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ABSTRACT. Let L be a linear form on the Galois field GF(g"*?)
over GF(q) (n > 2). We characterize those integers s coprime
to v = (g"*' —1)/(g — 1) such that L(z’) is (or is related
to) a quadratic form on GF(¢"*') over GF(g). This relates
to a conjecture of Games concerning quadrics of the form »D
in PG(n,q), where D is a difference set in the cyclic group
Z, acting as a Singer group on the points and hyperplanes of
PG(n,q). It has been shown that Games’ conjecture does not
hold except possibly in the case ¢ = 2: here we establish that
it holds exactly when ¢ = 2. We also suggest a new conjecture.
Our result for ¢ = 2 enables us to prove another conjecture
of Games’, concerning m-sequences with three-valued periodic
cross-correlation function.
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1 Imtroduction

Let PG(n, g) be the projective geometry of dimension n > 2 over the Galois
field GF(g) and let v = (¢"*! — 1)/(g — 1). Let D be a difference set in the
cyclic group Z, acting as a Singer group on the points and hyperplanes of
PG(n, q). We are interested in the following question: for which integers r
coprime to v is rD = {rd | d € D} a quadric of PG(n, q)?

This question is prompted by [Ga), in which Games gives a construction
for perfect ternary sequences. A perfect ternary sequence is a sequence of
values from the set {—1,0,1} with the property that the periodic auto-
correlation function is zero for all non-zero shifts of the sequence. Games
constructs a perfect ternary sequence whenever rD is a quadric of PG(r, q)
which has the same size as a hyperplane (that is, r is coprime to v), but is
not a hyperplane.

We may consider the points of PG(n,q) to be the 1-dimensional sub-
spaces of GF(g"*!) regarded as a vector space over GF(q). The hyper-
planes of PG(n,q) correspond to linear forms on GF(g"*!) over GF(q).
Let L(z) be a linear form corresponding to the hyperplane determined by
D, let r be coprime to v and let s satisfy rs = 1 mod v. Then rD is a
quadric if and only if there is a quadratic form Q(z) on GF(g™*!) over
GF(q) such that L(z®) = 0 exactly when Q(z) = 0.

Note that all the quadrics D which are hyperplanes are of the following
form. Let g = p*, where p is prime. Then p is a multiplier of the difference
set D and so p'D is a translate of D for all integers i. Each associated
hyperplane has corresponding linear form L(yz) for some v € GF(g™*!)
and may be considered to be a completely degenerate quadric with corre-
sponding quadratic form Q(z) = (L(yx))>.

Let s be an integer. If L(z®) is a quadratic form and s is coprime to v
with rs = 1 (mod v), then by the above it follows that rD is a quadric in
PG(n,q). Games [Ga] has observed that L(z°) is a quadratic form when
s = ¢' + ¢™ for some integers I and m. Here we address the question: for
exactly which integers s coprime to v is Q(z) = L(z®) a quadratic form?
We prove that only those congruent modulo g"*t1 —1 to an integer of the
form ¢! + g™ have this property.

Games [Ga] conjectured that whenever rD is a quadric which is not a
hyperplane then r satisfies 7(¢' + ¢™) = 1 (mod v) for some integers I and
m. In [Ja], Jackson and Wild show that Games’ conjecture does not hold
for any value of g except possibly ¢ = 2. As a corollary to the above result
we obtain a proof that Games’ conjecture holds in the case ¢ = 2.

Suppose that ¢ = 2 and that D and rD determine two binary m-
sequences. When rD is a quadric which is not a hyperplane these sequences
have a three-valued cross-correlation function (see Games [Gab]). We prove
conjecture 2’ of [Gab), namely that if n = 2" — 1, w > 2, then 24 2mis
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coprime to v if and only if = m and in this case rD is a hyperplane. Thus
when n = 2% — 1 such a pair of binary m-sequences of length ontl
cannot arise from a quadric.

