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Abstract.  An upper bound on the size of any collection
of mutually orthogonal partial latin squares is derived as a
function of the number of compatible cells that are occupied in
all squares. It is shown that the bound is strict if the number
of compatible cells is small.

1 Introduction

A partial latin square of order n is an n x n array such that each of the
integers 1,2,...,n appears at most once in any row or column [4]. Two
partial latin squares (not necessarily distinct) of the same order form an
orthogonal pair if all ordered pairs of entries obtained by superimposing
the two squares are distinct. A collection of partial latin squares with the
property that each pair of squares in the collection is an orthogonal pair is
called a collection of mutually orthogonal partial latin squares (MOPLS’s).
A collection of partial latin squares will be called p-compatible if every
square has exactly p entries and the cells of these entries are the same for
all squares. Euler, having failed to construct a pair of orthogonal latin
squares of order six, constructed an orthogonal pair with 34 compatible
cells as shown in Figure 1 (see e.g., [2]).
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Figure 1.

In this paper, we are interested in the maximum number of p-compatible
MOPLS’s of order n. We denote this number by M, (p). For example, Fig-
ure 2 shows a collection of five 8-compatible MOPLS’s of order four. On
the other hand, there are no more than three 8-compatible MOPLS’s of
order four if four of the compatible cells are in a row or a column. In fact,
it will be shown that there are no more than five 8-compatible MOPLS’s
of order four regardless of the choice of the compatible cells; and thus
M,4(8) = 5. In general, we will determine M, (p) for n+ 1 < p < 2n. The
problem of determining My (p) is of interest only for p > n + 1. Indeed, if
p < n, we can always construct a partial latin square which is orthogonal
to itself and thus we have a collection of MOPLS’s containing an infinite
number of copies of this square. We will assume in the following that n > 2
and n + 1 < p < n?. Clearly, M,(p) is a nonincreasing function of p and
a nondecreasing function of n.

The number M, (p) plays a role in coding theory. It can be shown
that any code of p codewords of length N over an alphabet of n letters
has Hamming distance of at most N — [log, p] + 1 (see e.g., [1]). This
number reduces to N — 1 in the case n + 1 < p < n?. However, this
bound is not always attainable. In fact, the maximum value of N for
which this bound can be attained is M,(p) + 2 [1]. An application of
this result to file distribution in database systems is explained in [1]. In
this application, it is required to distribute the records of a large file on
several disks in order to reduce the retrieval time of records in response to
queries. Typical queries request records that are close together in terms of
Hamming distance. If these records are located on a single disk, then the
retrieval time may be large. To reduce the retrieval time, records which
are close in terms of Hamming distance are distributed on several disks.
This can be accomplished by allocating the records such that the records of
each disk form a code with large Hamming distance. The coding-theoretic
results based on M, (p) give bounds on the best possible retrieval time.
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2 Upper Bound

In this section, we derive an upper bound on M,(p). First, we give an
upper bound on the number of MOPLS’s with a given set P of p compatible
cells. We then maximize this upper bound over all sets of p compatible
cells.

Let P be a set of p cells. Let r; and ¢;, for i = 1,2,...,n, denote the
number of cells in the i** row and column, respectively. Thus,

n
ri>0fori=1,2,...,n, and Zr,-=p, (1)

i=1

and n
¢i>0fori=1,2,...,n, and Ec,':p. (2)

i=1

Let v(P) be the number of (unordered) pairs of distinct cells in P that lie
in the same row or column. Then,

n

@=2 ()5 (}) =35+ ee -0 ©
i=1 =1 i=1

i=1

Consider a partial latin square with p occupied cells. Let p;, for j =
1,2,...,n, denote the number of occurrences of j as an entry in the square.
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Thus,

n
pi>0forj=12,...,n, and Y pj=p. 4
i=1

We define F to be the set of pairs of distinct cells such that each pair
contains the same entry. Hence,

n

F1=3 (%) = %;m(;ﬁ ~1). (%)

Assume that we have M p-compatible partial latin squares. Let P be
the set of compatible cells. Let ujx,forj=1,2,...,nandk=1,2,..., M,
be the number of occurrences of j as an entry in the k** square. Further-
more, let Fi, for k =1,2,..., M, be the set of pairs of distinct cells such
that each pair contains the same entry in the k** square. A necessary and
sufficient condition for the k** and the I** squares to be orthogonal is that
Fi NF; = ¢. Hence, the M squares are mutually orthogonal if and only if
the F}’s are mutually disjoint, i.e.,

M M
Yo 1R =|U A (6)
k=1 k=1

From the definition of a partial latin square, it follows that F; does not
contain any pair of cells in the same row or column. Hence,

M
U 7
k=1
Since p > n + 1 implies that |Fi| > 0 for all k, then (6) and (7) give

< splp—1) - ¥(P)
= mim<e<n |Fi

< (B) - u(P) = 35— 1) - v(P). @)

(8)

Recall that |Fi| is given in (5) with p; replaced by p;jx where the yji’s
satisfy (4). In the following lemma, we derive a lower bound on |F| as
given in (5) for any integers pj, j = 1,2,...,n, satisfying (4).

Lemma 1 Suppose that the integers pj, j = 1,2,...,n, satisfy (4). Then,
n
> mi(ws — 1) 2 |p/n)(2p — n = n|p/n]),
i=1

where equality holds if and only if n — p+ n|p/n] of the p;’s equal |p/n|
and the remaining p — n|p/n] of them equal |p/n| + 1.
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Proof. Suppose that max;<j<n pj —minicj<n ptj > 2. Then, without loss
of generality, we may assume y; — 2 > 2. Define pj = py — 1, ph = pa+1,
and g} = p; for 3 < j < n. It is easy to check that ui,us, ..., u, satisfy
(4) and

n n
Y omi(ui = 1) =Y pie = 1) =2(m — 2 — 1) > 0.
j=1 i=1

Hence, the minimum of 3°7_, pj(p; — 1) is attained only if maxpu; —

ming; < 1. This holds if and only if n — p 4+ n|p/n] of the u;’s equal

|p/n] and the remaining p—n|p/n) of them equal |p/n| + 1. In this case,

the inequality stated in the lemma is strict. m]
From (5), (8), and Lemma 1, we get

plp—1) - 2v(P)
M= /i@ —n—nlp/m)’ ©)
In order to obtain an upper bound that holds for any p-compatible MO-
PLS’s, we maximize the upper bound given in (9) over all sets P of p
cells. This is accomplished by minimizing »(P) as given in (3), where the
ri’s and the c;’s satisfy the conditions of (1) and (2), respectively. These
conditions are the same as the conditions stated in (4) for the u;’s. From
Lemma 1, we get

v(P) 2 2|p/n|(2p — n — n|p/n|),

where equality holds if and only if n — p+ n|p/n| of the r;’s (¢;’s) equal
[p/n| and the remaining p—n|p/n| of them equal |p/n|+1. Substituting
this bound in (9), we get the following result.

