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This note is an extension of [4), wherein is shown a relation between the
dual notions of graceful and edge-graceful graphs. In particular, this note
proves two graceful conjectures raised in [4], and then utilizes the result to
edge-gracefully label certain trees not previously known to be edge-graceful.

Strands.

Let P, be a path of n + 1 vertices and n edges. We say that r threads
n if the vertices of P, can be labeled using all of the integers from 0 to
n, with 7 as the label of one end vertex, so that the set of edge labels is
1 through n, where the label of edge uv is the magnitude of the difference
between the vertex labels u and v. (This notion of threading is simply a
special case of the notion of graceful graphs as coined by Golomb in [1].)
What we shall show in this section is that r threads n for all integers » and
n with 0 < r < n. Just to pose this problem in a more interesting context,
imagine having n + 1 pearls labeled 0 through n and ask the question, Is
il possible 1o thread all of these pearls onto a chain starting with any pearl
so that the set of all label differences between adjacent pearls is the set of
integers 1 through n? For example, figure la shows that for pearls labeled
0 through 9, the chain can start with 2 or 7; figure 1b is the same sequence
of pearls viewed as the path P,.
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5
Figure la. A otrand of poaris. Figure 1lb. The sams strand.
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We adopt the following notation. If r threads n, let S be the corre-
sponding sequence of vertex labels along P, beginning with r. We say
that S is a strand for r threads n. From figure 1, a strand for 2 threads
9is {2,6,3,5,4,9,0,8,1,7}. For simplicity, a strand is considered both as
a string of integers and as a set of integers. If a;bjaszb;...c is a sequence
within a string, then ajazas... and bybabs ... are consecutive integers and
c is either a; or b; for some j > 3. Let S and T be strings of integers
with r being the last term of S and the first term of T'; let T” be the string
obtained from T by deleting its first term; then S join T, denoted SV T,
is the concatenation of S followed by 7. We adopt the convention that r
T n E m means that r threads n and ends on m. Furthermore, r T n and
r threads n are used interchangeably.

Lemmal. IfrTnEmthenn—rTnEn-m
Proof: Let S = {r,s1,52,...,5n~1,m} be astrand for r T n E m. Then

n—S:n—{r,s;,...,sn_l,m}={n—r,n—sl,...,n—sn_l,n—m}

is clearly astrandforn—r TnEn—-m. O

Two strands related as in the proof of this lemma are said to be inverses
of each other. We denote the inverse of the strand S as S~!. Since r T
nEm if m T n E r, then two strands are said to be reverses of each
other if one strand is the other written in reverse order. The reverse of
the strand S is denoted S. So the inverse of the above strand for 2 T 9 E
7is {7,3,6,4,5,0,9,1,8,2)}, and its reverse is {7,1,8,0,9,4,5,3,6,2}. The
terms inverse and reverse are analogously used with respect to threads. We
say that r T n is a standard thread if r < §; and a standard strand is a
strand for a standard thread. Since the inverse of any nonstandard strand
is standard, we will couch our strand generating algorithms in terms of
standard strands. We say that a strand is primitive if it or its inverse starts
or ends on 0. The primitive strands are thus the unique strands for 0 T
2m Emand 0 T 2m+ 1 E m + 1, along with their inverses and reverses.

At this point we ask a natural question, What are the possible ends of
strands? After generating many possible strands for various values of r and
n, one is led to the following conjecture.
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Conjecture 2. Knowing the End from the Beginning for r
threads n. The following table indicales the possible ends for all standard
strands.

start end at, with valid
at r n=2k n=2k+1 for®
0 k E+1 k>0

1 F—1, k+1 E, E+2 k> 1
2 k-2, k E+2 F—1k+1,E+3 | k>2
3 |k—8,k—1,... k48| k—2F .. k+4 |k>3
4 | k—4k—2,.. . k+4 |E—3k—1,.. k45| k>4

.

*Except when the end is the beginning.