It is known [Ja] that whenever r is coprime to v and satisfies ro*(¢ +
¢™) =1 mod v for some integers k, | and m, the set rD is a quadric. We
conjecture that, except in the case where n = 2 and q is odd, these are the
only integers r coprime to v for which D is a quadric. We also make a
conjecture for the case where n =2 and gq is odd.

2 Notation and Preliminaries

For more details on the following we refer the reader to [De] and [Hi] .

Let n > 2 and let g(z) = z™*! + gnz™ + -+ - + g1 + go be a primitive
polynomial over the Galois field GF(q). Let c be a primitive root of g and
consider GF(g™+1) = GF(q)(a) as a vector space V(n+ 1,q) over GF(q).
Then any element z of GF(g"t!) can be represented as an (n + 1)-tuple
over GF(q). We write z = (z0,Z1,...,%n) if £ = 3_;_gzjo’. This gives a
one to one correspondence between elements z of GF(¢g"*!) and vectors z
of V(n+1,q). We denote the set GF(¢"+1)\ {0} = {e%,al,...,a8"" 2}
by GF(¢"t!)*, and similarly GF(q)* = GF(g)\ {0}

The projective space PG(n, g) has as poinis the 1-dimensional subspaces
of V(n+1, ) and as hyperplanes the n-dimensional subspaces of V(n+1,q).
It can be seen that we can represent each point of PG(n, g) by any non-zero
vector in the corresponding 1-dimensional subspace. So o and pa’ (where
p € GF(g)*) represent the same point. It can be shown that a,1<1<
(g"*! = 1)/(g — 1), represent distinct points in PG(n, g). The hyperplanes
too can be represented by non-zero (n + 1)-tuples ! = (lo, l1, - - -, In), Where
a point z = (o, Z1, ..., Tn) is incident with { = (lo, L1, ...,ls) if and only if
zIT = 3" o liz; = 0. (I7 denotes the transpose of 1.) Thus [ and i (where
p € GF(q)*) represent the same hyperplane.

Let I be a hyperplane and let D = {i € Z, | o'lT =0}. Then Disa
Singer difference set in Z,,.

A linear form on GF(q"+!) over GF(qg) is a mapping L: GF(¢"*!) —
GF(q) such that L(yz + 8y) = vL(z) + 6L(y) for all ~,6 € GF(q) and all
z,y € GF(q**!). Consider linear forms on GF(q"*!) over GF(q). If L is
a linear form then there exists an associated element | € GF(¢™*!) with
L(z) = zI7 for all z € GF(g™*!). Thus there is a correspondence between
non-zero linear forms and non-zero vectors of V(n + 1, ¢), and so given a
hyperplane represented by tuple [, then we can associate it with the linear
form L(z) = zI”.

If L(z) is a linear form, then for any a € GF(q"*!), L(az) is also a linear
form. As the linear forms L(az) and L(bz) are distinct for a,b € GF(g"*?),
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a # b, it follows that given any linear form L’(z) there exists a € GF(g"*?)
with L'(z) = L(az) for all z € GF(g"?).

Let M, ,1(q) denote the set of (n + 1) x (n + 1) matrices over GF(g).
A bilinear form is a mapping B: GF(¢"t') x GF(q"*') — GF(q) such
that B is linear in each variable. In this case there exists A € Mn41(q)
with B(z,y) = zAyT, for all z,y € GF(¢"™'). A guadratic form is a
mapping Q: GF(¢"*!) —» GF(q) such that the form B(z,y) defined by
B(z,y) = Q(z +y) — Q(z) — Q(y) is bilinear, with B(z,y) = B(y,z) and

Q(6z) = 62Q(z) for all § € GF(g) and all z,y € GF(g"*!). If Q(z)
is a quadratic form, it can be shown that there exists A € Mp+1(g) with
Q(z) = zAzT for all z € GF(¢"*!). Thus if B is a bilinear form then
Q(z) = B(z,z) is a quadratic form. A quadric in PG(n, q) is the set of
points z for which Q(z) = 0 for some quadratic form Q on GF(g™+!) over
GF(q).

