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ABSTRACT. Let G be a group acting on aset Q2. A subset (finite
or infinite) A C Q is called k-quasi-invariant, where k is a non-
negative integer, if |A? \ A| < k for every ¢ € G. In previous
work of the authors a bound was obtained, in terms of k, on
the size of the symmetric difference between a k-quasi-invariant
subset and the G-invariant subset of  closest to it. However,
apart from the cases k = 0, 1, this bound gave little information
about the structure of a k-quasi-invariant subset. In this paper
a classification of 2-quasi-invariant subsets is given. Besides
the generic examples (subsets of Q which have a symmetric
difference of size at most 2 with some G-invariant subset) there
are basically five explicitly determined possibilities.

1 Introduction and results

For a group G acting on a set  the G-invariant subsets of 2 are the unions
of G-orbits in Q. In [1] the notion of a quasi-invariant subset was introduced,
in order to solve a group theoretic question in [2): A C Q was defined to
be quasi-invariant if its image under every element of G differed from A by
at most one point, that is if |49 \ A|] < 1 for each g € G. It was shown in
[1] that quasi-invariant subsets of € are precisely the invariant subsets, and
invariant subsets with one point added or removed. This concept prompted
a natural generalization, also given in [1}: for a positive integer k, a subset
A C Q is said to be k-quasi-invariant if

|[A9\ A| <k for every g€ G. (1)

Clearly, a subset of @ which has symmetric difference of size at most k
with some invariant set is a k-quasi-invariant subset. We call such subsets

ARS COMBINATORIA 42(1996), pp. 65-76



generic. Thus, in view of [1], all 0-quasi-invariant subsets and 1-quasi-
invariant subsets are generic. It was asked in [1] whether all k-quasi-
invariant subset are generic for every k > 1.

In [3] examples were given of several families of non-generic k-quasi-
invariant subsets and a bound was obtained on the size of the symmetric
difference between a k-quasi-invariant subset and the G-invariant subset of
Q closest to it. More precisely, for a k-quasi-invariant subset A C Q we
considered d(A) = min|AAN|, where N runs over all G-invariant subsets
of Q. It was proved that d(A) is bounded by a subquadratic function of
k for both finite and infinite k-quasi-invariant subsets A. However, the
arithmetical results of [3] do not give enough structural information about
k-quasi-invariant subsets to allow a characterization of these sets for any
k > 1. In this paper we give a complete classification of 2-quasi-invariant
subsets as a further step towards understanding the structure of a k-quasi-
invariant subset for general k.

The classification of 2-quasi-invariant subsets A is achieved by first show-
ing that there exists a G-invariant subset N’ C Q such that |[AAN’| < 3,
and then, in the case where |AAN’| = 3, describing the set A’ = AAN’.
Note that A’ is a 2-quasi-invariant subset as well, and that d(A’) = |A’|. Tt
can be obtained from A by the following “surgery” on A:

- for every G-orbit Q;, such that |AN | > |Q: \ A|, replace
ANQ; by Q;\ A. In particular, remove from A every G-orbit
Q; which is contained in A.

This surgery does not change the quasi-invariance of a subset and our
classification will be done modulo it. The basic problem is that of classifying
the 2-quasi-invariant subsets A of 2 such that |A| = d(A) = 3. This is done
by examining the possible configurations formed by the set of images of A
under the action of G, that is

F =F(A) =aes {A%lg € G}.

The key step in our analysis is to obtain an upper bound on |Q|. The
results of [3] imply that A intersects nontrivially at most 3 G-orbits £;, and
that if |[AN Q| > 3 then |Q;] < 8. However if A contains only 1 or 2 points
of Q; then the results in [3] give no bound on |£;|; indeed they do not even
guarantee finiteness. Our main theorem which gives the classification of
2-quasi-invariant subsets is the following.

Theorem 1.1 Let G be a group acting on a set  and let A be a 2-quasi-
invariant subset of Q. Then either

1. A is generic, that is the symmetric difference between A and some
G-invariant subsel is at most 2, or
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Figure 1: An example of 2-quasi-invariant family.
Left: the list of elements of F.
Right: elements are depicted by straight lines and smooth curves.

2. the set A’ obtained by the surgery above has size 3 and, if V' is the
smallest G-invariant subset containing A’, then the pair F(A’), Q¥ is
one of those in List 1.2.

