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1 Introduction

A one-factor (or a perfect matching) of the complete graph on 2n vertices,
Ko, is a collection of edges which contain each vertex precisely once. A
one-factorization (OF) is a partition of the set of edges of K, into edge-
disjoint one-factors. A perfect one-factorization (P1F) is a one-factorization
in which the union of any two distinct one-factors forms a Hamiltonian
cycle. Recent surveys are by Mendelsohn and Rosa [16] and Wallis [23] on
OF and Seah [18] on P1Fs.

Two OF of Ky, are said to be isomorphic if there exists a bijection of the
vertex set which maps one-factors to one-factors. Given two OFs of Ko,
a problem is to identify whether they are isomorphic. Currently the best
known algorithm for testing isomorphism of one-factorizations is subexpo-
nential [4]. Therefore one attempts to reduce the magnitude of the problem
by using easily computable ésomorphism invariants. One such frequently
used invariant, the so-called d-tables structure or cycle structure, is quite
sensitive for “random” OF's but fails to distinguish between P1Fs (cf. [4],
[8], [16]). More recently, a new invariant, the so-called ¢rain invariant, has
been introduced and explored in the paper by Dinitz and Wallis [9] (see also
[8] and [22]). In this paper we define another invariant, the tricolour in-
variant, and present a number of results relating to it. The structure of the
remainder of the paper is as follows. In Section 2 the invariant is defined and
a theorem is proved about its form for the series of one-factorizations usu-
ally denoted by GKj3,. The performance of the invariant in distinguishing
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between non-isomorphic OFs of K3 and Ko and P1Fs of K3,, 6 <n <11
is described in Section 3. In Section 4 we relate the invariant to Steiner
triple systems. Finally in Section 5 we use it to construct an anti-Pasch
STS(39) containing an STS(19) subsystem in response to a question posed
by Griggs and Murphy [13].

2 ‘Tricolour

Let the vertex set of the complete graph K3, be V and denote the one-
factors of an OF by F, i=0,1,2,...,2n — 2. Define a mapping f: (%) —
(%23-1) as follows.

For a,b,c € V, a # b # c # a, suppose that the edges ab € F;, bc € Fj,
ca € Fi. Trivially i # j # k # ¢ and we set f({a,b,c}) = {i,5,k}.
Let N({i,j,k}) = #{{a,b,c}: f({a,b,c}) = {i, 4, k}}. Finally for n € Z,
0 < n < max(N) = M (say) define the tricolour vector (vo,v1,%2,...,Vm)
by v, = #{{'tJ: k} N({‘r.?t k}) = "'}

The (non-negative) integer vo will be called the tricolour number of the
one-factorization.

Using the above notation and definitions we now establish the following.

Theorem. The tricolour vector of the one-factorization G Kz, is given by

() vw=0v=22r-1)(rn-1)(n—-3)/3,v2=2n—-1)(n—1),v; =0
for i > 3, if 3 does not divide 2n — 1,

(i) o =0, v = 2(2n = 1)(n — 2)?/3, v2 = (2n - 1)(n - 2), v3 = O,
= (2n—1)/3,v; =0 for i > 5, if 3 divides 2n —1..

Proof: Let the vertex set of the complete graph Ky, be {0,0,1,2,...,2n—
2} V and the one-factors F;, i = 0,1,2, ...,2n—2 be given by (o0, i), (1+
i,2n —-2+1),(2+4,2n—-3+1),.. (n 1+z,n+1), all arithmetic being
modulo 2n — 1. Denote the one-factor r containing an edge uv by %o and for
a,byceV,a#bs#c#a,let {abac,bc} =S.

The proof proceeds by identifying which further triples u,v,w € V, u #
v # w # u with {#w,%w, 7w} = T satisfy S = T. There are three cases to
consider

l.u=z, v =y, w= z where {a,b,c} N {z,y,2} = @. For 0 €
{a,b,c,z,y,2} then if S = T it follows wlog that a +b = z + y,
at+c=z+2 b+c=y+zleadingtoa=2z, b=y, c=2z a
contradiction. Wlog if a = oo then if S = T it follows that z+y = 2¢,
z+ 2z =2b, y+ z = b+ cleading to z = (b+ ¢)/2, y = (3c—b)/2,
z=(3b—c)/2 whence z # y # z # z.
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= y, w = z, where {b,c} N {y,z} = @. In this case

2. u = g,
(@75 =T #5.