For example, if this table is to be believed, the strands for 3 T 8 must
end in 1, 5, or 7, whereas the strands for 3 T 9 must end in either 2, 4, 6,
or 8. And such strands exist, as indicated below.

3-5-4-7-0-8-2-6-1
3T 8 d 3-0-8—1-7-2-6—4-5
3—6-2-4-5-0—-8—1-7
3-5-6-1-T—-4-8—0=9—2
3-5-2-6-T—1-8-0-9-4
3T 9 { 3_4-9-0-8-1-7-5-2-6
3-5-4-T—-1-6-2-9-0—8

We content ourselves with proving only the extremes of conjecture 2;
and the following strand generating algorithm will be our means to that
end. Let [a,b] denote the set of integers from a to b, inclusively. We say
that S is a strand for [a,b] starting at d and ending at ¢ if c,d € [a,b]
and S — a is a strand for d — a threads b — a and ¢ is the last term of
S. The inverse of such a strand is naturally taken as (S — a)~! +a. With
this extended strand definition, the reader may be tempted to pick up an
old strand of pearls for [a,b] and commence stringing more pearls onto the
strand, adding (next to c) first a pearl with integer label less than a or more
than b to ultimately construct a new strand for-[a’, '] where a’ < a and
b < ¥'. Using the terminology of the American folk dance whereby dancers
are instructed to circle left or right in ever new, but familiar patterns, we
so name the following resultant algorithm.
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Theorem 3. The Allemande Left & Right Algorithm. Let S be
a strand for the interval [a,b], starting at d and ending at c. Then there is
a strand for the interval [a',}'] starting at d and ending at ', as given by
any of the rules below.

ad=a-b+c-1,

1. Go left, finish left. bV =2-c,
d=a-1
a=a-b+c-1,

2. Go left, finish right. V=2b—c+1,
d=b+1.
a=2a-c-1,

3. Go right, finish left. V=b—a+c+1,
¢d=a-1
ad =2a-c

4. Go right, finish right. V=b—a+c+1,
d=b+1

Proof: Let S be a strand for [a, b] starting at d and ending at c. Consider
case l. Let T = {¢,a~b+c—1,2b—c,a—b+c,2b—c-1,...,a—2,b+1,a—1}.
Then SVT is a strand for [a’, ¥'] starting at d and ending at ¢/, where a’, V', ¢’
are as given in case 1. See figure 2. That is, we continue “threading”
onto S by first going left from ¢, and then hopping back and forth over
i until finishing one unit to the left of S. For notational purposes, let
LL(S) = SV T. Then the strands resulting from each of the other cases
are defined as follows.

iﬁ(S):SV{c,a—b+c—1,2b—c+1,a—b+c,2b—c,...,b+1}

ﬁi(S)=SV{c,b-a+c+l,2a—c—1,b—a+c,2a-c,...,a—1}
ﬁ(S):SV{c,b—a-{-c-&-l,?a—c,b—a+c,2a—c+l,...,b+l}D

3b-a-2c+1
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Figure 1 is a good example of this algorithm; take S as {2,6,3,5,4}, a
strand for the interval [2, 6], starting at 2 and ending at 4; then R’.l\?.(S) is
the strand for 2 threads 9 as given in figure 1.

Unfortunately, applying the allemande algorithm to standard strands
results in nonstandard strands. So in order to apply the allemande al-
gorithm systematically so as to generate standard strands, some shifting,
inverting and reversing is called for. In particular, the following strands
defined below are all standard strands, where S is a standard strand for r
T n.