List 1.2 Ezamples of families F(A) for 2-quasi-invariant subsets A of size
3 of a set Q.

1. four lines skew to a given point of the projective plane Q of order 2;
2. the siz triples shown in Figure 1 with Q = {1,... ,6};

3. ten triples forming an orbit of the natural action of PSLy(5) on the
3-subsets of the projective line Q of order 5;

4. the seven lines of the projective plane Q of order 2;
5. siz of the lines of the projective plane Q of order 2.

Note that in all but the last case the setwise stabilizer G = G{F} of F
in Sym(Q) is transitive on £, while in case 5 the setwise stabilizer of F has
orbits of sizes 3 and 4 in 2. Let H be a subgroup of G acting transitively
on F. Then in all but the first case the number of H-orbits on  coincides
with the corresponding number of G-orbits. In the first case there exist H
having 2 or 3 orbits on Q. In fact, 3 is the maximal possible number of
orbits on  [3, Theorem B). The first case of the list is a member of the
infinite family of examples of k-quasi-invariant subsets presented in [3] to
demonstrate the sharpness of the bound 2k — 1 on the number of the orbits.

In view of our discussion about 2-quasi-invariant subsets, Theorem 1.1
will follow automatically from the following.
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Theorem 1.3 Let G be a group acting on Q and let A be a 2-quasi-
invariant subset of Q with |A| = d(A) 2 3. Then |A| = d(A) = 3 and
F = F(A) is one of the 5 families in List 1.2.

The rest of the paper is devoted to the proof of Theorem 1.3. The proof
will be carried out separately for the cases of transitive and intransitive
action of G on Q.

It should be noted that, though the present proof is computer-free, the
initial one used the CAYLEY system [4, 5] for algebraic computations to
determine the possibilities for F(A) in the case |A| = 3, |2] = 6, and for
some preliminary experimentation.

2 Transitive case

We consider first the case when the group G has only one orbit on Q. Then
we use the resulting classification for the general case. We will show that
all but example 5 of List 1.2 appear in this case, and ‘that there are no
others. We remind the reader that a family F of subsets of a set is called
self-intersecting (respectively, i-intersecting if each pair F, F' € F satisfies
F N F' # 0 (respectively, |F N F'| > 4), cf. [6, 7).

The following result is a slight reformulation of a statement from (3.

Result 2.1 [3, Corollary 2.3] Let A be a k-quasi-invariant subset of a G-
orbit Q such that |2\ A| > |A|. Then |A| < 2k-1. 0

It immediately implies the following.

Lemma 2.2 Let A be a 2-quasi-invariant subsel of a G-orbit Q) satisfying
the condition of Theorem 1.3. Then |A| = 3. o

Our next task is to find the possible values for [©2|. We use the following
result, which is a slight modification of (3, Theorem 2.1].

Proposition 2.3 Let A be a finite k-quasi-invariant subset of cardinality
n > k of an orbit Q of G, and let F = F(A). Then
2

(V1) @

Proof. By (3, Theorem 2.1], Q is finite. Hence, we may assume that G
is finite, by considering the constituent of G acting on € instead of G if
necessary. Fix some point w € Q and let H = G, denote the stabilizer of
w in G. Since the action of G is transitive, we may identify  with the set
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of left cosets of H in G in such a way that the image of gH under z € G is
z~1gH. Then A = {g,H,... ,g,H}, for some g,,... ,gn € G. By (1), for
every g € G there exist at least n — k ordered pairs (g;, g;) such that

g€ giHg;'.

Also, for the elements of the setwise stabilizer X of A in G, the number
of those pairs equals n. Hence we obtain, by counting the triples (g, g;, 95)
with g;H = gg;H,

|G\ X|(n — k) + | X|n < n?|H|,

whenee G| IXliG]
—Mm-k)+k <n?
CIAA - 1T

Keeping in mind that f—% = ||, and L% = |F|, we derive
|92(n - k) + K|QI/|F] < n?,
and (2) follows. a

Since Q is finite and F is a l-intersecting family, we may apply the
following well-known result of Hilton and Milner.