Theorem 2 For n+1 < p < n?, we have

p(p—1) _
Ma(p) < le/nJ(2p— n— nlp/nJ).l 8

For instance, Theorem 2 implies that M,,(n2) < n — 1. Indeed, it is
well known that there are at most n — 1 mutually orthogonal latin squares
of order n [4]. We will show that this bound not only applies if all squares
are full, but also applies if the squares are slightly more than half full.
This is stated in the following result which is a corollary to Theorem 2.

Corollary 3 Suppose that

w-l-l if n is odd,
P> 2 _\/2—
n?+l2n+l in +4n+1}+1 if n is even.
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Then My (p) < n—1 and equality holds if n is a prime power.

Proof. Since My(p) is a nonincreasing function of p, it suffices by Theo-
rem 2 to show that

p(p—1) _ _
p/nl@p—n—nlp/apy] ~ 25" L
ie.,
p(p—1) < (n+2)[p/n](2p— n — nlp/n]), (10)

if p equals the lower bound stated in the corollary. In the case p equals
this lower bound, we have

p| _ ) (n+1)/2 ifnisodd,
£] = { 1)

n/2 if n is even.
Let o = p — n|p/n]. Then, (10) is equivalent to

o® — (4|p/n] + 1)a — n|p/n](2lp/n] —n—-1) < 0. (12)

Substituting |p/n| from (11) in (12), we find that the smallest nonnegative
integer a that satisfies (12) is

if n is odd,
[(2n +1-v2r2+4n+1)/2)+1 ifnis even.

This shows that (10) holds if and only if p satisfies the lower bound. If
n is a prime power, it is known that there are n — 1 mutually orthogonal
latin squares of order n [4]. Thus, M,(n?) = n — 1. Since M,(p) is a
nonincreasing function of p, then in this case M,(p) = n—1 for all p that
satisfies the lower bound stated in the corollary. a

In general, if n is not a prime power, then M,(p) may be less than
n — 1 even if p satisfies the condition stated in Corollary 3. The following
result may be useful in such case.

Theorem 4
My(n? — 1) = My (n?).

Proof Suppose that we are given a collection £ of M,(n?—1) MOPLS’s
with n? — 1 compatible cells. We will demonstrate that an element can
be placed in each partial latin square to form a complete latin square and
that the collection of the completed squares are pairwise orthogonal. This
will imply that My (n? — 1) < M,(n?). Since M,(p) is a nonincreasing
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function of p, this gives the required result. We may assume, without loss
of generality, that cell (1, 1) is empty in all squares and all other cells are
occupied. Consider some latin square L in £. The element that does not
appear in the first row of this square appears exactly n — 1 times in the
square. Similarly, the element that does not appear in the first column
appears exactly n — 1 times. If these two elements are different, then the
remaining n — 2 elements appear n? — 2n + 1 times in L. This implies
that one of the remaining elements appears more than n times, which
contradicts the assumption that L is a partial latin square. Thus, the
element missing in the first row is the same as the element missing in the
first column. By inserting this element in cell (1, 1), we obtain a complete
latin square L’. Now, we prove that the collection £’ of completed latin
squares are pairwise orthogonal. Let L; and L, be two latin squares in
L. Suppose that k; and ko are the entries in cell (1,1) in the completed
squares L] and L), respectively. If L} and L) are not orthogonal, then k;
and k2 are the entries in some other cell in L and L), respectively. This
implies that for some !y, where 1 < !y < nand ; # ky, no cell has /; in L,
and k3 in L. Since !, appears n times in L,, then there is an element I,
such that in at least two cells, /; appears in L; and l; appears in Ly. This
contradicts the assumption that L; and L, are orthogonal. ]

The function M, (n?), which denotes the maximum number of pairwise
orthogonal latin squares of order n, has been studied extensively (see e.g.,
(3],[4]). In particular, it is known that a pair of orthogonal latin squares of
order n exists, i.e., Mp(n?) > 2, if and only if n ¢ {2,6}. Combining this
fact with Theorem 4 and the construction given in Figure 1, we obtain the
following result.

Theorem 5 My(p) > 2 ezcept if n =2 orn =6 and p € {35,36}.

3 M,(p)forn=3and n=4

In this section, we construct MOPLS’s for all p such that n 4+ 1 < p < n?,
where n = 3 and n = 4. In all cases considered, we show that the bound
stated in Theorem 2 is strict.

Theorem 6
4 forp=41,
Ms(p)=¢ 3 for5<p<§,
2 forp>1.

In particular, the bound in Theorem 2 is strict for n = 3.
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Proof. Figure 3 shows four 4-compatible MOPLS’s and Figure 4 shows
three 6-compatible MOPLS’s; all of order three. Thus, M3(4) > 4, and
M3(5) > M3(6) > 3. From Theorem 2, it follows that equalities hold in

all three cases. Corollary 3 implies that Ms(p) =2 forp > 7. o
213 112 12 211
1 1 3
1 3 1 1
Figure 3.
3|2 1]2 1
113 312 12
2 1 3 1 2 3
Figure 4.

Theorem 7

8 forp=25,

5 for6<p<8,
4 forp=9,

3 forp>10.

In particular, the bound in Theorem 2 is sitrict for n = 4.

My(p) =

Proof. Figures 5, 2, and 6 show eight 5-compatible, five 8-compatible, and
four 9-compatible MOPLS’s, respectively; all of order four. Thus, M4(5) >
8, My(6) > My(7) > M4(8) > 5, and My(9) > 4. From Theorem 2,
it follows that equalities hold in all five cases. Corollary 3 implies that
My(p) =3 for p > 10. o
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4 M,(p)forn+1<p<2n

In this section, we construct MOPLS’s for all n and p such that n +1 <
p < 2n. Let P be a set of p cells, where n + 1 < p < 2n. Suppose that
we are given a collection of M sets Ay,...,Ap of (unordered) pairs of
distinct cells in P that satisfy the following conditions:

(i) |[Ae]=p—nfor 1<k <M.