¢ LL(S)=LLS)+n—-r+1

— 1
. LR(S):LR(S)+n—r+1
° RL(S): ﬁ(§)+r+l

« RR(S)=RR(S) +r

To understand why such string manipulation is helpful, consider LR as
defined above. Since we only know the beginning of S, namely r, rather
than the end, and since we wish to /aRply the allemande algorithm, we
take S, which ends with r. Applying LR to this strand yields a strand for
[-n +r—1,2n — r + 1] starting at some place in S and ending at n + 1.
Reversing this strand yields a strand for the same interval, but which starts
at n+ 1. Then shifting by n—r+1 to the right yields a strand for 2n—r+2
T 3n — 2r 4+ 2. This strand is still nonstandard; but the inverse yields a
standard strand for n — » T 3n — 2r + 2. Similar reasoning motivates each
of the other three formulas.

As an example, let’s apply LR to’{\1,2,0,3}, a strand for 1 T 3 E 3.
First reverse: {3,0,2,1}; then apply LR, concatenating a label 4 units to
the left of 1, etc: {3,0,2,1,-3,6,-2,5,—1,4)}; then add 3:
{6,3,5,4,0,9,1,8,2,7}; then reverse: {7,2,8,1,9,0,4,5,3,6}; and finally
invert: {2,7,1,8,0,9,5,4,6,3}, which is a strand for 2 T 9 E 3.

Although all this reversing, shifting, and inverting is somewhat cumber-
some, the above terminology makes the proofs of the following two theorems
amazingly smooth.

Theorem 4. For each nonnegative integer m, and for all integers k
with k > m, there are strands for

m T 2k E k+m,
and
m T 2k+1 E k4+m+1.
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Proof: It is clear that the theorem is true when m = 0. Assume that
the theorem is true for all integers m with 0 < m < q. We shall show that
the theorem is true when m = ¢ + 1. By our math induction hypothesis,
the following statements are true.

[ ¢ T 29g+1 E 29+1

0T 2q+2 E g+1
0 T 2+3 E g+2
1 T 2+4 E g+3
{ 1T E ¢+4

2q+5

g T 49+2 E 3¢+1
[ Lg T 4943 E 3g+2
By reversing each of the above statements (except for the initial state-
ment) and then by inverting, this sequence of statements is equivalent to the
following sequence of statements, which are indexed in pairs of statements
(except for the initial statement).

([ (%) g+1 T 2¢q+1 E 0
©) g+1 T 2¢g+2 E 2942
g+1 T 2¢+3 E 2943
(1) g+1 T 2¢g+4 E 2943
1 g+1 T 2¢+5 E 2¢+4
(@ {q+l T 4¢+2 E 3¢+2
L ¢g+1 T 4¢+3 E 3¢+3

Applying RR. to statement (*) and LL to the first part of statement
(0) yields
g+1 T 4¢+4 E 3g+3
(g+1) { ¢+1 T 4945 E 3g+4

Applying RL to the statements of (0) above yields

g+1 T 4946 E 3¢+4
(9+2) {q+l T 49+7 E 3¢+5

Applying RL to the statements of (1) above yields

¢+1 T 4¢+7 E 3¢+5
(g+3) {q+l T 49+8 E 3¢+6

In like fashion, continue applying RL to the statements in succession,
and the resultant cascade of threads demonstrates that the theorem is true

whenm=q¢+1. O
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Theorem 4 proves conjecture 2 of [4]; in that paper, the above result
is essentially and painstakingly proven up to m = 20. For convenience we
summarize the constructive process as given in the above theorem.

Corollary 5. The Standard Strand Algorithm.

1. Applying RR to the primitive strand for r T 2r — 1 E 0 results in a
strand for » T 4r E 3r.

2. Applying LL to the primitive strand for r T 2r E 2r results in a
strand for r T4r+1E 3r+ 1.

3. Applying RL to a standard strand for » T 2m E m + r results in a
strandfor r T2m+2r+2E m+2r+ 1.

4. Applying RL to a standard strand for r T 2m+1 E m+r + 1 results
inastrand forr T 2m+2r+3 E m + 2r +2.

Ezample. We illustrate the use of the above algorithm by constructing
a strand for 12 T 40. We work the algorithm in reverse, and at times, stop
to reverse or invert a strand so as to be able to continue working in reverse.