B u=guv=bw=z#c In this case {ab,az,bz} = T so S = T iff
@ac = bz and @z = be. Again this sub-divides into three cases.

a.Ifoo ¢ {a,bc, 2z} thena+c=b+z and a+ z = b+ c leading to
¢ = z, a contradiction.

b . If a or b (wlog a) = oo then b+ z = 2c and b + ¢ = 2z leading to

3c—2)=
¢ . If cor z (wlog ¢) = oo then b+ z = 2a and a + z = 2b leading to
3a—b)=

We can thus distinguish two situations.

If 3 does not divide 2n — 1, the cases 3b. and 3c. above also lead to
contradictions and the only triples of vertices which map under the function
f to the same set of one-factors are {00, b, c} and {(b+c)/2, (3c—b)/2, (3b—
c)/2}.

Hence v = (2n—-1)(2n—-2)/2 = (2rn—1)(n—1) and v; = 2rn(2n-1)(2n—
2)/6 — 2us = 2(2n —1)(n — 1)(n — 3)/3.

Since Y v; = (2"'1) then all other v; = 0.

If 3 divides 2n — 1, solutions are obtained in the cases 3b. and 3c.
above. Let 2n -1 = 3m. Then in case 3b., z = c+ m or c+ 2m giving
b = c+2m or c+m respectively. Hence the triples of vertices {c0, a, a+m},
{o0, a,a +2m}, {o0,a+m,a+2m}, «=0,1,2,...,m — 1 map under the
function f to the same set of one-factors. In case 3c. thena = b+ m or
b+ 2m giving z = b 4+ 2m or b + m respectively. This leads to the triple
of vertices {a,« + m,a +2m}, a = 0,1,2,...,m — 1 mapping under the
function f to the same set of one-factors as the three triples above.

Hence v4 = m = (2n — 1)/3. Further in this case v = (2n —1)(2n —
2)/2-3m=(2n-1)(n—2) and v; = 2n(2n — 1)(2n — 2)/6 — 2vy — 4vy =
2(2n — 1)(n — 2)?/3.

Since Y v; = (2"3" 1) then all other v; = 0. This completes the proof of
the theorem.

3 Statistics

For K, K4 and K¢ there is a unique one-factorization to within isomor-
phism; it belongs to the series G K>,, and therefore its tricolour vector is as
given in the theorem above. There are precisely 6 pairwise non-isomorphic
OFs of K3 (7] and these are given in a compact notation by Wallis [23]. For
completeness we also list the OF as well as its tricolour vector. Note that
not only the tricolour vector but even the tricolour number is a complete
invariant in this case
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1234567 2134657 3124756
Vector: 2800000007
1234567 2134657 3124756
Vector: 2400080003
1234567 2134657 3124756
Vector: 1808080001
1234567 2134657 3124756
Vector: 22000120001
1234567 2134657 3142756
Vector: 981206

1234567 2143657 3162547
Vector: 0 14 21 (GKjs)

4152637 5142736 6172435 7162534

#1
#2
#3
4
#5

#6

4152637 5142736 6172534 7162435

4162537 5172634 6142735 7152436

4162735 5172634 6142537 7152436

4162537 5172634 6123547 7152436

4172635 5123746 6152734 7132456

For K10 the number of pairwise non-isomorphic OFs is 396 [11}, [12].
The tricolour vectors are listed in Appendix 1, ordered for ease of com-
parison as in [11] and also as in Dinitz and Wallis [9] where the indegree
sequences of the train invariant are listed. In this case the tricolour vector
is not a complete invariant. There are 51 pairs, 8 triples and 2 sets of four
pairwise non-isomorphic OFs which have the same tricolour vectors. These
are identified in Appendix 1. This gives a sensitivity for the invariant of
323/396 (approximately 0.816). Nevertheless the tricolour invariant does
distinguish between the only two one-factorizations, #16 and #26, which
the train invariant does not. The two invariants together are complete for
OFs of K 10-

For K;2 the number of pairwise non-isomorphic OFs has recently been
enumerated [25]. There are precisely 526,915,620 of them! However for
n > 7, the exact number of pairwise non-isomorphic OF's of K>, is unknown
(but large; cf., e.g., [3]). At this point we encounter the combinatorial
explosion and so restrict our attention mainly to perfect one-factorizations.
There are precisely 5 pairwise non-isomorphic P1Fs of K2 [17]. Again we
list each of these in compact form with, in order to aid identification, the
order of its automorphism group and its tricolour vector.

