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ABSTRACT. A t-interval representation f of a graph G is a
function which assigns to each vertex v € V(G) a union of at
most ¢ closed intervals Iy 1, Jv,2,- - -, Jv,¢ On the real line so that
F(W) N f(w) # 0 if and only if v,w € V(G) are adjacent. If no
real number lies in more than r intervals of the representation,
we say, the interval representation has depth r. The least posi-
tive integer ¢ for which exists a t-representation of depth r of G
is called the depth-r interval number i-(G). E. R. Scheinerman

proved that ia(Kn) = [3] for n > 2 and that [-ﬂ% + -2—';.-] <
ir(Kn) < n/(2r — 2) + 1+ 2[log, n]. In the following paper we
will see by construction that i3(Ks) = [2;—1 + —2‘3;] Ifn>5
this is equal to [%]. The main theorem is if n > r 2> 4 then
i-(Ka) < max { [5(",;_%- + -%-I , 2}. The difference between
the lower and the upper bounds is at most 1.

1 Introduction

The least positive integer ¢ for which exists a {-representation of G is called
the interval number #(G). Many authors have studied the interval number,
see [1], [3], [5], [6], (7], [8], [12] and [13]. Applications of interval represen-
tation, e.g. scheduling, molecular evolution and archeology, can be found in
[2], [4] and [10]. The depth—r interval number has been studied by C. Maas
[9] and E. R. Scheinerman [11]:

Theorem 1.1 [11] The depth-2 interval number of the complete graph K,
with n > 2 is given by i2(Ky) = [n/2]. O

ARS COMBINATORIA 42(1996), pp. 107-119



Lemma 1.2 [9] Given t > r inlervals on the real line I, I5,... ,I,. If
the intersection of (r + 1) of them is always empty then there are at most
(¢ = 3r)(r — 1) pairs {I;, I;} of pairwise intersecting intervals. O

Theorem 1.3 If G has n vertices, m > %r(r —1) edges and r > 2 then:

ir(G) > ['m+ir(r—l)'|

Proof. Applying lemma 1.2 we deduce that we need at least
intervals to represent the m edges of G. Thus the depth—r interval number
has to be greater than (number of intervals)/(number of vertices) and must
be an integer. a

This lower bound for the depth—r interval number is tight, e.g. for the
complete Graph and r = 3, but there are also graphs with depth—r interval
number greater than this bound. Now it’s easy to obtain a lower bound for
the depth—r interval number of the complete graph K,,:

m+ r(r— 1)

Corollary 1.4 [11] Let K,, be the complete graph with n > r > 2. Then:

ir(Kn) 2 [22:—__11) + %1

Proof. Note that K,, has m = %n(n —1) edges and apply lemma 1.3. O

2 The main theorem and the idea

If n < r there are no interesting results about the depth—r interval number
of the K. E. R. Scheinerman [1 l] investigated the case r = 2 and showed
that for general r i.(K,) < m + 2[log, n] + 1. It is also possible to
show an exact result, when r = 3. The main theorem of this paper refers
to n > r > 3. The idea is to think that the number of intervals, which are
assigned to each vertex, is fixed. We make a distiction between two cases:
ir(Kn) £ 2inlemma 3.1 and i.(K,,) < ¢t with ¢ > 3 in lemma 3.2. It follows
that:

Theorem 2.1 Ifn >r >3 then

[-2?71—15 1 < ir(Kn)

IN

me{[36=n+3] )
{52

If n>r 41 then the upper bound is [ﬁ-{- ]— [ﬁ]
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Proof. First we show the upper bound:
By lemma 3.1 and lemma 3.2 is shown: for » > 3 and n* = (2t — 1)(r —

1) +2 that ip(Kne) < t, if t > 2. In particular t = max{[j‘,‘_—zl)-+-;- , 2}
then

]
n = max{(2[2z;—__2l—)+%] —1)(r—1)+2, 3(r—1)+2}

(2(5(’;—'_?1—)+%)—1)(r-1)+2=n

The K, is an induced subgraph of the K, as n* > n, and therefore:

v

. . n—2 1
zT(Kﬂ) S zr(Kn*) S t = maX { I’W__l) + E‘I , 2}
. = maXxX M 2
- 2(r—1) |’
Ifn > r+1 then % > %?;I_:]% =1and [%?;’_—‘1%] > 2, thus max {[76;_%_,_
%], 2} > 2. The lower bound is shown in corollary 1.4. Clearly, the
difference between the bounds is at most 1. a

