BF]+1<ji<m

-1

[ (vig) = [—J+Znh+_7, fori> 2.
h=2

where V; = {v;;: 1 < j < n;}. This completes the proof. |

The following applications are based on this result to some extent. The
labeling f* given above will be used again in the remainder of this paper.
In particular, we label |n,/2] vertices of V; by integers 1,2,..., |n1/2];
then label V; by successive n; integers (i = 2,3,...,k); finally label the
remaining [n,/2] vertices of V; by the integers from n — [n,/2] + 1 to n.

The sum (join) of graphs Gy, Ga,..., Gk, denoted by G+ G2+ - - + Gk,
is defined to be the graph with vertex set V(G;)UV(G3)U-.-UV(G}) and
edge set E(G1)U E(Ga)U -+ U E(Gg)U {(u,v): u € V(G;), v € V(G;j) for
i # j}. As a consequence of Proposition 1, we have the following.
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Proposition 2 (Lai, Liu and Williams [5)). Let G = G1+G2+---+Gi
with n; = |V(G;)|, n = Z5.n; and ny > ng > -+ > ng. If B(Gy) <
[n1/2], then

B(G) =n— 10,

Proof: Since Ky, n,,...n. C G, it follows from Proposition 1 that B(G) >
n—[(n1+1)/2]. On the other hand, the labeling f* defined in Proposition
1 (where the order of vertices in V; is according to an optimal labeling of G;)
attains the lower bound. In fact, in addition to the edges of Ky, n,,...nus
we have

[f*(w) - fF@N < B(G1)+n—-m

(uv)GE(G)
<|'— ~14+n-m
n+1
=n-[—2—1,

* * < -
(”)GB(G)If(u f(v)l_m 1
<n n1—1

<n—|' ](forz>2)

So the labelling f* attains the bound. This is what we wanted to show. O

Proposition 2 is a partial result on the sum of k graphs. We can obtain
the general result by using Theorem 2.
Proposition 3. Let G = G; + G2 + --- 4+ Gx with n; = |V(G;)| and
n =Xk n;. Then

B(G) = mln ma.x{B(G)+n n;, 1

Proof: For a given labeling f, suppose that u; = f~1(1) € V(G:). By the
proof of Proposition 1 and Ky, n,,....n. € G, we have

BG,f)zn- 21

1 1)
Additionally, we will prove that

B(G, f) > B(Gi) + n —n,. (2)
If B(G;) < [ni/2], then (1) implies (2). Hence we may assume B(G;) >
[n:i/2]. Let g: V(G;) — {1,2,...,n:} be a labeling of G; induced from
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f, e, g(u) < g(v) & f(u) < f(v) for all u,v € V(G;). Furthermore, we
denote z; = g~!(j), 1 < j < n; (note that z; = u,). Then there is a edge
(zx,zr) € E(G;) (k < r) such that
B(G:,9) = lg(zk) — g(zr)| =7 -k
> B(G) 2[5
Since r < n;, it follows that k < [n;/2].
Case 1 f(zx) = k. That is, Sk = f~1({1,2,...,k}) = {z1,z2,...,z£} C
V(G;). Then
{zk+1,zk+2, vy :Z!r} U (V(G) - V(Gg)) - D+(Sk).
Thus
B(G,f) 2 |D*(Sk)| 2T —k+n—-m

> B(G;) + n—n;.

Case 2 f(zx) > k. According to the order of f, let y be the first vertex

which does not belong to V(G;), and f(y) = k. Then Sk = {z1,z2,...,Zh_1,
y}, and

B(G,f) 2 IN(Sh)|=n—|Su| 2n—k
=n-—(r— B(Gi, /)
2 B(Gi)"'n_ni)

By combining the above two cases, we obtain (2). Further, by combining
(1) and (2), it follows that

B(G, f) > max{B(G;) +n — ni,n —

> minmax{B(C;) +n — ni, r"‘ +1,

Without loss of generality, we may assume that G, attains the above mini-
mum. By noting the last two representations of the proof of Proposition 2,
we see that the labeling f* attains the lower bound. The proof is complete.
O

As a consequence of Proposition 3, we have the following.
Proposition 4 (J. Yuan [9]).

B(C + H) = min{|V(H)| + max{B(G), ['V(G)I Im

V(G)| + max{B(H), L""” N=1.
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As a special case of Proposition 2, the paper [6] gave a partial result of
B(G + H).

A similar application is about the composition of graphs as follows. The
composition of two graphs G and H, denoted by G[H], is defined to be the
graph with vertex set V(G) x V(H) and (u;,v;) is adjacent to (ug,ws) if
u) is adjacent to u3 in G or if u; = up and v; is adjacent to v3 in H. Since
Km|H) = Hy+ Hy+--- + Hp, where Hy, H,, ..., H,, are m copies of H,
the next Proposition follows directly from Proposition 3.

Proposition 5.
B(Km[H]) = max(B(H), XN 1y 4 vy,

The paper [2] gave results on PL[H] and C7,[H] when 7 is so small
that they are not isomorphic to Km[H]. Here, Proposition 5 proposes a
complement. This also provides a lower bound for B(G[H]) when G has a
subgraph K, (a clique of m vertices).

Proposition 6. If G has the maximum degree A(G), then

AG)IV(H)| - 1
> .

B(G[H)) =2 |V(H)| + |

Proof: Since G[H] has a complete bipartite subgraph whose one part is
V(H), another is A(G) copies of V(H), the inequality follows directly from
Proposition 1. O

This lower bound is attainable for P [Py), Pn[Ch], ete.

4 Concluding Remarks

In determining the bandwidth of a graph, a common way is to derive a
lower bound which can be attained by a constructed labeling. Therefore,
looking for a sharp lower bound is usually critical. In the foregoing discus-
sion, a type of lower bounds based on the concept of boundary has been
established. In addition to the applications mentioned above, more exam-
ples for illustrating the efficiency of this methodology could be found in the
literature. Further, it is possible to get more variants of this type of lower
bounds, which would be suitable to diflerent classes of graphs.
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