By theorem 4, we know a strand for such ends in 32: 12 T 40 E 32.
By reversing and inverting, this is equivalent to 8 T 40 E 28.

By the corollary, such a thread arises from RL( 8 T 22 E 19).

By reversing and inverting, 8 T 22 E 19 is equivalent to 3 T 22 E 14.
By the corollary, such a thread arises from RL(3 T 14 E 10).

By the corollary, such a thread arises from RL(3 T 6 E 6). (Note that 3
T 6 E 6 is a primitive strand, (and is equivalent to 0 T 6 E 3).

Reversing this reasoning, that is, computing
(RL((RL(RL(3T6EF)))- 1)),

yields the strand

{12, 28,11, 29,10, 30, 9,31, 16, 24,15, 25, 14, 26, 13, 27,20, 19, 21,18, 22, 17, 23,
6,40,1,39,2,38,3,37,4, 36, 5,35,6,34,7, 33, 8, 32}.

The underlining in the above strand is to underscore the natural struc-
ture of the strand; note that the third underlined string is a copy (shifted
to the right by 17) of the strand for 3 T 6 E 6. As the reader can verify,
all edge labels, [1,40], occur.
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Let S be a standard strand for r threads n. We say that S is a balanced
strand if the integers in the sequence of S alternate in belonging to the
two sets [0, 3]] and [[§] + 1,n]. We say that a nonstandard strand for »
threads n is balanced if its inverse is balanced. For example, the strand of
figure 1 is balanced. As the reader may show, there is no balanced strand
for 1 threads 4. In fact,

Conjecture 6. There are no balanced strands for r T 4r for any posi-
tive inleger r.

However, the remaining threads all have balanced strands.

Theorem 7. For each nonnegative inleger m, and for all inlegers k
with k > m, there are balanced strands for

m T 2 E k-m, (except when k = 2m),
and
m T 2k+1 E k+m+1.

Proof: 1t is clear that the theorem is true when m = 0. Assume that the
theorem is true for all integers m with 0 < m < q. We shall show that the
theorem is true when m = g+ 1. As in theorem 4, by our math induction
hypothesis and reversing and inverting there are balanced strands for each
of the following threads.

'(0) g+1 T 242 E 0
¢g+1 T 2¢+3 BE 2943
1) g+1 T 29+4 E 1
) ¢+1 T

2¢+5 E 2¢+14

(2) ¢g+1 T 49+2 E q
| @\ g+1 T 20+3 E 3¢+3

Applying RR to the balanced strand corresponding to the first state-
ment of (0) yields a balanced strand for

(g+1) {q+1 T 49+5 E 3¢+4

(The first part of the above set of statements is purposely left blank;
see conjecture 6.)

Applying RR and RL to a balanced strand corresponding to the second
statement of (0) above yields balanced strands for

g+1 T 4946 E g+2
(9+2) {q+l T 4g+7 E 3g+5
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Applying RR and RL to a balanced strand corresponding to the second
statement of (1) above yields balanced strands for

g+1 T 49+7 E q¢+3
(g+3) {q+1 T 4948 E 3¢+6

In like fashion, continue applying RR and RL to a balanced strand
corresponding to the second statement of each set in this sequence, and the
resultant cascade of threads demonstrates that the theorem is true when
m=g¢g+1. 0.

Theorem 7 proves conjecture 10 of [4] (modulo conjecture 6 of this
paper); in [4], balanced threads are referred to as very graceful paths and
the conjecture is proven only up to m = 3 for the integer pairs, m T
2k + 1. For convenience we summarize the construction process of the
above theorem.

Corollary 8. The Balanced Strand Algorithm.