(ii) If (my, #}) € A and (ms, 75) € Ax, where 71, 7], 72, and 75 are cells
in P, then m, 7], 72, and 74 are distinct.

(iii) If (=, #') € Ak, where 7 and 7’ are cells in P, then 7 and 7’ do not
lie in the same row or the same column.

(iv) ArnAj=dforl <k<i< M.
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Notice that we use { , ) to denote unordered pairs and ( , ) to denote
ordered pairs. From condition (i), we can write Ax = {(m,, 7L} : 1 <
r < p—n}. Based on Ag, we construct a partial latin square I'; with
entries occupying the p cells in the set P. The element r, where 1 < r <
p — n, is the entry at cells #, and #!. Condition (ii) implies that there
are exactly 2(p — n) such cells. If p < 2n, then the remaining 2n — p
cells in P are occupied by distinct elements from the set {p—n+1,p —
n+2,...,n}. Condition (iii) ensures that [; is indeed a partial latin
square. Furthermore, condition (iv) guarantees that I';,Ts,...,Tps form
a collection of p-compatible MOPLS’s of order n. As an example, the five
8-compatible MOPLS’s of order four shown in Figure 2 can be constructed
from the sets

A = {((1,1),(2,2)),((3,3),(4,4)),((1,2),(2,3)),((3,4), (4, 1))},
A2 = {((1,1),(3,3)),{(2,2),(4,9)),((1,2),(3,9)),((2,3), (4, 1))},
A3 = {((1» l)) (414))v ((2s 2): (3’3))» (1’ 2)) (4s 1))’ ((2’ 3): (3’4))},
Ay =

(
{((3,3),(1,2)),((4,4),(2,3)),((1,1),(3,4)),((2,2), (4, 1))},
As = {((4,4),(1,2)),((1,1),(2,3)),{(2,2),(3,4)), ((3,3), (4, 1))}(-13)
Similarly, the four 4-compatible MOPLS’s of order three shown in Figure 3
can be constructed from the sets

Al = {((2’2)v(3’3))}’
AZ = {((1)1):(2’2))}:
A = {(L1).6.3), (1)

Ay = {((3’ 3)’ (1’ 2))}

In general, to specify the sets Ai’s, we will construct certain arrays
S(g;A1,-..,Am) for any given positive integers ¢ and m and any non-
negative integers A;,...,An less than or equal to |g/2], and satisfying
A1 + -+ Am < g(g — 1)/2, for which the following three properties hold:

(I) S(g;A1,.-.,Am) is a ¢ x ¢ symmetric array and its main diagonal is
empty.

(II) Each k =1,2,...,m appears exactly 2); times in S(g; A1, ..., Am).

(III) No entry appears twice in the same row or the same column of
S(q; Aty ... ) '\m)'

In Lemmas 9, 11, and 12, we will construct the arrays S(g; A1,...,Am)
for g odd, ¢ =2 (mod 4), and ¢ = 0 (mod 4), respectively. First, we
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assume that ¢ is odd and define the following sequences of cells off the
main diagonal of a ¢ x ¢ array:

u. = Q,r+1),(2,r),...,([r/21,1r/2] +2),
Vo = (g—1na)(g—r+1,¢-1),...,(¢—[r/2) - 1,4 [r/2] + 1),
u, = (r+1,1),(r2),...,(lr/2] +2,[r/2]),
vvl- = (q,q—r),(q—l,q—r+l),...,(q—[r/2]+l,q—|_1‘/2_|—1),

(15)
where r = 1,2,...,¢—1. Notice that the sequences U/, and V, contain cells
(%,7) such that i < j. Furthermore, every cell (¢, 5) with i < j is in U, or
Vr for some r. Similar statements hold for &/ and V! with regard to the
cells (¢,7) with ¢ > j. In fact, &} and V! are obtained by interchanging i
and j for every cell (4, j) in &, and V., respectively. The cells in ¢/, and U/
lie in different rows and columns. A similar statement holds for the cells
in V, and V;. Each of the four sequences U;, V,, U!, and V! contains [r/2]
cells. We also have Uy_y = Vo1 and U;_, = V;_,.

We order the g(g — 1)/2 cells (¢, j), where 1 < i < j < g, as specified
by the list

Vo2, (Vg-3,U1), (Vg-a,Uz), . . .,(V1,Ug=3),Ug_2,Uy_1, (16)

which reduces to Vy,U;, U, in the case ¢ = 3. Here, the parentheses are
only used for clarification. Similarly, the g(g — 1)/2 cells (i,7), where
1< j < i<q, are ordered according to the list

;-2’ (V;-a’u{)x (v;—bué)l LA (Vi»u;-a)xu'-z,u;-u (17)
which reduces to V{,Uj,U; in the case ¢ = 3. Let o(i, j) be the order of
cell (i, 5) starting from the left in list (16) if i < j or list (17) if i > j.
Notice that o(i, j) = o(j, ) for i # j. Figure 7 illustrates the orders in the

cases ¢ = 3, 5, and 9. In each array, the entry in cell (i, j), where i # j,
represents its order o(i, ).

For any integers I; and I, where 0 < !} < I3 < g(g - 1)/2, let
Oh +L,L)={(,1):1<ij< g i# 5L +1<0(i,j) <k}, (18)
and
I*(h +1,) = {(i,): 1 Si<j < a,h+1<o(i, ) < b},

Clearly, II(ly + 1,13) and II* (I, + 1,13) contain 2(I — };) and Iz — I, cells,
respectively.
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Figure 7.

Lemma 8 Ifgq > 3 is odd, then

1. for k = 1,2,...,q, no lwo cells among the ¢ — 1 cells in the set
O((k - 1)(g—1)/2+ 1,k(g — 1)/2) lie in the same row or the same
column, and

2. forl=0,1,...,(¢> —29+3)/2, no two cells among the ¢ —3 cells in
the set (141,14 (g—3)/2) lie in the same row or the same column.