Result 2.4 [8] Let F be a nontrivial 1-intersecting family of subsets of size
n of a finite set Q of size greater than 2n. Then

w1 () - (7 ®)

n-—1

Moreover, the equality is possible only if, for some X; C 9, |X1]| =n, and
z€eN \ X,

F=F1=Xiu{Xc|zeX, |[X|=n, XNnX,#0},
orn < 3, and for some X, C Q, |X,| =3,
F=Fe={XCQ||X|=n, | XNnX;|>2}.
0

Using (3) for n = 3, which is the case we are considering in Theorem 1.3,
we obtain |F| < 3|Q2] — 8. It is easy to check that the extremal families F,
and F2 cannot admit a group transitive on Q. Hence we have

|F1< 312 -9. ()

Using (2), we obtain
3|02 - 34|Q| + 81 < 0.

Solving the latter inequality, we have the following.
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Corollary 2.5 Let A be a 2-quasi-invariant subset of size 3 of an orbit Q
of G. Then Q| < 7. o

Since, by our assumptions, |A| < |2\ A|, we have |2] > 6. Hence we
have only two possibilities for |©2].

Case || = 7. By transitivity of G, in this case K & Z; < G acts on Q.
Without loss of generality, K = {g), where g = (1,2,...,7), and {1,2} C A.
It is straightforward to check that all the ways of adjoining to {1,2} the
third element in order to get a suitable 3-element subset A of 2 lead either
to a contradiction or to the configuration of images isomorphic to PG(2, 2).
For instance, if we take A = {1,2, 3}, then A9 = {4,5,6}, and ANAS =,
a contradiction. By (4), |F| £ 12. So K cannot have more than one orbit
on F, since all such orbits are of size 7. Therefore |F| = 7 and the whole
group G < Aut(PG(2,2)). Hence we have Case 4 of the List 1.2.

Case || = 6. First, the following classical result gives |F| < 10. (Result
2.4 is not applicable here, since it needs || > 2n.)

Result 2.6 [6, Erdés-Ko-Rado Theorem] Let F be a self-intersecting fam-
ily of subsets of size n of a set Q of size at least 2n. Then |F| < (‘9'_‘11)
a

In our case F = {A9 | g € G}. By Lemma 2.2 we have |A| = 3, and we
call the elements of F triples. We will directly reconstruct all the config-
urations satisfying the following necessary combinatorial conditions, which
come from transitivity of G on £ and F.

1. The number s(w) of triples through a point w € Q is a constant
s = s(w) = | F|/2 not depending on the choice of w, and

2. the number of triples intersecting a given triple in two points is a
constant k.

Without loss of generality, @ = {1,...,6}, A = {1,2,3} (or, for brevity,
A=123).

Note that condition 1 implies that |F| is even.

Assume kp = 0. Clearly, F contains a triangle 7', that is, three triples
having empty common intersection. Without loss of generality, we may
renumber the elements of Q in such a way that 7 = {123, 145,246} C F.
Since the number of triples in 7 through 1 is bigger than that through 3,
there exists X € F\ T such that 3 € X. Since k; =0, {1,2,3} N X = {3}
so 1,2 € X; also if 4 € X then X N {1,4,5} = X N {2,4,6} = {4},
whence 5,6 ¢ X implying that |X| # 3. Hence 4 € X so that X =
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356. Since there was only one possibility for X, s = 5(3) = 2, and the
resulting ¥ = T U {X} is as in Case 1 of the List 1.2. The group G =
{(2,3)(4,5), (1,5)(2,6), (1,3)(4,6)) acts transitively on both Q and F.

Assume k; = 1. Without loss of generality, A = 123 and 124 € . By
(1), neither 456 nor 356 can belong to F. Then, using our assumption on
k2, we see that only 156, 256, 345, 346 remain as candidates for membership
of 7. Adding all of them, we have Case 2 of the List 1.2, and the group
((1,2), (1,3,6)(2,4,5)) acts transitively on  and F. On the other hand,
if we wish to add to F only some of them, we have to add two, since |F|
is even. But there is no way to do this, with s(i) remaining a constant for
i=1,...,6.

In the remainder of the section, k2 > 2. The next two lemmas immedi-
ately imply k2 < 3. Note that s = |F|/2 < 5.