1. Applying RR to the primitive strand for r T 2r E 0 results in a
balanced strand for r T 4r+1E 3r+ 1.

2. Applying RR to a balanced standard strand for r T 2m+1 E m+r+1
results in a balanced strand for r T 2m+2r+2E m + 1.

3. Applying RL to a balanced standard strand for 7 T 2m+1 E m+4r+1
results in a balanced strand for r T 2m 4+ 2r+3 E m + 2r + 2.

Ezample. We illustrate the use of the above algorithm by constructing
a balanced strand for 12 T 40. In the example following corollary 5, note
that the given strand is not balanced, because of the sequence 27,20,19
within the strand.

By theorem 7, we know a balanced strand for 12 T 40 can end on 8: 12
T 40 E 8.

Reversing yields 8 T 40 E 12.

A balanced strand for such arises by applying RR. to a balanced thread
for 8 T 23 E 20. . '

Reversing and inverting yields 3 T 23 E 15.

A balanced strand for such arises by applying RL to a balanced strand
for3 T 15 E 11,

which arises by applying RL to the primitive strand for 3 T 7E 7.
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Reversing the above reasoning, that is, computing
RR((RL(RL(3T7ET)))"1),

yields the desired balanced strand:

{12,29, 11, 30, 10, 31, 9, 32, 16, 25, 15, 26, 14, 27, 13, 28, 20, 21,19, 22, 18, 23,17, 24,
0,40,1,39,2,38,3,37,4, 36,5, 35,6, 34,7, 33, 8}.

Spiders.

A graph with p vertices and g edges is said to be edge-graceful if the
edges can be labeled 1 through ¢ so that the vertices are labeled 0 through
p — 1, where the label of a vertex is the sum modulo p of the labels of all
edges incident to that vertex. The conjecture on which we dwell is

Conjecture 9. Lee’s Conjecture [2]. All trees of odd order are
edge-graceful.

As shown in [3], a tree of order 2n + 1 is edge-graceful, if its edges can
be labeled using all of the integers from +1 to +n, so that its vertices are
labeled using all the integers from 0 to £n, where the label of a vertex is
simply the sum of the labels of all edges incident to that vertex. It is this
condition which shall be used herein to establish the edge-gracefulness of
various trees. A spider is a tree with at most one vertex of degree more
than two (called the core). The path from the core to any extremal vertex
is called a leg of the spider. The length of a leg is the number of edges in the
leg. As shown in [3], there are several edge-graceful invariant operations
with respect to trees; applying these operations to edge-graceful spiders
leads to establishing the edge-gracefulness of a more general class of trees.
So in some respects, Lee’s conjecture would be well-advanced if we could
prove that all spiders of odd order are edge-graceful. As shown in (3] and
[5], any odd ordered spider whose legs all have the same length is edge-
graceful. However, what about asymmetric spiders, i.e., spiders whose leg
lengths differ? As a contribution toward establishing the edge-gracefulness
of these spiders, we offer the following reassuring theorem. We intersperse
its proof with examples. But first we state a lemma needing no proof.

Lemma 10. Let S be a sequence of integer labels along the edges of a
path such that the terms of the sequence alternate in belonging to two sets,
A and B. Let L be the set of interior vertex labels, whereby a vertex label
is calculated by adding the labels of the two edges incident to that vertex.
Let ¢ be any integer. Finally, let S’ be a new sequence obtained from S by
replacing each label b from B with b + q. Then the set of interior vertex
labels of S’ is simply L + q.
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Theorem 11. All three legged spiders of odd order are edge-graceful.

Proof: Let us denote the edge labelings on the three legs as the sequences
E,, E», and E3, where the initial integer in a sequence is the label of the
outer edge of the spider’s leg and the final integer is the label of the edge
incident with the core of the spider. Similarly, let the vertex labelings on
the three legs, from the outer vertex to the core vertex be the sequences V;,
V2, and V5. Furthermore, let us agree that |E;| < |E2| < |Es|. Since the
number of edges must be even, we have five cases to consider. Since these
are all similar, let us examine case 1 in the most detail.