We shall need the following result.

Lemma 1. Let s be an integer coprime to v and let L(x) be a non-zero
linear form. Suppose Q(z) = L(z®) is a quadratic form. Then for any non-
zero linear form L'(z) we have that Q'(x) = L'(z°) is a quadratic form.
(All the forms are on GF(q™*!) over GF(g).)

Proof: Let L'(x) be a non-zero linear form. So there exists a € GF(¢"*')
with L'(z) = L(az) for all z € GF(g"*!). Since s is coprime to v there
exists integers c,d with cs + dv = 1. So (a®)*(a")? = a. Let b= a® €
GF(q**!) and v = (a*)% € GF(g). Then a = 4b°. Hence Q'(z) = L'(z*) =
L(az®) = yL(b*z®) = yQ(bz) and it follows that Q'(z) is a quadratic
form. O

38 Main Theorem

We now prove our main result. Let ¢ = p", where p is a prime and h > 1.
Let n > 2 and recall that v = (g"*t! —1)/(¢ - 1).

Theorem 1. Let L{z) be a non-zero linear form on GF(q"*!) over GF(q)

and let s be an integer coprime to v. Then Q(z) = L(z®) is a quadratic
form if and only if s = ¢* + ¢™ mod ¢g"*! — 1 for some integers [ and m.

Proof: That L(z®) is a quadratic form when s = ¢*+q™ for some integers !
and m has been observed by Games [Ga]. It remains to prove that if L(z®)
is a quadratic form then s is of the stated form.

Suppose that Q(z) = L(z®) is a quadratic form on GF(g™*!) over GF(g).
Since z9""'~1 = 1 for all z € GF(g"*')* we have L(z®) = L(z*) when
s =¢ mod g"+! — 1. Hence we may assume that 0 < s < ¢"*! —1. We
write s = (an ...8100)q if

s=ang" +an19""' +---+aig+ao
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where for each a;, 0 < a; < g, so that the a; are the digits of s in base ¢
notation.

Consider Q(6) where § € GF(g). Since Q(x) is a quadratic form, we
have Q(8) = 62Q(1). Therefore L(§°) = §2L(1%), and by the linearity of
L, we have L(6° — §2) = 0. Thus, by Lemma 1, L'(§° — 6?) = 0 for all
non-zero linear forms L'. It follows that §° — §2 = 0 (for all § € GF(q)),
and therefore s =2 mod ¢ — 1. That is,

ang" +an-1g""'+ - +ai1g+ao=2 (modg-1),
and as g=1 mod ¢ — 1, it follows that
Gn+@n_1---+a=2 (modgq-—1). 1

Since Q(z) is a quadratic form, the form Q(z+y) —Q(z) —Q(y) is bilinear
in z and y. Thus B(z,y) = L((z+y)*) — L(z®) — L(y") is bilinear in z and
y. Hence B(z + v, z) — B(z, z) — B(y,2) =0, that is

[L((z +y+2)*) — L((z +v)°) - L(z")] = [L((z + 2)") - L(=*) - L(=%)]
- [+ 2)°) - L(v°) - L(z*)] =0 for all z,y,2z € GF(g""). 2)

Using the linearity of L and Lemma 1, equation 2 remains true if every
occurrence of L is deleted. Simplifying what remains, we deduce that

(+y+2)° —(@E+y)'~(@+2) - (y+2)° +2° +3" +2° =0
for all z,y,z € GF(¢"*!).

This equation is a polynomial identity as the degree of each variable is less
than ¢"t1. It holds only if there are no non-trivial z%y"2" terms in the
expansion of (z +y + 2)° (u,v,w > 0).

Recall that ¢ = p*, where p is prime. Expanding (z + y + 2)° using
multinomial coefficients modulo p, there is a non-trivial z¥y"2* term with
u,v,w > 0 if and only if we can decompose the 8 = (sna—1-.. 8180)p into
a partition of three [Di, p273]. By a partition of three of s we mean s =
u + v + w, where u,v,w > 0, u = (Unh—1...81%0)p, ¥ = (Unh-1.. . V170)p,
w = (Wph-1... W1W0)p, 8Nd 8; = ui + Vi + W (0<gignh-1).