Proof. From Figure 7, the lemma can be verified for ¢ = 3. Therefore,
we assume in the following that ¢ > 5. According to (16) and (17), we
deduce that the orders of the cells in the sequences V,_2 and V;_, are
1,2,...,(g — 1)/2 since each of these sequences contains [(g — 23/2] =
(g —1)/2 cells. Thus, I(1,(q — 1)/2) contains the cells in V,_2 and V;_,,
which lie in different rows and columns. The sequences V;_;_) and U1,
where 2 < k < g — 2, contain in total

gt 5] -1
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cells. Similarly, V;_,_, and &}, _, contain in total (¢—1)/2 cells. Therefore,
by induction on k it follows that II((I: 1)(g—1)/2+1, k(¢ —1)/2), where
2 <k £ q—2,is the set of cells in Vy_p_1, Ur—1, V, g=k—1s and le A |1
can be checked from (15) that no two cells among the g—1cellsin these
four sequences lie in the same row or the same column. From the above,
we deduce that the last element in &/,;_3 has order (¢ —1)(¢—2)/2. Hence,
O((g — 1)(g — 2)/2 + 1,(g — 1)?/2) is the set of cells in Uy—2 and U!_,,
which lie in different rows and columns. The cells of the set II((g—1)%/2+
1,9(q — 1)/2) are those in U,—; and U]_,, and they also lie in different
rows and columns. This concludes the proof of the first part of the lemma.

Now, we consider the second part of the lemma. Notice that if the
(g—3)/2 cells in the set II*(I+1, 1+ (g—3)/2) are confined to the sequences
V-2, (Vg—k-1,Us-1) for some k where 2 < k < ¢—2,U,_2, or Uy—y, then
O(I+1,1+(g—3)/2) c O((r—1)(g—1)/2+1,r(g—1)/2) for some r. In this
case, the first part of the lemmaimplies that the cells in II({+1,1+(g—3)/2)
lie in different rows and columns. Next, assume that the (¢ — 3)/2 cells
in I*(1 + 1,1 + (¢ — 3)/2) are confined to (V,-3,V,-3) such that each
sequence contains at least one cell in the set, i.e., these cells are the last
t cells in V,_2 and the first (¢ — 3)/2 — ¢ cells in V,_3 for some ¢, where
1 <t <(g—5)/2. From (15), it follows that the cells in II(I+1,1+(g—3)/2)
lie in different rows and columns. A similar argument shows that the
same conclusion holds if the cells in the set O*(I + 1,1 + (g — 3)/2) are
confined to (Uy-3,U;-2) or (Uy—~2,U;-1). Next, assume that the cells in
the set II*(! 4+ 1,1+ (¢ — 3)/2) are confined to (Ui—1,V,—k—2), for some
k where 2 < k < ¢ — 3. From (15), it can be shown that the cells in
the sequences Uy_, Vy—-2, uk-v and V/ 4—k—2, and therefore the cells
in I{{+ 1,1+ (¢ - 3)/2), lie in different rows and columns. Thus, we
conclude that if the cells in the set II*(I + 1,1 + (¢ — 3)/2) are confined
to two consecutive sequences in list (16), then no two cells in this set lie
in the same row or the same column. Therefore, we may assume in the
following that the cells in IT*(! + 1,1 + (¢ — 3)/2) are confined to three or
more consecutive sequences in list (16) such that each sequence contains
at least one cell from the set. Since each of U, and V, contains [r/2] cells,
any two consecutive sequences in the list contain at least (g — 3)/2 cells,
and the (¢ — 3)/2 cells in I*(I + 1,1 + (g — 3)/2) are confined to three
consecutive sequences in list (16), which are (Vy—z—1,Uk—1,Vq-k-2) or
(Ug-k—2,Vi_1,Ug—-) for some k, where 2 < k < g — 6. In the first case,
the (¢ —3)/2 cells in T*({ + 1,1+ (g — 3)/2) are the last ¢ cells in V,_z_1,
all the [(k—1)/2] = [k/2] cells in Ui_1, and the first (¢ —3)/2 -t~ [k/2]
cells in V,_x_2 for some ¢, where 1 < t < (¢ — 5)/2 — |k/2|. We have
already stated in the proof of the first part of the lemma that no two cells
among the sequences V,_g_1, Ux-1, V;_k_l, and U} _, lie in the same row
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or the same column. A similar statement holds for the sequences U _;,
Vo—ik-2,U;_,,and V! 4—k—2- Moreover, it can be verified from (15) that the
last ¢ cells in Vg_x_1 Tand V! 9—k—1> and the first (¢ —5)/2 —t — | k/2] cells
in V.,..;, 2and V/_,_, liei in different rows and columns. Hence, no two
cells in II(I + 1,1+ (g — 3)/2) lie in the same row or the same column. A
similar argument shows that this is true if the cells in II(I+ 1,1+ (¢ —3)/2)
are confined to (Uy—k-2,Ve—1,Ug~k-1). This concludes the proof of the
lemma. o

Lemma 9 For any positive odd integer ¢ and any nonnegalive integers
A1y...;Am less than or equal o (@ — 1)/2 such that Ay + -+ + A, <
q(g—1)/2, there ezisis an array S(n; A1, ..., An) salisfying properties (1),
(11), and (III).

Proof. If ¢ = 1, then we take S(g; A1,...,Am) to be the 1 x 1 empty array.
Therefore, let ¢ > 3 in the following construction of S(g; A1,...,Am). By
renaming the entries if necessary, we may assume, without loss of gener-
ality, that Ay > .-- > A, > 1. Let Ic where k= 1 2,...,m, be the entry
of the cells in the set T = TM((Tro) Ar) + 1 Zt_ ,\t) From (18) and
the way o(i, j) is defined according to lists (16) and (17), it follows that
properties (I) and (II) are satisfied. If Ax < (g — 3)/2, then the second
part of Lemma 8 implies that no two cells in the set II; lie in the same
row or the same column. If Ay = (¢ —1)/2, then A\ = (¢ —1)/2fort < k.
Therefore, II; = I((t — 1)(g—1)/2+1,t(¢—1)/2) for 1 <t < k, and the
first part of Lemma 8 implies that no two cells in IT lie in the same row
or the same column. This shows that property (III) holds. o