Lemma 2.7 Let A, B and C be three distinct triples in . Then at least
one of the sets AN B, ANC and BNC has size 1. It follows that |AN BN
Cl< 1

Proof. Note that, by (1), all the sets AN B, ANC, BNC are not empty.
We may assume that at least one pair of the triples intersects in a set of
size 2, say |A N B| = 2. Suppose first that AN B ¢ C. Without loss of
generality, A = 123, B = 124, C = 125. Thus, by transitivity of G on ,
for each point a € Q there exists a non-empty subset X, C 2 such that
for any b € X, there exist at least three triples containing {a,b}. Since
s < 5, X¢ does not contain 1 or 2. Thus we may assume that 3 € Xg.
Since by (1) each of the three triples containing {3,6} must intersect B
and C, each must contain either 1 or 2. Hence there are only two possible
triples containing 3 and 6, contradicting the fact that 3 € X;. It follows
that ANB ¢ C, whence |[ANBNC| < 1.

To complete the proof, suppose, contrary to the statement of the lemma,
that [ANB| = |[ANC| = |BNC| = 2. We may assume without loss of
generality that A = 123, B = 124, C = 234. By (1), 456, 356,156 ¢ F. By
the already proved part of the lemma, 125, 126, 235, 236, 245, 246 ¢ F, as
well. The remaining triples are 134, 135, 136, 145, 146, 256, 345, 346. If
256 € F then s = s(2) = 4, for there are no other triples which remain as
candidates for membership of ¥ and contain 2. So, to obey s(5) = 3(6) = 4,
all the remaining triples through 5 and/or 6 belong to F, forcing |F| = 10,
but then s = | F|/2 = 5 # s(2). Thus 256 ¢ F, and so s = s(2) = 3. By the
same argument, to obey s(5) = s(6) = 3, all the remaining triples apart
from 256 which contain 5 or 6 belong to F, contradicting |F| =2s =6. O

Lemma 2.8 Let B,C € F such that |ANB| = [ANC| = 2. Then (AN
BNC)U(B\ A)U(C\ A) ¢ F.
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Proof. By Lemma 2.7, we may assume that A =123, B =124, C = 235.
So the triple under question is 245. Assume to the contrary that 245 € F.
Then s = s(2) > 4.

Consider triples containing 6. By Lemma 2.7, the triples 126, 236, 246, 256
do not belong to F. As well, by (1) the triples 136,456, 146, 356 do not be-
long to . Only two triples containing 6, namely 346 and 156, remain as
candidates for membership of F, contradicting s > 4. a

Now we are able to reach our goal and complete the consideration of
the case || = 6. Assume ko = 2 first. Considering Lemma 2.7, without
loss of generality, 123,124,235 € F. Hence s = s(2) > 3. Consider triples
containing 6. By (1), one has 456,356,146 ¢ F. Since k; = 2, one has
126,136,236 ¢ F, for the only triples intersecting 123 in two points are
124 and 235. The remaining triples through 6 are 156,246, 256,346. The
triples 246 and 256 cannot both belong to F, for if they do then s(2) > 5,
while s(6) < 4, contradiction. Next, if exactly one of 246, 256 belongs to
F, then s(2) > 4, s(6) < 3, a contradiction, as well. Finally, if neither of
them belongs to F, then s(6) < 2, contradicting s = s(2) > 3.

It remains to consider the case ko = 3. Using Lemmas 2.7 and 2.8 we
see that there is no loss of generality in the assumption that 123, 124, 135,
236 belong to F. It is straightforward to check, using (1), Lemmas 2.7 and
2.8, that only 6 other triples, namely 146, 156, 245, 256, 345, 346 remain
as candidates for membership of F. If not all of them lie in F then we have
a contradiction to k = 3. Thus, we get Case 3 of the List 1.2. The group
((1,2)(5,6), (2,3)(4,5), (3,4)(5, 6)) acts transitively on @ and F.

The consideration of the transitive case is now complete. We summarize
our conclusions in the following proposition.

Proposition 2.9 Let G be a group acting on Q transitively and let A be a
2-quasi-invariant subset of Q with |A] = d(A) > 3. Then |A| = d(A) =3
and F = F(A) is one of the first 4 families in List 1.2. O

3 Intransitive case

Suppose that the group G acts on Q with orbits &;, ¢ € I, where |I| > 2,
and that A C Q is 2-quasi-invariant. We remind the reader that we assume
|A| = d(A) = 3. As in [3], we shall say that A intersects a G-orbit Q;
properly if ANK; # 0 and Q; € A, and we shall call such sets ANy orbit
segments of A.

