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1 Introduction

A recent paper by Brigham and Dutton [2] examines the effects of vertex
removal and edge removal from a graph G on the clique covering number
of G. This paper closely follows theirs except that we will look at the
clique partition number of a graph. For a survey of the literature on clique
coverings and clique partitions see [5]. See also an early paper on these
topics by Orlin [6].

Most of the notation and terminology used in this paper can be found in
Bondy and Murty [1]. A graph G has vertex set V(G) and edge set E(G). A
complete subgraph of G is called a cligue. A clique partition (respectively,
cliqgue covering) of G is a set of cliques with the property that each edge
of G is contained in exactly (respectively, at least) one of the cliques. The
clique partition number (respectively, cligue covering number) is denoted by
cp(G) (respectively, cc(G)). It is the minimum number of cliques required
to partition (respectively, cover) the edge set of G. If e € E(G), then G —e
is the graph with the edge e deleted. If v € V(G), then G — v is the graph
obtained by removing v and all edges incident with v. Another way of
decreasing the number of vertices in a graph by one is by identifying two
vertices. We say that two vertices are identified if they are replaced by a
single vertex whose neighbour set is the union of the neighbour sets of the
two vertices. Let Gz, denote the graph obtained by identifying vertices z
and y of G. ,

Theorem 1.1 Let x and y be vertices of a graph G such that the distance
between = and y is at least 4. Then cp(Gzy) = cp(G).

Proof: The proof is the same as in the clique covering case [2]. a

Corollary 1.2 If the distance between the vertices x and y of G is at least
4, then cp(Gzy) — cp(Gzy — €) = cp(G) — cp(G — e) for all edges e in G.

ARS COMBINATORIA 42(1996), pp. 89-96



2 Preliminary Results

In this section we note some relationships between the effects of vertex
deletion and edge deletion on the clique partition number. The analogous
statements for the clique covering case are also true [2].

Lemma 2.1 ([6],Remark 2.1) Let v be any vertez of G. Then cp(G —v) <
cp(G).

Proof: Let C be a minimum clique partition of G. Let C, be the set of
cliques of C with v deleted from each clique to which it belongs. Then C,
is a clique partition of G — v. Therefore cp(G —v) < |C,]| £ |C| = ¢p(G). O

Lemma 2.2 Let e = {u,v}. Ifcp(G—e) < cp(G), then cp(G —v) < cp(G).

Proof: The graph G — v is the same as the graph G — e — v. Therefore
cp(G — v) = cp(G — e — v) < p(G — e) < cp(G) by Lemma 2.1. O

Lemma 2.3 If cp(G — €) < cp(G) for all edges e, then cp(G — v) < cp(G)
for all nonisolated vertices v.

Proof: Apply Lemma 2.2 to all of the edges of G. ]

Theorem 2.4 If cp(G — v) = cp(G) for all nonisolated vertices v, then
cp(G — e) > cp(G) for all edges e.

Proof: The statement of the theorem is a direct consequence of Lemma
2.3. 0O

The converse of Theorem 2.4 is not true. A counter-example is the graph
G = K4V K3, the join of K, and the complement of a triangle. The graph
G has ¢p(G) = 6 and cp(G — e) =7 for all € € E(G), but cp(G —v) =5 if
v is one of the three vertices of degree four.

3 Vertex Removal

We have seen in Lemma 2.1 that the clique partition number of a graph
cannot increase when a vertex is deleted. The following theorem places
bounds on the possible decrease. The bounds here differ from those in the
clique covering case [2].

Theorem 3.1 For any vertez v, cp(G) — p(v) < cp(G —v) < cp(G) - k(v)

where p(v) is the degree of v and k(v) is the number of edges incident with
v which do not lie in any triangle of G.
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Proof: A minimum clique partition of G — v together with each edge
incident with » form a clique partition of G. Thus, cp(G) < cp(G —v)+p(v).
Each edge incident with v which does not lie in a triangle must be a 2-
clique in every clique partition of G. Thus, the clique partition number is
diminished by at least k(v) when v is deleted. Hence cp(G — v) < ep(G) —
k(v). O

The following lemma uses the concept of separation as described in [7}.
If H is a subgraph of G, then G\H denotes the subgraph of G with the
edges of H removed. The subgraph H is said to separate the cligues of G
if for every clique K of G, either every edge of K lies in H or every edge of
K lies in G\ H. It is sufficient to take K to be a triangle.

Lemma 3.2 If v does not belong to an induced K4 — e and each edge inci-
dent with v lies in a triangle, then cp(G — v) = cp(G).