The construction of the array S(g;A;,...,Am) given in the proof of
Lemma 9 can be explained as follows. The entries are renamed, if nec-
essary, such that A; > -.- > An,. The first A cells in each list of (16)
and (17) are assigned the entry 1, the following A cells in each list are
assigned the entry 2, etc., until A, cells in each list are assigned the entry
m. Figure 8 shows S(3;1,1,1), 5(5;2(), and 5(9;4(), 2®) constructed
according to this method, where the orders of the cells in lists (16) and
(17) are given in Figure 7 for ¢ = 3, 5, and 9. Here we use the nota-
tion a(®), where b is a positive integer, to denote the sequence (a, a, . ., a)
of length b, e.g., S(9;4(M,23)) = 5(9;4,4,4,4,4,4,4,2,2,2). Flgure 9
shows S(9 2(3) 4(7)) obtained from S(9; 4(7) 2(3)) by renaming the entries
1,2,...,10 as 10,9,...,1, respectively.
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As we will see later, the array S(g; (43%)(9)) is of special interest. In
this array, each element £ = 1,2,...,¢q appears in exactly ¢ — 1 cells.
Therefore, there is a unique row in which k¥ does not appear. Let this
row be the 8(k)™* row. Since the array is symmetric, the element k does
not appear in the 8(k)"® column also. Notice that 8(1),0(2),...,6(q) are
distinct since each row contains ¢ — 1 distinct entries. As an example,
for the array S(5;2(%) shown in Figure 8, 8(1) = 1, 8(2) = 4, 6(3) = 2,
6(4) = 5, and 6(5) = 3. In general, it can be shown that for the array
S(g; (9%1')(’)) constructed in the proof of Lemma 9,

k+1)/2 if k is odd
(k) = ( ’ 1
®) {(q+k+l)/2 if k is even. (19)
For 6 =1,2,...,q, let k(8) be the unique element k, where k =1,2,...,q,
for which 6(k) = 6, i.e., k(9) is the entry that does not appear in the 6'*
row or column. For example, if S(g; (’;—l)(“)) is constructed as shown in
the proof of Lemma 9, then (19) implies that

20— 1 if1<0<(g+1)/2,
= 2
k(©) {29—q—1 if (g+1)/24+41<0<q. (20)

In particular, for the array S(5;2(%)) shown in Figure 8, k(1) = 1, ¥(2) = 3,
k(3) = 5, k(4) = 2, and k(5) = 4.

In the following, we will show how to construct an array S(g; A1,...,Am)
satisfying properties (I), (II), and (III), in the case g is even. The array
S(g; A1, - - -, Am) will be specified in the form

B | C
CcT | B, ’

where By, B;, and C are ¢/2 x q/2 arrays described below and C7 is
the transpose of C. By ordering the rows and columns of the array C
as 1,2,...,9/2, the set of cells (¢, ), where 1 < 4,5 < ¢/2, in C can be
partitioned into the ¢/2 sequences Wy, W, ..., Wy;2, where

W, =(14,r),(2,r+1),...,(¢/2—r+1,q/2),
(¢/2-r+2,1),(¢/2-7r+3,2),...,(¢/2,r - 1),

which is composed of the ¢/2 — r + 1 cells (i, + r — 1) as i runs over
1,2,...,q/2—=r+1, followed by the r—1 cells (¢/2—r+i+1,4) as i runs

S(g; A1, Am) = (21)
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over 1,2,...,r — 1. Notice that if ¢ = 2, then Wy = (1,1). The ¢%/4 cells
in the array C are ordered according to the list

Wi, Wa, ..., Wy2. (22)
The proof of the next result is straightforward.

Lemma 10 If ¢ > 2 is even, then

1 forr =1,2,...,9/2, the q/2 cells in W, lie in different rows and
columns, and

2, any q/2 — 1 conseculive cells in list (22) lie in different rows and
columns.

Lemma 11 For any ¢ =2 (mod 4), where ¢ > 2, and any nonnegative
integers Ay, ..., A\ less than or equal 1o q/2 such that Ay + --- 4+ Ay <
q(g—1)/2, there ezists an array S(q; A1, ..., Am) satisfying properties (I),
(11), and (III).

Proof. By renaming the entries if necessary, we may assume, without
loss of generality, that Ay > --- > Ay > 1. First, suppose that m > ¢/2
and Ay = --- = A2 = ¢/2. In this case, let By = By = S(¢/2;((q -
2)/4)(4/2)), which can be constructed as shown in the proof of Lemma 9.
Each element k = 1,2,...,¢/2 is assigned as the entry of cell (8(k), 6(k))
on the main diagonal of C. Thus, the entries in the cells of the sequence
W, are specified. None of the elements 1,2,...,¢/2 appears elsewhere in
the array given in (21). From Lemma9 and the definition of 8(k), it follows
that none of these elements appears more than once in the same row or
the same column. If m > q/2, then the first Aj/241 cells in C in the list
Wy, Ws, ..., W, are assigned the entry ¢/2+1, and the following Ag/242
cells are assigned the entry q/2+2, etc., until A, cells are assigned the entry
m. The construction of C is complete. Since ¢/2 > Ags241 > -+ 2 Am,
it can be shown using Lemma 10 that S(g; A1, ..., Am) satisfies properties
(), (IT), and (III).

Next, suppose that m < ¢/2 or Ay;z < ¢/2. Then, A; < ¢/2 for
q/2 <t < msince A\ > --- > Am. Let t* be the least integer such that
T A > ¢34 if T A > ¢%/4, otherwise define t* = m + 1. The
first A; cells in list (22) are assigned the entry 1, and the following A2
cells are assigned the entry 2, etc, until A;-_; cells are assigned the entry
t* — 1. In the case t* = m + 1, the construction of the array C is complete
and we take B; and B; in (21) to be the ¢/2 x ¢/2 empty arrays. If
£* < m, then the last ¢2/4 — '_;" A; cells in C are assigned the entry
t*. Lemma, 10 implies that no entry in C appears more than once in the
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same row or the same column. Thus, if * = m + 1, then S(g; A1,...,Am)
satisfies properties (I), (II), and (III). In the following, we will assume that
t* < m. Notice that A\;» < ¢/2— 1, and therefore A\; < ¢/2 -1 for t > t*,
otherwise ¢/2 > A; > -+ > Am and A2 < ¢/2 imply that t* < ¢/2 and
At = ¢/2 for t < t* which contradicts that 2:;1 At > ¢%/4. It remains to
construct symmetric arrays B; and B, with empty diagonals such that ¢*
appears in 2\ — (92/4 — 47 A = 2[(4, M) — ¢2/4] cells, each k,
where t* + 1 < k < m, appears in 2] cells in the arrays B, and B3, and
no entry appears more than once in the same row or the same column.
Furthermore, since the entry t* appears in ¢2/4 — 2:;'11 A¢ cellsin C, t*
should not appear in the same row in C and B, or the same column in C
and B;. For the moment, we will ignore this last requirement involving
the array C. )

Let {t1,t3,...,% } be the set of all ¢, where t* + 1 < t < m, such that
At is odd. For 1 < k < m, define

0 if1<k<t* -1,
[0 - @] itk=r,
Ae=19 A/2 ifk>t*+1and k¢ {ts,t5,...,4},
[A:/2] if k = t; for some odd I,
[A:/2] if k = t; for some even I,
(23)
and
0 ifl<k<t -1,
=1 o) = (@4 -X. ifk=1, (24)
Ar — M ift*+1<k<m.