So, for there to be no partition of s into three, we have either s = P
or 8 = p* +p° for some i,5 > 0. If s = p' then by equation 1 p = 2 and
s =g' +¢' for some 0 < ! < n. If s =p* + p’ then from equation 1 we can
conclude that h | i and k| j, s0 s =¢' +¢™ for some 0 <l,m < n. ]

Applied to quadrics in PG(n, g) related to Singer difference sets, Theorem
1 yields the following. Let D be a difference set in the cyclic group Zy
acting as a Singer group on the points and hyperplanes of PG(n, g) where
v = (¢"*!1 —1)/(¢g—1). Let L(z) be a linear form associated with the
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hyperplane corresponding to D. Let r be an integer coprime to v such that
rD is a quadric in PG(n,g). Then there is a quadratic form Q(z) for rD,
and an integer s with rs =1 (mod v), such that

Q(z) = L(z®) for all z € GF(q"!)
if and only if
s=q¢+q™ (modg*t!—1) for some integers ! and m.

Theorem 1 immediately gives a proof for Games’ conjecture for g = 2.

Corollary 1. Let D be a difference set in the cyclic group Zan+1_, acting
as a Singer group on the points and hyperplanes of PG(n,2). Suppose that
r is an integer coprime to v = 2"*t! — 1. Then rD is a quadric of PG(n,2)
if and only if r(2' +2™) =1 mod v for some integers | and m.

Proof: Suppose that rD is a quadric of PG(n,2), with corresponding
quadratic form Q(z), and let s satisfy rs = 1 mod 2**! — 1. Let L(z)
be a linear form corresponding to the hyperplane associated with D. Then
L(z*) = 0 if and only if Q(z) = 0. As L(z°) and Q(z) take values in GF(2),
it follows that L(z®) = Q(z) for all z € GF(2**!). Hence, by Theorem 1,
s=2'+2™ mod 2"t — 1 for some integers ! and m.

As we noted in the introduction, the converse is well known [Ga]. 0

4 Occurrence of Non-Hyperplane Quadrics

Let g be a prime power. In this section we examine when there exists ¢ +q™
coprime to (g"*! —1)/(q — 1). For a special class of values of n we apply
the result to prove conjecture 2’ of [Gab).

Lemma 2. Let n > 2 be an integer and let g be a prime power. Put
v=(g"*' -1)/(g—1).

o (a) If n is even then q¥ +1 is coprime to v.

o (b) If n is odd and q is odd then ¢' +q™ is not coprime to v for any
Im@O0<l<m<n).

o (c) If n is odd and n = 2%a — 1 with a > 1 odd, and q is even, then
q*° + 1 is coprime to v.

o (d) If nis odd and n = 2* ~ 1 and q is even, then ¢' + ¢™ is not
coprime to v for any l,m (0 <1 <m < n) unless | =m.

Proof: (a) Asv=g"+q" ' +---q+1=(qF +¢¥ 1+ +g)(a¥ +1)+1,
g% +1 is coprime to v. In case (b), both v and ¢* +¢™ are even, so they are
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not coprime. For (c) ¢"*! =1 =¢2"*—1=(-1)>=1=-2 mod ¢ +1.
Hence ¢*° + 1 is coprime to v.
Consider now case (d). If n =2* — 1 then

w-1 .
v= [ +1). 3

i=0

Now ¢' + g™ = ¢!(1 + ¢™*) so it is sufficient to show that 1 + ¢™ is not
coprime tov forallm,0 < m <2¥ —1. If m =0 then1+¢™ =2, and 2
divides v unless q is even; this is the exception above. Otherwise m 2 1and
we can write m = 2%t where 0 < u <wand tisodd. So1+4+¢™ = 1+(¢%)*
and so 1+ ¢2* divides 1 +¢™. By equation 3, 1+ ¢2" also divides v. Thus
1+ g™ is never coprime to v if m > 1. O

The following corollary restates and proves conjecture 2 of [Gab.