The number of G-orbits in § that intersect A properly will be denoted
by m = m(A). We may relabel the orbits so that A; = AN, for i =
1,...,m, are the proper intersections of A with G-orbits. Since |A] = d(A),
|A;] < |9\ A] for i = 1,...,m. The following results were proved in [1]
and [3].
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Result 3.1 /8, Theorem B] Let A be a k-quasi-invariant subset of 2. Then
m(A) <2k —1. O

Result 3.2 [3, Proposition 4.1] Let A be a disjoint union of By and By,
where B; i3 a non-emply union of the orbit segments of A, for i = 1,2.
Then each B; is a k(B;)-quasi-invariant subset, where k(B;), k(B2) are
such that

k(B1) + k(B2) < 3k/2.

(m]

Result 3.3 ([1), ¢f also [3, Theorem C]) Let A be a 1-quasi-invariant
subset of Q with respect to a group G, such that, for any orbit Q; of G in
Q, |ANQ] < |\ A|l. Then |A| < 1. (]

The next lemma deals with ordinary graphs. Our terminology is fairly
standard. A graph I' = I'(V, E) is a pair consisting of a vertez set V
and an edge set £ C {{v,w} | v,w € V}. The automorphism group
of I consists of all permutations of V preserving E as a set. T is said
to be edge- (respectively vertez-) transitive if its automorphism group is
transitive on E (respectively on V). Given v € V, we denote by I'(v) the
set {u € V | {u,v} € E} of neighbours of v. The complete n-vertex graph
is denoted by K, the n-cycle by C,. A graph ' = '(V, E) is called a claw
with the centercifce V and E = {{c,v} |v e V \ {c}}.

Lemma 3.4 LetT" =T'(V, E) be an edge-transitive graph with |V'| > 4 such
that, for any {u,v} € E, there erists w = wy, € V such that {v,w} € E,
and any e € E intersects {u,v, w} nontrivially. Then ' = K, or C;.

Proof. First, observe that I' is connected. Let I be a complete graph.
Then clearly |V| <4,s0 T = Kj,.

Thus, we may assume the existence of z € V \ I'(v). Since each edge
through = should contain either u or w, one has I'(z) C {u,w}. Suppose
first that I is vertex-transitive. Then |I(z)| = |I'(v)| > 2. So I has
valency 2, whence I' is an ordinary polygon. The only polygon satisfying
the conditions of the lemma is the quadrangle, so T' 2 C4. Now suppose
that I is not vertex-transitive. Then as I is edge-transitive it is bipartite,
with the parts Vj, V, being the orbits of the automorphism group in V.
Since z and v are in the same part, say, V;, we have for any y € V; that
I'(y) = {v,w}. So Vo = {u,w}, and E = {{a,b} | a € V},b € V2}. Now it
is clear that I satisfies the conditions of the lemma if and only if |[V;| = 2,
and ' = Cq. 0

We return to the proof of Theorem 1.3. We proceed by a number of
steps.
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Lemma 3.5 |A| =3.

Proof. Result 3.1 immediately implies that m < 3. We will consider the
two cases, m = 2 and m = 3, separately.

Two-orbit case. We may assume that A is the union of two orbit segments
A; and Az such that |4;| > |A2|. By Result 3.2, k(A;) + k(A2) < 3.
Therefore k(A;) = 2, k(A2) = 1. Hence by Proposition 2.9 |A;| < 3, and
by Result 3.3, |A2] =1.

Assume that [A;] = 3. By Proposition 2.9, the set of G-images of A,
gives us one of the first four examples from the List 1.2. It is straightforward
to check that each of them satisfies the following property. (Note that in
cases 1 and 3 there is actually nothing to check, since there are no D, B
such that |[DN B|=2.)

(*) If D, B are two triples such that | DN B| = 2 then there exists a triple
C such that |[DNC|=|BNC|=1.

Since k(A;) = 2 there is an element g € G such that |A{ \ A;| = 2. Then,
by (1), A = A2. On the other hand, if |A] \ Ai| =1 then, by (*), there
exists g’ € G such that |A‘{'\A1| = IA{'\Aﬂ = 2. Hence, by (1), A = A,,
A = A$, whence again A§ = Aj. Therefore A is G-invariant, so Az =y,
which contradicts the assumption that A intersects Qs properly. Hence
|A;1| = 2. So |A| =3, as required.