Since Ae < g/2—1for k > t*, T4 A < ¢2/4, and T4, A > ¢2/4, it
follows that for k =1,2,...,m,

0< M, A < [((a/2-1)/2)] = (¢ - 2)/4. (25)
From (23), (24), and the assumption that Y-, A; < ¢(g — 1)/2, we have

YN+ 3 = (oA - (@/4) < ala - /4,
t=1 t=1

t=1

which is an even integer. Combining this with the fact that

m m
L M- ML,
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which follows from (23) and (24), we get

m

max {zm: A:,EA:'} <alg-2)/8.

t=1 t=1

Let the ¢/2 x ¢/2 arrays By and B; in (21) be S(q/2; M, X},..., ,,) and
S(g/2; A1, A3, ..., Am), respectively, constructed as in Lemma 9, for which
properties (I), (IT), and (III) hold. This implies that each k =1,2,...,m
appears in exactly 2); cells in S(g; A1, ...,An) and these cells lie in differ-
ent rows and columns, with the possible exception that t* may appear in
the same row in B; and C, and hence in the same column in B, and C7, or
in the same column in B, and C, and hence in the same row in B, and CT.
We will show that this possibility can be eliminated by a suitable permu-
tation of the rows and columns of C, and the corresponding columns and
rows of CT. Such a permutation maintains the property that no element
appears more than once in the same row or the same column of C. The
element t* appears in exactly (¢2/4) — 3°f_;' A cells in C, 2Xl. cells in
By, and 2)y. cells in By. Therefore, the permutation should avoid placing
any of the (¢%2/4) — Z:;‘ll A¢ cells in C containing t* in any of the 2)}.
rows in which ¢* appears in By, or in any of the 2/, columns in which *
appears in B,. From (23) and (24), M. < M < [(('e, Ae) — (¢2/4))/2].
Therefore,

9oy o 9o o 8o Tiey A) = (2/4)

2
g a ¢ ¢ S
23 (M -F+1) 25 -,
t=1 t=1

where we used the fact that M- < (¢/2)—1. Hence, it is possible to permute
the rows and columns of C to avoid having any of the ¢2/4— Z::;_ll A cells
in C containing ¢* in any of the 2)}. rows containing ¢* in B,, or in any
of the 2){. columns containing t* in B;. With this permutation, t* does
not appear twice in the same row or the same column in S(g; Ay, .., Am).
This concludes the proof of the lemma. (n]

Figure 10 shows S(6;3(*),2) and 5(6;3,3,2,2,2, 1) constructed accord-
ing to the proof of Lemma 11.
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2(3|11(4]5 6 21113
2 1 3|4 6 5/1]3]2
31 4 2 5 2(1
1|54 2|3 2114 5
403 2 1 113 5 4
514|231 3[2]1 4

S(6;3™,2) 5(6;3,3,2,2,2,1)

Figure 10.

For 5(6;3(%),2), we take the 3 x 3 arrays B; and B, to be 5(3;1,1,1),
which is shown in Figure 8. The entry &, where k = 1,2, and 3, is assigned
to cell (8(k),8(k)) in the array C as given in (19). The remaining cells in
C are ordered according to the list

(1,2),(2,3),(3,1),(1,3),(2,1),(3,2).

The first three cells in this list are assigned the entry 4 and the following
two cells are assigned the entry 5.

For 5(6;3,3,2,2,2,1), we order the cells of the array C according to
the list

(1,1),(2,2),(3,3),(1,2),(2,3),(3,1),(1,3),(2,1),(3,2).

The first three cells in this list, (1,1),(2,2),(3,3), are assigned the entry
1. The following three cells, (1,2),(2,3),(3,1), are assigned the entry 2.
The cells (1,3),(2, 1) are assigned the entry 3. Notice that ¢* = 4 and the
cell (3,2) is assigned the entry 4. Thus,

11213
C=[3]|1]|2
21411

From (23) and (24), we have M{ = A5 = A5 =X, =0, 5 =X =1, A =
5 =AM =0, =Xf =1, and X{ = 0. We take B, = 5(3;0,0,0,0,1,1)
and B; = (3;0,0,0,1,1,0) as constructed in the proof of Lemma 9, i.e.,

6 5
By =|6 5 and By=1]5 4
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Since the entry 4 appears in the second column in both of C and B,
and also in the third column in Bz, we need to permute the columns in
C in order to avoid having the entry 4 in the last two columns. This is
done by interchanging the first two columns in C, which gives the array
5(6;3,3,2,2,2,1) shown in Figure 10.

Lemma 12 For any ¢ =0 (mod 4), where ¢ > 4, and any nonnegative
integers Ay, ...,Am less than or equal to q/2 such that Ay + -+ Ay <
9(g — 1)/2, there ezists an array S(q; M1, . .., A ) satisfying properties (I),
(11), and (III).

Proof. The array S(g; A1,...,Am) is specified in terms of ¢/2 x ¢/2 arrays
By, B, and C as shown in (21). By renaming the entries if necessary, we
may assume, without loss of generality, that A\; > --. > A, > 1. First,
suppose that m > ¢/2 and A} = -+ = Ayy2 = ¢/2. In this case, let
B1 = B, = S(g/2;(g/4)(4/2-V), which can be constructed using induc-
tion on ¢ based on Lemma 11. The first Ay, cells in C in list (22) are
assigned the entry ¢/2, and the following A;/24, cells are assigned the
entry ¢/2+ 1, etc., until A, cells are assigned the entry m. The construc-
tion of C is complete. Since ¢/2 > Ay > -+ > Ay, it can be shown
using Lemma 10 that S(q;)1,...,Am) satisfies properties (I), (II), and
(IIT). Next, suppose that m < ¢/2 or Ajj2 < ¢/2. In this case, the con-
struction of S(g; A1,...,Am) is similar to the corresponding construction
explained in the proof of Lemma 11. Notice that the expression (g —2)/4
which appears in (25) should be replaced by ¢/4. Furthermore, the ar-
rays S(g/2;1,...,A,) and S(g/2;){,...,M) can be constructed using
induction on ¢ based on Lemma 11. (]

Figure 11 shows $(4;2,2,2) and S(4; 1(9)) constructed according to the
proof of Lemma 12. For 5(4;2,2,2), we take the 2 x 2 arrays B; and B,
to be S(2;1), as constructed in the proof of Lemma 11, i.e.,

1
By =B; =

1

The cells in C are ordered according to the list (1,1),(2,2),(1,2),(2, 1).
The first two cells in this list are assigned the entry 2 and the following
two cells are assigned the entry 3.