Corollary 2. Let D be a difference set in the cyclic group Zan+1_, acting
as a Singer group on the points and hyperplanes of PG(n,2). Suppose that
n=2Y_—1 (w>2) and r is an integer coprime tov=2"t1_1 IfrDis
a quadric then it is completely degenerate, that is, rD is a hyperplane.

Proof: Suppose rD is a quadric. By Corollary 1, we have r2t+2™) =1
mod 2"+! — 1 for some integers I, m. By Lemma 2, 72* = 1 (mod v) for
some k, 1 < k < n. However, 2 is a multiplier of D,sorDisa hyperplane. O

As remarked in the introduction, it follows from Corollary 2 that a pair
of binary m-sequences with three-valued cross-correlation function cannot
arise from a quadric of PG(n, 2).

5 A Generalisation

Let g = p" where p is prime and let D be a difference set in Z, acting as
a Singer group on PG(n,q), where n > 2 and v = ("t =1)/(g—1). Let
L(z) be alinear form on GF(g™*!) over GF(g) corresponding to the hyper-
plane associated with D. Suppose r is coprime tov and rDisa quadric with
quadratic form Q(z) = L(z*) where sp = ¢' +¢™ mod (¢"t! —1) satisfies
rso =1 mod v. There are g—1 residues s modulo g**t!'—1suchthatrs=1

mod v, namely so +tv (0 < t < ¢—2). Although L(z°°***) may not be a
quadratic form, each set {z I L(z®1*’) = 0} represents the same quadric
D with quadratic form Q(z). This follows since L(z®**) = (z?)t L(z®)
as z¥ € GF(q) for all z € GF(¢"*?).

For example, in PG(2, g) with difference set D, the set —D is a quadric.
We can choose s = q + ¢%, so L(z®) is a quadratic form. However, L(z™1)
is not usually a quadratic form.

The following theorem explains the the relation between L(z*°**’) and

Q(=).
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Theorem 2. Let L(z) be a non-zero linear form on GF(q"*!) over GF(q).
Let a be a generator of GF(q™!). Let s be an integer coprime to v. Then
there exists an element § € GF(q)* such that

Q(a') = 6 L(a*) 4

is a quadratic form, if and only if s = ¢' + ¢™ mod v for some integers !
and m. '

Proof: Let 4 = o". Then u is a generator of GF(g). Now for any integer
¢

L(ai(a+tv)) = L((av)tiaia) = L(at'aia) = 61'L(aia) 5
where 6§ = ut € GF(q)*.

Suppose s+tv = ¢! +¢™ for some integer t. Then Q(a’) = L(a*(*+*)) is
a quadratic form by Theorem 1, and it follows from Equation 5 that Q(z)
given by Equation 4 is a quadratic form.

Conversely, suppose that there exists § € GF(q)* such that Q(z) given
by Equation 4 is a quadratic form. Smce u is a generator of GF(q), there
exists an integer t < ¢ — 1 with § = p!. So, from Equation 4, Q(a*) =
§iL(a') = L(8'a*®) = L(a***t)). By Theorem 1, s + tv is of the form
¢* + g™, as required. 0O

As we noted in the introduction, if r is an integer coprime to v such that
rp*(¢*+¢™) =1 mod v, then rD is a quadric of PG(n, q). The following is
effectively a generalisation of Theorem 1 and Theorem 2 to cover all these
values of r.

Theorem 3. Let L(z) be a non-zero linear form on GF(q**') over GF(q).
Let s be an integer coprime to v = (¢"*t! —1)/(¢—1) and let k be an
integer. Then Q(x) = L(z*)*" is a quadratic form if and only if sp* =
(¢ +4™) mod ¢**! — 1 for some integers | and m. Further, there exists
an element 6 € GF(q)‘ such that Q(o?) = §'L(o**) is a quadratic form, if
and only if s = ¢' +¢™ (mod v) for some integers | and m.