Three-orbit case. We assume that A is the union of three orbit segments
A;, Az and As. By Result 3.2, k(A;, U A;;) + k(Ai;) < 3, for any permu-
tation (i, #2,13) of {1,2,3}. Therefore, by Result 3.3, k(A;i,) = 1. Hence
|[A1] = |A2| = |A3| = 1. So |A| =3. O

In what follows we assume |A;| > |Ai41| foreach 1 < i < m.

Lemma 3.8 Form = 2, let E = {A] | g € G} and V = Q,, and for
m=3,let E={A]JUA] | g€ G} and V =Q,UQ,. Then

1. Each X € E lies in a unique G-image of A; in particular, |E| =
[F(A);

2. The graph T" = I'(V, E) is isomorphic either to K4 or to Cj.

Proof. Pick X = {u,v} € E such that X C A. Denote S = A\ X. To
show the first part, it is sufficient to show that, if X C A9, then A9 = A.
Observe that, by Result 3.3, X is not 1-quasi-invariant. Thus there exists
h € G such that X*NX = 0. By (1), S* = S. Let g € G such that X C A9.
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Then X9 = X. We have A%" = X* U S% and, again by (1), A®* N A is
nonempty, so S% = S. Hence $9 = S*' =S, and so A? = A.

We turn to the second part of the lemma. It suffices to check that I’
satisfies the conditions of Lemma 3.4. Since X is not 1-quasi-invariant, the
condition |V| > 4 is satisfied. Suppose that for any w € I'(v) there exists
T € E satisfying T N {u, v, w} = 0. We show that this assumption leads to
a contradiction.

Our assumption is equivalent to the following. For any ¢ € G such
that X9 N X = {v} there exists z € G satisfying X* N {u,v,w} = 0,
where X9 = {v,w} and X% = T. By (1), for any such g and z one has
S9 = S* = S. Hence for any g € G such that X9 N X = {v} one has
S9 = S. Also, by (1), if for g € G one has X9 N X =0, then S9 = S.

We have shown that for any g € G such that X9 N X C {v} one has
S9 = S. Also, by the first part of the lemma, if X9 = X, then A9 = A, so
S9 =8, as well.

Consider the case m = 2. Here I' is vertex-transitive, so for any g € G
such that X9 N X = {u} we have S9 = S. Thus any g € G such that
A9 N A # 0 stabilizes S. By (1), S is G-invariant, a contradiction.

It remains to consider the case m = 3. It suffices to prove that for
any g € G such that X9 N X = {u} we have $9 = S, to obtain the
required contradiction. We may assume the existence of g € G such that
X9N X = {u}, otherwise we are done.

We claim that there exists ¢’ € G such that X9' N X = {v}. Indeed,
otherwise the graph I' is a disjoint union of claws, and the center of each
claw is a G-image of u. By (1), if X N X/ = 0 for some f € G, then
8§/ = S. Since u is not G-invariant, such an element f exists. Consider
the claw with center » and edge set {X, X% ,..., X%, ...}. Then X%/ is
in the claw with center »/ and is disjoint from X. Thus S%/ = S. Then
S§9/ = Sf andso S% = S. Hence S = S9' = ... = §9 = ..., It follows
that S is G-invariant, which is a contradiction proving our claim.

Since the number of G-images of X containing v is equal to the number
of those containing v9, there exist at least two G-images of X containing
v9. Therefore there exists k € G such that X* N X =0, v# € X*. Since
X9NXh = {v9} we have XN X" = {v},s0 S =S, that is §9 = S*.
Also, since X* N X = 0, we have S = S, whence $9 = S. Thus, for any
g € G such that X9N X C {u} one has S9 = 5. We are done. a

To complete the proof of the theorem, we shall reconstruct the whole set
of images of A using the set E.

Let X, X9 be a pair of edges of I' with empty intersection, X C A,
S = A\ X. By (1), S9 = S. Suppose that X* is equal to neither X nor
X9. If S* = S then the intersection of at least 4 images of A (namely, A,
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A3, A", A¥ | where k' € G is chosen such that X* N X*' = §) would be
equal to S. So |E| 2 8, for S is not G-invariant. This is a contradiction to
the second part of Lemma 3.6.

Thus, if | X?» N X| = 1 then S* # S. Hence the points in S€ are in
a one-to-one correspondence with the pairs of parallel edges of T, and we
immediately have for I' & K that |[S€| = 3, and F(A) is as in List 1.2 (5),
whereas for I' & C; we have F(A) as in List 1.2 (1).