279



11213 6113
1 312 6 412
213 1 1|4 5
3121 312]|5
S(4;2,2,2) S(4; 1(6))
Figure 11.

For S(4;1(9), we order the cells of the array C according to the list
(1,1), (2,2), (1,2), (2,1). These cells are assigned the entries 1, 2, 3, and
4, respectively. Thus,

113
C =

4|2
Notice that ¢* = 5. From (23) and (24), we have M| = --- = X = 0,
A=1, M =---=X =0, =1,and M} = 0. We take B; = S(2;0(,1)
and B; = (2; 091, 0) as constructed in the proof of Lemma 9, i.e.,

6 5
B = 6 and By = 5 ,

which gives the array S(4;1(®)) shown in Figure 11.
Lemmas 9, 11, and 12 can be combined in the following result.

Lemma 13  For any posilive inleger ¢ and any nonnegative iniegers
Aly..., Am less than or equal to |q/2] such that Ay +-- -+ A, < g(g—1)/2,
there ezists an array S(q; A1,...,Am) salisfying properties (I), (II), and
().

Based on these arrays, we will construct in Theorem 15 a collection of
p-compatible MOPLS’s of order n. In order to accomplish this, Ag,..., Am
need to be specified properly depending on the values of n and p. This
issue is addressed in the following lemma.

Lemma 14 Ifn+1 < p < 2n, and p < (2n — p)? in the case n is odd,
then there ezist inlegers Ay, ..., Ay such that

[(p=n)/2] € M,- .., Am < min{|n/2],p - n}

and

(p—n)2m—-p+n+1)/2< A +--+An <n(rn—1)/2,
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where

m_ln(n—l)+(P n)(p— n-l)J
2(p—-n)

Proof. First, we will show that

[n/2)Jm > n(n - 1)/2. (26)
We have
m—(n-1) = [n(n —1) +2((1;—_7:‘))(p— n- l)J —(n-1)
_ |@r=-p)(2n-p-1)
= l =1 20,

which proves (26) in the case n is even. Furthermore, if n is odd, then
p<(2n—p)® and

me(n-1) = l(2n—§2;2f;)p—l)J=[(2n—g();:£l2)n—P)J

> lp- (2n.—p)J -
2p—n)
and (26) holds in the case n is odd. Next, we will show that
(p — n)m > n(n —1)/2. (27)

pr =n+1, then m = |n(n - 1)/2] = n(n — 1)/2 and (27) holds. If
=n+2,then m=|(n(n—1)+2)/4] > n(n—-1)/4 and (27) also holds.
pr > n+3, then

(p—n)m = (p—n) ln(n—l)+2((};):7:3)(p—n—1)J
n(n—1)+2(p—n) n(n—1)
> (p—n)[ o —n) J> R

From (26) and (27), we obtain

min{|n/2],p — n}m > n(n — 1)/2. (28)
Next, we will show that
[(p—n)/2lm < (p—n)2m—-p+n+1)/2, (29)
which is equivalent to
(e —n)/2Jm > (p—n)(p—n—-1)/2. (30)
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From (26) we have m > n— 1. If p < 2n — 1, then

p=n)/2lm 2 (p—n-1)(n-1)/22 (p—n)(p—n-1)/2,

and (30) holds. If p = 2n, then p > (2n — p)? and n is even. In this case,
(30) also holds. Therefore, we have

[(p—n)/21m < (p—n)(2m—p+n+1)/2 < n(n—1)/2 < min{ lﬂ/2J,p—n(}m).
31

where the first inequality follows from (29), the second inequality follows
from the definition of m, and the third inequality follows from the (28).
From (31), we conclude that there exist m integers A, ..., A that satisfy
the statement of the lemma. |

Theorem 15 Forn+1<p<2n,

)= 36753 -

In particular, the bound in Theorem 2 is strict forn+1 < p < 2n.

Proof. The result obviously holds for n = 2. Hence, assume that n > 3.
Let

P={3G,i):i=12,...,n}U{(E,({E+1)a):i=12,...,n},

where the notation (I),, for an integer I, denotes the integer satisfying
1<()p <nand () =1 (mod n). Let

n(n = 1)+ (p—n)(p— n—l)J

m= 32
l 2(p—n) (32)
First, assume that p < (2n — p)? in the case n is odd. We will specify a
collection of m + n — 2 sets Ay, ..., Amyn—2 of pairs of distinct cells in
P that satisfies conditions (i)—(iv) stated at the beginning of this section.
From Lemma 14, there exist integers A1, ..., Am that satisfy the conditions

stated in the lemma. In particular, 0 < A1,...,Am < [n/2] and Ay +---+
Am < n(n — 1)/2. Hence, Lemma 13 ensures that there exists an array
S(n; A1, ..., Am) that satisfies properties (I), (II), and (III). Furthermore,
the conditions satisfied by Ay, ..., Ay, in Lemma 14 imply that

0<p—-n—2XA,...,p—n—=2n < |(p—n)/2)

and

(P-n=M)+-+(-n=In) < (p—n)lp—n-1)/2.
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Hence, Lemma 13 ensures that there exists an array S(p — n;p— n —
At,y...,p—n— Ap) that satisfies properties (I), (II), and (IIT). Let S(¢, j)
and S'(1, ) denote the entries of cell (3, 7) in the arrays S(n;Ay,...,Am)
and S(p—n;p—n—2A;,...,p—n—An), respectively, if the cell is nonempty.
We define for k= 1,2,...,m,

-Ak = {((i’ i):(j’j)) :1 S i’j S nis(i)j) = k}U
{GEGE+Dn), (.G + D)) : 1 <4, < p—n, 5, ) = k),
(33)
and fork=m+1,m+2,....m+n-~2,