Case 1. Suppose that the lengths of the three legs are 2k + 1, 2m, and
2n + 1, where -
2k+1<2m<2n+1.

We shall label the edges of this spider with all of the integers +1 to +(k +
m + n + 1) so that its vertices are labeled using all of the integers from 0
to x(k+m + n+1). To do this, let

Ey=—{k+m+n+1,-L,k+m+n,-2,...,~k,m+n+1}

Ey={k+m+n+1,-1,k+m+n,-2,...,-n,k+m+1}.

The remaining 2m unused edge labels are
A=[k+1,k+m)and B=—[n+1,m+n].

We shall start E; with —(m + n — k) and end it with m so that the core
vertex is labeled k + m — n. Hence the vertices are labeled

Vi={-(k+m+n+1),—(k+m+n),...,~(m+n-k+1),k+in-n}

Va={k+m+n+Lk+m+n,....,k+m—n+1k+m—n}

The unused vertex labels are thus [—(m + n — k), k + m — n], not counting
the core vertex. Let A’ = A—(k+1)and B' = B—(m—n-1), so
that A’ = [0,m — 1] and —B’ = [m,2m — 1}. Let S be a balanced strand
for 2m — k — 1 threads 2m — 1 ending at m — k — 1. (Note that S is the
reverse of a standard strand.) Let S’ be a strand of integers obtained from
S by replacing each label from — B’ with its negative. If we think of S’
as being the edge labels along Psy,, then the interior vertex labels of this
path are precisely —[1,2m — 1]. Now let E; be that sequence of integers
obtained from S’ by replacing each integer label from A’ and B’ with its
corresponding label from A and B, respectively; that is, if a’ is a label from
A’, replace it with a = a' + (k + 1), and if ¥ is a label from B’, replace
it with b = &' + (m — n — 1). Then the edge labels of E, are precisely
AU B, as desired. By Lemma 10, the interior vertices of V;, are the integers
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[F(m+n-k-1),k+m—n—1]. Note also that the outer edge of E,
is labeled —(m + n — k) and the edge incident with the core is labeled m,
which means that the outer vertex of the second leg and the core vertex
are labeled —(m + n — k) and k + m — n, respectively, so that V>’s integer
sequence uses every vertex label in [-(m + n — k), k + m — n], as desired.
We reduce the other cases to the problem of finding the analogous balanced
strands S.

Ezample for Case 1. Consider a spider with legs of lengths 7, 10, and
17. Thus k = 3, m = 5, and n = 8, which means that

E, ={-17,1,-16,2,-15,3,-14},
and
E3 = {17,-1,16,-2,15,-3,14,-4,13,-5,12,-6,11,-7,10,-8,9}.
Since the core vertex is k +m — n = 0, then
W = {-17,-16,-15,-14,-13,-12,-11,0}.

and
Va = {17,16,15,14,...,2,1,0}.

Now E; must start with —10 and end with 5; and the unused edge labels
are

U ={4,5,6,7,8,—9,-10,-11,-12,-13}.

Placing these labels on the right edges of E, corresponds to finding a bal-
anced strand for 6 T 9 E 1. To find a balanced strand for 1 T 9 E 6, start
with 1 T 2 E 0, and apply RR, (yielding {1,5,0,3,2,4}), and then apply
RL, getting

{1,8,0,9,3,7,2,5,4,6}.

Reverse this strand, obtaining
S ={6,4,5,2,7,3,9,0,8,1},

and then write it in terms of the corresponding unused edge labels. That
is, identify {0,1,...,9} with U; then let E; be that permutation of U
corresponding to S, which gives

E, = {-10,8,-9,6,-11,7,-13,4,-12,5}.

Hence V; = {-10,-2,-1,-3,-5,-4,-6,-9,-8,-7,0}, as desired. So
this spider is edge-graceful.