Proof: It is easy to check that L'(z) = L(:::""_l)p is a linear form if and
only if L(z) = L' (:::P)l""_l is a linear form. Thus for any integer k we have
Qx) = L(x’)”k =L (:t:“’k) for some linear form L’(x). The result follows
on applying Theorem 1 and Theorem 2 to L'(z). a

6 A Conjecture

Our conjecture is as follows. Let ¢ = d v=(¢"*! —1)/(g — 1). Note
that p"("'“) = 1 (mod v). Hence sp = ¢ + ¢™ (mod v) if and only if
s =" (¢' + ¢™) (mod v) where k + k' = h(n +1).
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Note that rp*D is a translate of »D as p is a multiplier of the difference
set D.

Conjecture 1: Let D be a difference set in Z,, acting as a Singer group on
the points and hyperplanes of PG(n, q) where v = ("t -1)/(¢—1) and
g = p" with p prime. Let v be an integer coprime to v.

e (a) Except in the case where n =2 and q is odd, rD is a quadric of
PG(n, q) if and only if

rp*(¢' + ¢™) =1 mod v for some integers k, 1, m.

e (b) In the case wheren=2and g isodd, rD isa quadric of PG(n,q)
if and only if

either rp*(¢' + ¢™) =1 mod v for some integers k,l,m,
or rp* =2 mod v for some integer k. '

We have verified this conjecture for PG(n, g) in the following cases: n =3
with ¢ = 3,5,9, and n = 4 with g = 3,5; and we have proved (by Theorem
1) that it is true when ¢ = 2.

Finally, we briefly consider a more general question. We shall say that
a set rD is a quasi-quadric if it has the same intersection properties with
hyperplanes as a quadric of the form r'D (that is, the same sizes of inter-
section, with the same multiplicities: these are detailed by Games in [Gal)).
We might ask: for which integers = coprime to v is rD a quasi-quadric?
This is relevant since Games’ construction for perfect ternary sequences
can be applied to some quasi-quadrics which are not quadrics.

Firstly, if D is a quadric and rs = 1 (mod v), then it is not difficult to see
that sD is a quasi-quadric. If n =2 and ¢ is odd then every quasi-quadric
is a quadric by Segre’s Theorem (Theorem 8.2.4 in [Hi]). This accounts for
the case rp* =2 mod v in our conjecture. However in general sD is not a
quadric: we found examples of such sets which are not quadrics in PG(4, 5)
and PG(4,3). Note that it is easy to verify that in PG(2, q) s is of the form
given in our conjecture if and only if r is of this form.

It is possible for quasi-quadrics 7D, where r is neither a value given by
our conjecture, nor an inverse modulo v of one of these values, to exist in
PG(n, q). We found examples of such sets in PG(4, 3): for example 5D.

7 Acknowledgements
We are grateful to the referee for the useful corrections and comments.

105



References
(1] L.D. Baumert, Cyclic difference sets. Springer-Verlag, Berlin (1971).

[2] P. Dembowski, Finite geometries. Springer-Verlag, New York (1986).

[3] L.E. Dickson, History of the theory of numbers, Vol 1. Carnegie Insti-
tution of Washington, Washington D.C. (1919).

[4] R.A. Games, The geometry of quadrics and correlations of sequences.
Trans. Inform. Theory 32 (1986), 423-426.

[5] R.A. Games, The geometry of m-sequences: three-valued crosscorrela-
tions and quadrics in finite projective geometry. SIAM J. Alg. Discrete
Math. 7 (1986), 43-52.

[6] J.W.P. Hirschfeld, Projective geometries over finite fields. Clarendon
Press, Oxford (1979).

[7] W-A. Jackson and P.R. Wild, Relations between two perfect ternary
sequence constructions. Des. Codes Cryptogr. 2 (1992), 325-332.

106