#1 123456789TEW 132WAT59687E  142537698ETW  152T3WA486E79
1628354WTTI9E 172E38465T9W  1823495E6107TW  19263E475W8T
1T27394E586W 1E293T45678W 1W24365789TE
Aut=1 Vector: 31 67 48 19

#2 123456789TEW  132WAT59687E  14237698ETW 15283W4679TE
1627394W5EST 17234E5T6W89 1824356E7TT9W  192E3T485W67
1T2638457WIE 1E2T3649578W 1W293E37586T
Aut =5 Vector: 45 40 60 20
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#3 123456789TEW 132W4T59687E 1425376 T8WIE  152936487WTE
1623475E8T9W  172E3T456W89 182T394E5W67 19273E4658TW
1T263W49578E 1E28354W697T 1W24385T6E79
Aut= 10 (2 fixed points) Vector: 30 70 45 20

#4 123456789TEW  132W4T59687E  142539678WTE  1527384W6TIE
162E3W49578T 1726354E89TW  18293T456E7TW  1924375T6WSE
1T2836475E9W 1E23485W697T 1W2T3E465879
Aut = 55 (1 fixed point) Vector: 55 0 110

#5 123456789TEW 132WA4T59687E 1426375E89TW  1523486W79TE
16293E457WS8T 172E38465T9W  182T394E5W67 1925364WT7TSE
1T273W49586E 1E243T57698W 1W2835476T9E
Aut = 110 (GK12) Vector: 0 110 55

Again not only the tricolour vector but also the tricolour number is a
complete invariant. However, it is interesting that a different OF which
was discovered by Cameron [3] and is uniform in that the union of any two
one-factors forms two 6-cycles, has the same tricolour vector: 55 0 110 as
OF #4 above. Cameron’s one-factorization is

123456789TEW  132E4W586T79 1428375T6E9W  152T3W48697E
1623457TW8ITE 17293E465W8T 1826394ES7TTW  19243TSE678W
1T2W3547689E 1E2538496W7T 1W27364T598E

For K4 the number of pairwise non-isomorphic Plus with non-trivial
automorphism group has been determined by Seah and Stinson [19], [20];
there are precisely 21 of them. We list below the tricolour vectors of the
one-factorizations preserving the numbering of the latter given by Seah and
Stinson. Note that #1-20 are to be found in [19] and #21 in [20]. Once
again the tricolour vector is a complete invariant.

OF number Tricolour vector

1 104 0 182

2 74 72 130 8 2
3 98 60 8 36 6
4 4 132 98 12

5 62 102 104 18

6 60 106 102 18

7 68 106 80 30 2
8 60 116 84 24 2
9 108 40 90 48

10 96 84 54 36 16
11 98 54 92 42

12 78 8 96 18 8
13(GKyy) O 208 78

14 60 112 90 24

15 60 136 42 48
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OF number Tricolour vector

16 66 110 79 28 3
17 60 120 80 20 6
18 73 101 76 33 3
19 7t 87 95 21 6
20 59 120 8 18 6
21 65 98 107 12 4

Finally, for 8 < n < 11, we tested the tricolour invariant using the
exhaustive computer search for P1Fs having either one or two fixed points
with a cyclic automorphism on the remaining points which was done by
Anderson [1]. The results are given below, the numbering being as in tables
2 and 3 of Anderson’s paper.

Value of 2n  P1F number Tricolour vector

16 15-1 135 150 105 60 5
- 14-1(Kotzig) 140 154 91 56 14

18 17-1(GKs) 0 544 136
17-2 187 255 153 85
16-1(GKig) 0 544 136
16-2 144 288 216 32
16-3 144 304 184 48
16-4 208 224 152 96
16-5 192 256 152 64 16

20 19-1(GKy»p) 0 798 171
19-2 342 342 171 0 114
19-3 399 171 342 0 0 57
194 285 456 19 190 19
19-5 228 418 266 38 19
19-6 285 342 266 38 38
19-7 361 266 190 114 38
181(GK) 0 798 171
18-2 252 384 261 54 18
18-3 306 252 351 54 6
184 270 366 225 108
185 180 492 243 54
18-6 324 204 243 72 36
18-7 252 348 315 54
188 288 342 225 108 6
189 270 330 297 72
1810 198 438 297 36
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Value of 2n  P1F number Tricolour vector