Case 2. Suppose that the lengths of the three legs are 2k < 2m < 2n,
respectively. Let

Ey=—{k+m+n,-1k+m+n-1,-2,... . m+n+1,-k}
and
Ey={k+m+n-Lk+m+n-1,-2,..  k4+m+1,-n}.

Then V) and V3 are the same as in case 1, excluding the first terms. Fur-
thermore, A and B are exactly the same as in case 1. Start and end E,
on —(m+ n — k) and m, respectively. Hence the balanced thread which
generates E is exactly the same as in case 1.

Ezample for Case 2. Consider a spider with legs of length 6, 8, and 12,
so that k = 3, m = 4, and n = 6, making

E, = {-13,1,-12,2,-11,3}

and
Es = {13,-1,12,-2,11,-3,10,-4,9, ~5,8, -6}.

Since the core has label k + m —n = 1, then
Vi = {-13,-12,-11,-10,-9,~8,1}

and
Vs = {13,12,11,...,3,2,1}.

Since E; must start and end with —(m + n— k) = =7 and m = 4, respec-
tively, and since the unused edge labels are

{4,5,6,7,-7,-8,-9,-10},
then S can be taken as a balanced thread for 4 T 8 E 0, which is
{4,5,3,6,2,7,1,8,0}.
Write this in terms of the unused edge labels:
Ey = {-17,7,-8,6,-9,5,-10,4},

and it follows that this spider is edge-graceful.

Case 3. Suppose that the lengths of the three legs are 2k < 2m +1 <
2n + 1. Let

Ey=-{k+m+n+l,-Lk+m+n,-2,... m+n+2 -k}
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and
Ey={k+m+n+1,-1,k+m+n,-2,...,—nk+m+1}.

This time V] is the same as in case 1, excluding the second to the last term;
V3 is the same; and the unused edge labels are

A=[k+1k+m]jand B=—-[n+1,m+n+1)].

In order for the core vertex to have label k£ + m — n, E; must end with
—(k+n+1). Furthermore, A’ = A—(k+1)and B'=B—-(m-n-1). So
we want S to be the reverse of the balanced strand for k + m T 2m. But
this is equivalent to finding its inverse: m — k T 2m. Since such a strand
exists and ends in k by theorem 7, then take S as the balanced strand for
2n—-kT2mE k+m.

Ezample for Case 3. Consider a spider with legs of lengths 2, 7, and 13,
so that k = 1, m = 3, and n = 6, making E; = {—11,1}, and

Es = {11,-1,10,-2,...,6,—6,5).
So V; = {-11,-10,-2} and
Vs = {11,10,9,...,1,0,-1,-2}.

Since E, must end with —(k+n+1) = —8 and since the unused edge labels
are {2,3,4,-7,—8,—9,—10}, S is the reverse of a balanced strand for 4 T
6. To find such a strand, first find 2 T 6 E 1: start with 1 T 2 E 0, apply
RL to obtain

{1,5,0,6,3,4,2}.

Invert: {5,1,6,0,3,2,4}; and write in terms of the unused edge labels: E, =
{-9,3,-10,2,-7,4,-8}, and it follows that this spider is edge-graceful.

Case 4. Suppose that the lengths of the three legs are 2k+1 < 2m+1 <
2n. Let

Ey=—{k+m+n+1,-1k+m+n,-2,...,~k,m+n+1}
and

Ec={k+m+n+1,-L,k+m+n,-2,...,—mk+n+1}.
This time we shall take the core vertex to have label k¥ + n — m so that
12 ={—(k+m+n+l),-.(k+m+n),...,-—(m+n—k+1),k+n—m}

and :
Vo={k+m+n+lLk+m+n,. .. k+n—m}
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The unused edge labels are
A=[k+1,k+nland B=—-[m+1,m+n).

In order for the core vertex to have label k£ + n — m, E3 must end with n.
So S must be the reverse of a balanced strand forn— k-1 T 2n-1E
2n—-k-1.