Proof: Let H be the induced subgraph of G whose vertex set is {z} UN(v)
where N (v) is the neighbour set of v. Let uw be any edge of H, u,w € N(v).
Suppose that u and w are adjacent to vertex = ¢ H. Then the subgraph
induced on the vertices u, v, w and z form a K4 — e, a contradiction. Thus
every triangle of G lies entirely in H or in G\H. This is equivalent to
saying that H separates the cliques of G. By Theorem 2.1 of [7], cp(G) =
cp(H)+cp(G\H). We note that the deletion of v from V(G) does not affect
the value of ¢p(G\H) and so it is sufficient for our purposes to prove that
cp(H) = cp(H - v).

Let C be a minimum clique partition of G. Let v belong to exactly r
cliques of C: C},Cs,...,C,. Suppose that for some i # j, every vertex of
C; is adjacent to every vertex of C;. Then C is not minimal since C; U C;
is one clique. Now suppose that u € C; is adjacent to w € Cj, u,w € N(v).
Then without loss of generality, u has a neighbour y € C; such that y is
not adjacent to w. But then the induced subgraph on »,y,u and w is a
K4 — e, a contradiction. Furthermore, since every edge incident with v lies
in a triangle, each clique of C containing v has at least three vertices. For
1 <¢<r, let C;* denote the clique C; with v removed. Thus H — v is
a disjoint union of cliques, namely the C;*, each of which has at least two
vertices. Therefore cp(H —v) = cp(H) =r. 0O

Corollaries 3.3 and 3.4 and Theorem 3.5 follow directly from Lemma
3.2 proved above. Their analogues ([2],Corollaries 2 and 3,Theorem 7)
for the clique covering case are also true but the proof employed in [2] is
deduced from a theorem ([2],Theorem 6) which does not hold true for clique
partitions.

Corollary 3.3 If cp(G — v) < cp(G), then v belongs to an induced K4 — e
or v 18 incident with an edge which does not lie in a triangle.
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Corollary 3.4 If G has no induced K4 — e and every edge of G lies in a
triangle, then cp(G — v) = cp(G) for every vertez of G.

Proof: Apply Lemma 3.2 to every vertex of G. a

Theorem 3.5 If G has no induced K4 — e, then cp(G — v) = cp(G) for
every vertex v of G if, and only if, every edge of G is contained in a triangle.

Proof: Let G be a graph with no induced K4 —e. If every edge of G liesin a
triangle, then cp(G—v) = cp(G) for every vertex of G (Corollary 3.4). If e =
{u, v} does not lie in a triangle, then cp(G — v) < ¢p(G) (Theorem 3.1). O

The following is an example of a graph G having ¢p(G — v) < cp(G) for
all v € V(G). Let G be the join of a vertex and the odd path, P,_;. Then
cp(G) = 2p — 1 while cp(G — v) € {2p — 2,2p — 3,2p — 4} depending on
which vertex v is deleted.

Theorem 3.6 For any graph G there are graphs Hy and Hy for which G
i3 an induced subgraph of both Hy and H3, and

1. ep(Hy) = cp(Hy — v) for all vertices v € V(H,); and,
2. cp(Hz) > cp(Ha — v) for all vertices v € V(Hz).

Proof:

1. Let C1,Cy,...,C, be the cliques of a minimum clique partition of
G. To construct H,, first add r new vertices, vy, v2,...,v,. Then let
C;* denote the clique formed by joining v; to each vertex of C;. The
cliques Cy*, C»*, ..., C,* form a minimum clique partition of H;. It
is easy to verify that ¢p(H; — v) = cp(H,) for each vertex v of H;.

2. To construct Hp, append a new vertex to each vertex of G. By
Lemma 2.2, cp(H, — v) < cp(H,) for each vertex v of Hy. This
is the same construction as that in Theorem 8 of [2].

(]

As noted in [2] for the clique covering version, Theorem 3.6 has the
consequence that there can be no forbidden subgraph for either the case
that ¢p(G) = cp(G —v) for all v € V(G) or the case that cp(G) > cp(G —v)
for all v € V(G).

Theorem 3.7 If cp(G — v) = cp(G) for all vertices v, then |E(G)| >
3cp(G).
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Proof: Let C be a minimum clique partition of G. If any clique of C is an
edge uv, then cp(G —v) < cp(G). Consequently, every clique of C has order
at least three. O

Equality holds, for example, when G is a graph whose blocks are all
triangles. The comparable result for the clique covering case is |E(G)| >
2cc(G) and no larger constant will do [2].

In the following example from [2], G is a planar polyhedral graph. That
is, G is a graph associated with the vertices and edges of a solid convex
polyhedron. Such a graph is necessarily planar and 3-connected [3]. The
graph G* is its planar dual, x(G) is the vertex connectivity of G and x'(G)
is the edge connectivity of G.

Theorem 3.8 If G is a planar polyhedral graph, then cp(G) = |E(G))| if,
and only if, '(G*) > 4. .