22 21-1 420 448 294 168
21-2 441 420 315 126 28
21-3 399 504 273 126 28
20-1 280 680 290 60 O 20
20-2 340 560 310 120
20-3 360 500 390 60 20
20-4 540 280 350 100 40 20
20-5 440 420 350 80 20 20
20-6 360 580 290 40 40 20
20-7 340 620 250 8 20 20
20-8 380 580 230 60 80
20-9 280 600 430 O 20
20-10 420 500 270 80 40 20
20-11 400 520 250 120 40
20-12 360 520 330 120
20-13 440 480 210 160 40
20-14 400 460 330 140
20-15 340 520 410 40 20
20-16 380 520 290 120 20
20-17 440- 480 290 20 80 20

4 Steiner triple systems

Consider a Steiner triple system, STS(v), defined on the set {0,1,2,...,v—
1} = V. It is well-known (cf., e.g., [15]) that this yields a one-factorization
of the complete graph K., defined on the vertex set V U {c0}. Again
denoting the one-factors by F;, i € V, if {z,y, 2} is a block of the STS(v)
then the edges xy € F;, yz € F;, zz € F,, and the edges coz € F.

For such a Steiner one-factorization, the operation of the function f spec-
ified by the tricolour invariant is as follows.

(i) if {z,y, 2} is a block of the STS(v) then f({z,y, z}) = {z, v, z}.

(ii) if {z,y,2} is a non-block of the STS(v) and co ¢ {z,y,2} then
f({z,¥,2}) = {a,b,c} where {z,y,c}, {z,b,2}, {a,¥,2} are blocks
of the STS(v),

(iii) f({oo,1,m}) = {I,m,n} where {I,m,n} is a block of the STS(v).

If (iii) is ignored, the function f is nothing other than the well-known trans-
formation which produces a directed graph known as the train of the STS(v)
and goes back to White [24] in 1913 (see also [5] and [21]). Although trains
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are in general a fairly sensitive invariant (for example they successfully dis-
tinguish all eighty STS(15)s) they are cumbersome; the directed graphs
contain (3) vertices. To help overcome this problem, Colbourn, Colbourn
and Rosenbaum [5] introduced the compact train, a set of ordered triples
(p, g,7), each triple meaning that the train contains r components with p
vertices, g of which have indegree zero (after eliminating the unique directed
cycle from each component). This much simpler invariant which is just a
summary of train structure also distinguishes the eighty STS(15)s with the
exceptions of #6 and #7 in the standard listing as given for example in
[18].

The tricolour invariant is similarly a summary of train structure. Indeed
we can define two tricolour invariants for Steiner triple systems. The first
is the tricolour invariant of the one-factorization induced by the Steiner
triple system calculated as described in section 2. We will call this the
OF tricolour vector. The second is the tricolour invariant of the Steiner
triple system itself obtained as noted above by ignoring blocks {o0,l,m}
and which we will call the STS tricolour vector. However for both vectors
the tricolour number is the same. It is easily seen that in computing these
invariants

(i) if {z,¥, z} is a block of the STS(v) then #{Fz, Fy, F.} = n+ Indegree

of {z,y, 2z} in the train where n = 4 for the one-factorization induced
by the STS(v) and n =1 for the STS(v) itself,

(ii) if {z,y, 2} is a non-block of the STS(v) then #{Fz, Fy,, F;} = Indegree
of {z,y, z} in the train.

This leads to different OF and STS tricolour vectors as the following
results for v = 7, 9 and 13 show.

STS(7)

OF tricolourvector 28 0 O O 0 O O o0 7
STS tricolourvector 28 0 0 0 0 7

STS(9)

OF tricolour vector O 72 0 0 12

STS tricolour vector 0 84

STS(13); cyclic

OF tricolour vector 130 52 78 0 0 13 0 13
STS tricolour vector 130 52 91 0 13

STS(13); non-cyclic

OF tricolour vector 104 84 72 0 3 15 7 1
STS tricolour vector 104 87 87 7 1
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The tricolour vectors of the eighty STS(15)s, ordered as in [15), are given
in Appendix 2. They form a complete invariant in distinguishing the sys-
tems. Indeed the first three components are enough to form a complete
invariant. In Appendix 3, the tricolour vectors of all non-isomorphic cyclic
STS(v) for v = 19, 21, 25 and 27 are given, ordered as in [6]. They do not
distinguish between two of the STS(21)s, #1 and #3, but are otherwise
complete.