Ezample for Case 4. Suppose that the lengths of the three legs are 5, 9,
and 14,so that k =2, m =4, and n = 7. Let E; = {-14,1,-13,2,-12}
and E, = {14,-1,13,-2,...,-4,10}. Then V; = {-14,-13,...,-10,5}
and V; = {14,13,12,...,5}. Since E3 must end with n = 7, and since
the unused edge labels are [3,9) U —[5,11], S is the reverse of a balanced
strand for 4 T 13 E 11. To find such a strand, we shall first find 2 T
13 E 9: start with a balanced strand for 1 T 3 E 3, namely {1,2,0,3},
apply RL to get 1 T 7 E 5; reverse and invert to obtain 2 T 7 E 6,
then apply RL to obtain {2,11,1,12,0,13,5,8,6,7,3,10,4, 9}; invert: S =
{11,2,12,1,13,0,8,5,7,6,10,3,9,4}; now write in terms of the unused edge
labels:

Es ={-9,5,-10,4,-11,3,-6,8,—5,9,-8,6,—7,7},

and it follows that this spider is edge-graceful.

Case 5. Suppose that two of the three legs have the same length. Let
us consider a more general problem. Consider a spider with four legs, with
two legs of length m and two legs of length n, where m < n. Consider the
case when m is even. Let

Ei={m+n,-1m+n-1,-2,...,n+ %‘-+l,—%}.

Let E; = —FE;. If the core is to be labeled 0, then V; = {m+n,m+n -
1,...,n+1,0}, and V5 = —V;. The unused edge label are £[% +1,n+ 3].
Let S be a strand, (not necessarily balanced), for n — % — 1 T n. Let
S' = S+2+1. Finally let E3 be that string obtained from S’ by multiplying
every other term by —1. Let E4 = —Ej3. It follows that this four legged
spider is edge-graceful. Now imagine that legs three and four together form
a violin bow and legs one and two together form a violin string. Draw
the bow across the midvertex of the string, stopping whenever a vertex
from the bow coincides with the midvertex of the string—the resultant
four legged spider is edge graceful. (See the Cut and Paste Algorithm of
[3] for a formalization of this operation.) Keep drawing the bow across the
string, until the four legged spider becomes a three legged spider. This
spider is edge-graceful! The same conclusion follows if the bow is formed
by legs one and two together and the string is formed by legs three and
four together. Furthermore, the same argument applies if m is odd.
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Ezample for Case 5. Consider a spider with leg lengths of 8, 8, and
10. Let us first consider a spider with leg lengths of 5, 5, 8, and 8. Let
E, = {13,-1,12,-2,11} and E; = —E;. Since the core is to be labeled
0, then V; = {13,12,11,10,9,0} and V> = —V;. The unused edge labels
are £(3, 10] and the unused vertex labels are %1, 8]. Let S be a strand for
[3,10] starting at 8; to find this strand we shall find 5 threads 7, 0or 2 T 7
E 6. The inverse of its reverse is 1 T 7 E 5, which is {1,6,0,7,3,4,2,5},
(see the previous example), and its reverse is 5 threads 7. Add 3 to this
strand to yield S; alternate signs to yield Es = {8,-5,7,—6,10,-3,9,—4}.
So V3 = {8,3,2,1,4,7,6,5}. Let E] = E3, E; = —FEj3, and E} be the
concatenation of E; and the reverse of E,. Hence this three legged spider
with legs labeled Ef, E5, and Ej is edge-graceful. O

Corollary 12. Any four legged spider of odd order with two legs of
equal length is edge-graceful.
Proof: See Case 5 of the above theorem. O

The main result of [4] is a rendition of the above corollary, but only for
spiders whose two short legs of equal length have length no more than 41.
Furthermore, useage of balanced strands enables proposition 19 of [4] to
be broadened, giving a condition for many multi-legged spiders to be edge-
graceful. But a general procedure to edge-gracefully label all assymetric
odd ordered spiders remains an open question, even for four legs.
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