The proof of Theorem 1.3 is complete.
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1 Introduction

A one-factor (or a perfect matching) of the complete graph on 2n vertices,
Ko, is a collection of edges which contain each vertex precisely once. A
one-factorization (OF) is a partition of the set of edges of K, into edge-
disjoint one-factors. A perfect one-factorization (P1F) is a one-factorization
in which the union of any two distinct one-factors forms a Hamiltonian
cycle. Recent surveys are by Mendelsohn and Rosa [16] and Wallis [23] on
OF and Seah [18] on P1Fs.

Two OF of Ky, are said to be isomorphic if there exists a bijection of the
vertex set which maps one-factors to one-factors. Given two OFs of Ko,
a problem is to identify whether they are isomorphic. Currently the best
known algorithm for testing isomorphism of one-factorizations is subexpo-
nential [4]. Therefore one attempts to reduce the magnitude of the problem
by using easily computable ésomorphism invariants. One such frequently
used invariant, the so-called d-tables structure or cycle structure, is quite
sensitive for “random” OF's but fails to distinguish between P1Fs (cf. [4],
[8], [16]). More recently, a new invariant, the so-called ¢rain invariant, has
been introduced and explored in the paper by Dinitz and Wallis [9] (see also
[8] and [22]). In this paper we define another invariant, the tricolour in-
variant, and present a number of results relating to it. The structure of the
remainder of the paper is as follows. In Section 2 the invariant is defined and
a theorem is proved about its form for the series of one-factorizations usu-
ally denoted by GKj3,. The performance of the invariant in distinguishing
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between non-isomorphic OFs of K3 and Ko and P1Fs of K3,, 6 <n <11
is described in Section 3. In Section 4 we relate the invariant to Steiner
triple systems. Finally in Section 5 we use it to construct an anti-Pasch
STS(39) containing an STS(19) subsystem in response to a question posed
by Griggs and Murphy [13].

2 ‘Tricolour

Let the vertex set of the complete graph K3, be V and denote the one-
factors of an OF by F, i=0,1,2,...,2n — 2. Define a mapping f: (%) —
(%23-1) as follows.

For a,b,c € V, a # b # c # a, suppose that the edges ab € F;, bc € Fj,
ca € Fi. Trivially i # j # k # ¢ and we set f({a,b,c}) = {i,5,k}.
Let N({i,j,k}) = #{{a,b,c}: f({a,b,c}) = {i, 4, k}}. Finally for n € Z,
0 < n < max(N) = M (say) define the tricolour vector (vo,v1,%2,...,Vm)
by v, = #{{'tJ: k} N({‘r.?t k}) = "'}

The (non-negative) integer vo will be called the tricolour number of the
one-factorization.

Using the above notation and definitions we now establish the following.

Theorem. The tricolour vector of the one-factorization G Kz, is given by

() vw=0v=22r-1)(rn-1)(n—-3)/3,v2=2n—-1)(n—1),v; =0
for i > 3, if 3 does not divide 2n — 1,

(i) o =0, v = 2(2n = 1)(n — 2)?/3, v2 = (2n - 1)(n - 2), v3 = O,
= (2n—1)/3,v; =0 for i > 5, if 3 divides 2n —1..

Proof: Let the vertex set of the complete graph Ky, be {0,0,1,2,...,2n—
2} V and the one-factors F;, i = 0,1,2, ...,2n—2 be given by (o0, i), (1+
i,2n —-2+1),(2+4,2n—-3+1),.. (n 1+z,n+1), all arithmetic being
modulo 2n — 1. Denote the one-factor r containing an edge uv by %o and for
a,byceV,a#bs#c#a,let {abac,bc} =S.

The proof proceeds by identifying which further triples u,v,w € V, u #
v # w # u with {#w,%w, 7w} = T satisfy S = T. There are three cases to
consider

l.u=z, v =y, w= z where {a,b,c} N {z,y,2} = @. For 0 €
{a,b,c,z,y,2} then if S = T it follows wlog that a +b = z + y,
at+c=z+2 b+c=y+zleadingtoa=2z, b=y, c=2z a
contradiction. Wlog if a = oo then if S = T it follows that z+y = 2¢,
z+ 2z =2b, y+ z = b+ cleading to z = (b+ ¢)/2, y = (3c—b)/2,
z=(3b—c)/2 whence z # y # z # z.
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