A = {{((k-—m+t+1),, (k—m+t+1)n), (L, (t4+1)a)) : 1 < t < p—n}. (34)

From properties (I) and (II), it follows that Ay, for 1 < k < m, con-
tains p — n pairs of distinct cells since S(i,j) = k for 2X; cells (7,5) in
S(n; A1, ..., Am) and S'(4,j) = k for 2(p — n — Ap) cells (3,5) in S(p —
n;p—n—Ay,...,p—n— Ay), and if S(i,5) = k or §'(4,j) = k, then
S(j,%) = k or S'(j,%) = k, respectively, and i # j. Furthermore, property
(III) implies that the cells in any pairs of cells in Ag, for 1 < k < m,
are distinct. It also follows that the two cells in any pair of cells in Ay,
for 1 € k < m, lie in different rows and columns. Therefore, Aj, where
k = 1,2,..:,m, satisfies conditions (i), (ii), and (iii). From (34), it fol-
lows that A, where k = m+ 1,m+2,...,m + n — 2, satisfies condi-
tions (i) and (ii). Condition (iii) is also satisfied since if this is not the
case, then (k —m+t+ 1), = t or (¢t + 1),, for some k and ¢, where
m+1<k<m+n—2and 1<t <p—n. This implies that n divides
k—m+ 1 or k — m, which is impossible. It can be also checked that
condition (iv) also holds for Aj,...,Amtn—-2, i.e., Ax N A1 = ¢, where
1<k <!< m+n—2 Therefore, Ay,...,An4n-2 satisfy conditions
(i)-(iv). The discussion following the statement of these conditions shows
how to construct a collection of m + n — 2 MOPLS’s of order n that are
p-compatible. Therefore, My(p) > m+n—-2ifn+1 < p < 2n, and
p < (2n — p)? in the case n is odd.

Next, we consider the case n is odd and p = 2n. We will specify
a collection of 2n — 3 sets Aj,..., A2n—3 of pairs of distinct cells that
satisfies conditions (i)—(iv). We define for § = 1,2,...,n,

Ao = {((4,9),(4,7)) : 1 < 4,5 < n,8(3, 5) = k()}U
{((1, (i+ l)n)’(j: (J + l)n)) 01 S ivj S n’S(iui) = k((o - 2)0)}""'
{{(8,6),((8 = 2)n, (6 - 1)n))},
andfork=n+1,n+42,...,2n -3,
A ={((k=n+t+2)n, (E—n+t+2),),(t, (t+1),)) : 1 <t < n}, (36)

(35)
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where S(i, §), for i # j, is the entry of cell (4,) in S(n; (251)™), whose
existence is established in Lemma 9, and k() is as defined following the
lemma. Property (III) and the fact that k(8) does not appear in the 6**
row or column of S(n; (252)™), i.e., S(i,5) # k(0) if i = 0 or j = 6, imply
that the cells in any pairs of cells in Ay, for 1 < k < n, are distinct. Also,
the cells (0,0) and ((6 — 2)n,(0 — 1)) lie in different rows and columns.
Combining this with an argument similar to that presented for the A;’s
defined in (33) and (34), we conclude that A, . . ., A2q-3, as defined in (35)
and (36), satisfy conditions (i)-(iv). Therefore, we can construct 2n —3
MOPLS’s of odd order n that are 2n-compatible. By deleting the entries of
any set of compatible cells from all squares, we obtain 2n — 3 MOPLS’s of
odd order n that are p-compatible for any p < 2n. Hence, Mp(p) > 2n—3
for p < 2n if n is odd.
Now, notice that the expression of m in (32) gives

(2n-p)(2n—p— l)J _ [(271 —p)’—(2n— P)J
2(p—n) 2(p— n) :

If p < 2n, then [(2n—p)(2n—p—1)/(2(p—n))] is nonnegative, and hence,
m > n— 1. On the other hand, if (2n — p)? < p, then |((2n — p)? — (2n -
p))/(2(p—n))] < l((p—1)—(2n—p))/(2(p—n))] = 0, and hence m < n—1.
Therefore, m = n — 1, which implies that My(p) > 2n =3 =m+n—-2,if
(2n-p)2<p<2n.

We conclude that M,(p) > m+n—-2foralln+1 < p < 2n. From
(32), it follows that

m—n+1=l

Thus,

On the other hand, it can be shown that the upper bound in Theorem 2
reduces to the above lower bound. Hence, M, (p) = |p(p—1)/(2(p—n))] -2
and the bound in Theorem 2 is strict in the case n 4+ 1 < p < 2n. o

Based on the proof of Theorem 15, we summarize the following method
to construct M,(p) MOPLS’s of order n that are p-compatible, where
n+1<p<2n:

e If n is even or n is odd and p < (2n — p)%:

1. Find )y, ..., A, satisfying the conditions stated in Lemma 14.

284



2. Construct the arrays S(n;A1,...,An) and S(p — n;p—n —
Al,...,p—n — Ay) as shown in the proofs of Lemmas 9, 11,
and 12.

3. Determine A; for k = 1,2,..., M,(p), as given in (33) and
(34), where S(i,7) and S'(4,j) are the entries of cell (4,) in
S(n;A1,..,dm) and S(p—n;p—n—Ay,...,p—n—Ay), re-
spectively.

4. Based on Ay,..., Apmy,(p), construct My,(p) MOPLS’s of order

n that are p-compatible as explained in the beginning of this
section.

e If n is odd and p > (2n — p)*:

1. Construct the array S(n;(231)(™)) as shown in the proof of
Lemma 9.

2. Determine A, for k = 1,2,..., Mp(n) = 2n—3, as given in (35)
and (36), where S(i, j) is the entry of cell (£, j) in S(n; (251)(™))
and k(0) is given in (20).

3. Based on A,,.. -y AMn(p), construct M;(p) MOPLS’s of order

n that are 2n-compatible as explained in the beginning of this
section.

4. If p < 2n, delete the entries of 2n — p compatible cells from the
above MOPLS’s to obtain My (p) MOPLS’s of order n that are
p-compatible.

For example, in case n = 3 and p = 4, the construction yields the sets
Ai, ..., Aq given in (14) and the four MOPLS’s shown in Figure 3. In case
n =4 and p = 8, we obtain the sets A, ..., As given in (13) and the five
MOPLS’s shown in Figure 2.
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