5 Anti-Pasch Steiner triple systems

An anti-Pasch Steiner triple system is one in which there is no collection
of four blocks whose union has cardinality six. Such a collection must be
isomorphic to {a,b,c}, {a,y, 2}, {z,b, 2z}, {z,y,c} and is known as a Pasch
configuration or quadrilateral. Anti-Pasch STS(v) are known to exist for
all v = 3 (mod 6), [2], [14] and it is conjectured for all v = 1 (mod 6),
v 2 19 also though results for this residue class are still fragmentary. In
their study of anti-Pasch STS(19)s, Griggs and Murphy [13] proved that
the unique STS(9), which is anti-Pasch, could not be embedded in an anti-
Pasch STS(19). This is in contrast to the situation for general STS(v) for
which the classical result of Doyen-Wilson [10] states that any STS(v) can
be embedded in an STS(u) for all admissible » > 2v+1. Griggs and Murphy
asked for an example of an anti-Pasch STS(2v+1) containing a (necessarily
anti-Pasch) STS(v). Two of the four cyclic STS(19)s are anti-Pasch [13]
and below we exhibit embedding of each of them in an anti-Pasch STS(39).

Consider an STS(v) on a base set V' whose elements will be referred to as
undashed. Suppose further that the STS(v) is embedded in an STS(2v+1)
on a base set U. Let D = U \ V; the elements of D will be referred to as
dashed. Then it is easy to see that every block of the STS(2v+1) comprises
either three undashed elements (if it is a block of the sub-STS(v)) or one
undashed element and two dashed elements. Further the set of pairs of
dashed elements occurring with each undashed element form a one-factor of
the complete graph on | D| vertices and the collection of all these one-factors
form a one-factorization. In such a system, a quadrilateral can appear in
three possible formats of dashed and undashed elements as follows.

(i) {ai b, C}, {a’ Y, z}: {.‘L‘, b, z}, {z) u c}:
(i) {a,b,¢}, {a,9',2'}, {b,7,2'}, {c,7,¥'},
(lll) {a: b, c’}, {a,¥, '}, {1‘, b, zl}v {=z.c, v'}.

Now case (i) will not occur if the STS(v) is anti-Pasch. Case (iii) can
be avoided by using a perfect one-factorization of K41 (or any OF where
the union of any two one-factors contains no 4-cycle). Consider case (ii)
and suppose that we attempt to construct the required structure beginning
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with the perfect one-factorization. To succeed, the triples of one-factors
which are counted by the tricolour number must contain an anti-Pasch
STS(v). Hence, for example, the one-factorization GK2, which is perfect
when 2n — 1 is prime will never suffice since we have proved in section 2
that vg = 0. One-factorizations which would appear to have the greatest
chance of success are those with the largest tricolour number.

We wish to embed the two anti-Pasch cyclic STS(19)s in anti-Pasch
STS(39)s. It is natural therefore to use a perfect one-factorization of K20
which also has an automorphism of order 19. From our results in section
3 the one with the largest tricolour number is #19-3 with vo = 399 and
indeed we discover that this is successful.

The details are as follows.

Let V= Z19={0,1,2,...,18} and D = {c0’,0',1’,...,18'}.

One-factors F;, 1 = 0,1,2,...,18 on the complete graph Ky on the
vertices D are given by {oo’¥’, (1+1)'(3+1)’, (2+4)'(7+3), (4+4)'(12+3),
(544)"(15-+5)’, (6-+4) (18+4)’, (8+1) (9+3)', (10+3) (16+4), (11+44) (14+i)’,
(13 +14)'(17 + i)'}, addition being modulo 19. Let {z,3/,z'} be a triple of
the STS(39) when 3’2’ € F;.

The two anti-Pasch cyclic STS(19)s are generated by the starter blocks

(i) {o,1,4}, {0,2,12}, {0,5,13} and

(i) {o,1,8}, {0,2,5}, {0,4,13} (the Netto system) respectively.
It is left as an easy exercise for the reader that either of these sets of
triples can be adjoined to those already constructed without introducing

quadrilaterals. Hence both anti-Pasch cyclic STS(19)s can be embedded in
an anti-Pasch STS(39).

Appendices

For economy of space, Appendices 1, 2 and 3 are not attached to this paper
but are available from the first author upon request.
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