Proof: If cp(G) = |E(G)|, then G contains no triangles. Therefore cc(G) =
|E(G)| and x’(G*) > 4 by Theorem 10 of [2]. In the other direction, if
k'(G*) 2 4, then cc(G) = |E(G)| ([2],Theorem 10). Thus G is triangle-free
and so ¢p(G) = |E(G)|. O

Corollary 3.9 If G is a planar polyhedral graph, then cp(G) < |E(G)| if,
and only if, &'(G*) = k(G*) = 3.

4 Edge Deletion

Unlike vertex removal, when an edge is deleted from a graph it is possible
for the clique partition number to increase, decrease or remain the same.
Theorem 4.2 places bounds on the amount of change possible. The changes
differ from those of the clique covering case [2].

Lemma 4.1 ([6/Corollary 3.3) Let e be be any edge of K, the complete
graph on n vertices. Then cp(K, —e)=n-1, ifn > 3.

Theorem 4.2 Let s; be the order of the smallest clique containing the edge
e; among all of the minimum clique partitions of G. Then cp(G)+3; —2 >
cp(G — &) 2 p(G) - 1.

Proof: For the inequality on the right, a minimum clique partition of the
graph G —e; together with the 2-clique e; gives a clique partition of G. Thus
cp(G) < cp(G - ;) + 1. For the inequality on the left, let C be a minimum
clique partition of G such that the edge e; is contained in clique C of order
s;. Then G'—e; can be partitioned by the cliques of C\C plus s; —1 cliques of
C —e; (by Lemma4.1). Thus cp(G—e;) < |C|—1+si—1=cp(G)+s;—2.0
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Theorem 4.8 Let G be a graph on n vertices. Let s; be the order of the
smallest clique conlaining the edge e; among all minimum clique partitions
of G. Then

1. p(G — ;) = cp(G) — 1 if, and only if, 3; = 2; and,
2. cp(G —¢;) = cp(G) + n — 2 if, and only if, s; =n.

Proof:

1. Suppose 8; = 2. Let C be a minimum clique partition of G such that
e; occurs as a 2—clique, C. The cliques of C\C form a minimum clique
partition of G — e;, so cp(G — ¢;) = cp(G) — 1. Now let cp(G —¢;) =
¢p(G) — 1. Then the cliques of a minimum clique partition of G — e;
plus the edge e; form a clique partition of G in which the edge e;
occurs as a 2—clique. It is minimal because cp(G) = ¢p(G —¢;) + 1.
Since e; occurs as a 2-clique, s; = 2.

2. If s; = n, then G = K, cp(G) = 1, and by Lemma 4.1 we have
cp(G — ¢;) =n —1 = cp(G) + n — 2. In the other direction, cp(G) +
n—2=cp(G - ¢) £ cp(G) + 3; — 2 < cp(G) + n — 2, which implies
that s; = n.

a

In [2] it is proved that if cc(G) = cc(G —e) for all edges e, then | E(G)| >
2¢c(G). Brigham and Dutton give an example of a graph on nine vertices
having this property. If there is a graph G having the property that cp(G) =
cp(G —e) for all edges e, then |E(G)| > 3¢p(G). So far we have no examples
of such graphs. It seems that the removal of an edge from a small graph
usually results in either a decrease or an increase in the clique partition
number. The graph G of Figure 1 has cp(G) = 10 ([4],Theorem 1). The
minimum clique partition of G is composed of 10 triangles. Let e be the edge
indicated in Figure 1. Let d4 denote the number of K,’s in a minimum clique
partition of G. By examining the cases dy = 0,1,2 or 3 it is evident that
cp(G — e) = 10. A minimum clique partition of G — e uses three Kj's, two
K3’s and five Ky’s. The graph G has ten edges for which cp(G —e¢) = cp(G).
For the remaining edges of G, cp(G — e¢) = 11 (nine K3’s and two K>’s, for
example).

For an example of a graph G such that cp(G — €) < ¢p(G) for all edges
e of G, one need only choose a triangle-free graph. Another class of graphs
having this property consists of the wheels, W,,, where n is even and n > 6.
A graph of this type consists of a vertex which is adjacent to each vertex of
a cycle, C,—,. For n even and n > 6, cp(W,,) =n and cp(W,, —e)=n -1
for all e in W,,. If G is a graph with the property cp(G — e) < cp(G) for all
e € E(G), it is necessary and sufficient that for each e there is & minimum
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Figure 1. ¢p(G - e) = cp(G)

clique partition of G in which e occurs as a 2-clique (Theorem 4.3). For
the clique covering case, Brigham and Dutton [2] conjecture that the only
graphs with the property cc(G — e) < cc(G) for all edges e are the triangle-
free graphs.
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