Consider the case with r = 3 as fixed:

Corollary 2.2 If n > 2 then: i3(Ky) = [”T_l + -23—n] for n > 5 this is
equivalent to:

i =[2)

Proof. Let n =2 and n = 3 so clearly i3(K,) = 1. Applying theorem 2.1
to the K, we get: i3(K4) = 2. For n > 4 the upper bound of theorem 2.1
is [2£3-8] = [2]. The lower bound is [2 + & — }]. f0 < & < 3, or
n > 6, this is equal to [2]. Forn =5, [2+4& — 1] = [}] also holds . This
completes the proof and we have determined exactly the depth-3 interval
number of the complete K,,. O

To prove the lemmas, used in the proof of the main theorem, we need
some new terminology. These are presented in the next section together
with the constructions of depth—r interval representations.

3 Terminology and proofs

For integers r > 2 an r-level n—chain denotes an arrangement of n closed
intervals Iy, I,..., I, with the following properties: i) ;N I; # 8 <
(I =i €7 —=1) (1 £4,7 < n), where no intersection is a single point.

ii) The left endpoint of I; is lower than the left endpoint of I,.
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13 Is 19
I Is Ig
I Iy I7 Io

Figure 1: 3-level 10-chain

This arrangement guarantees, that every real number lies in at most r
intervals. Figure 1 shows an example.

For r > 3 let an (r — 1)-level n—chain of intervals Iy, I3, ... , I, be given.
Let k be an integer with 1 < k < n. If in the following description an
interval I, does not exist, we expand the (r — 1)-level » chain to a (r —
1)-level n*—chain and choose an n* so large, that I, exists. After the
construction we delete the additional intervals Iny1,... , In«.

We define an interval of typel(k) as a small, closed interval which in-
tersects only with Iy, Ixy1,...,I; where j = min{k + r — 1,n}. The left
endpoint of an interval of typel(k) lies between the left endpoint of Ixr—2
and the right of I;. The right endpoint of an interval of typel(k) lies be-
tween the left endpoint of I,,—; and the right of Ix;;. In Figure 2 the
interval A is an example for an interval of typel(k).

We say that a closed interval which only intersects with Iy, Ixy1,...,I;
where 5 = min{k + r — 2,n} is an interval of type2(k). An interval of
type2(k) lies between Iy and Ixir-2. Examples are the intervals B in
Figure 2.

Finaly we define an interval of type3(k) for k > 2 as a closed interval
which only intersects with Ix, Ix+1,. .. ,I; where j = min{k +r —3,n}. It
lies between Ii,,—2 and Ix_,. Examples are the intervals C in Figure 2.

A
| — 4
— | ' Tkt T
1 ' Ik 1 1 ' Ik+1'—l
I 1 ]
I l }g”g{ \ }-QHE{ Iiir_2
Ix—2 Do ' Tetr-3 |
] I )
| | 1

Figure 2: A part of a (r — 1)-level n—chain with intervals of typel(k),
type2(k) and type3(k)

N.B.: Let an (r — 1)-level n—chain Iy,...,I, be given. For 1 <k <n
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it is possible to add intervals A of typel(k), so that A;N A; =9 (1 <
i,7 < m; i # j). Additionally it is also legimate to put a finite number of
distinct intervals of type2(k + 1) between two intervals of typel(k) and of
typel(k + 1), and every real number lies within, at most, = intervals.

Finally we can place a finite number of closed, pairwise disjoint intervals
of type3(k+1) between I and Ixir—1. All of these does not intersect with
Ay and every real number lies in at most r intervals.

Let f be an interval representation with intervals described in the ab-
stract. We say I,; and I, j-represent the edge {v,w} if I, N Ly ; # 0.
Let {vy,...,v,} always denotes the vertices of the K,,. For j € IN we let
denote the j—successor of the vertex v; the vertex v with k = i 4+ j and
k <n.

To present examples for the constructions, used in the lemmas, we in-
troduce a new graphical method, to describe a t-interval representation.
Figure 3 shows two equivalent graphical illustrations. An expression under
a vertical line (D; j,... Dk, Emn, .- - Eo,p) denotes an interval of typel(-),
which intersects with the same intervals as the vertical line. An expression
between two vertical lines and above the r—level n—chain (Fy, F;) denotes
an interval of type2(-), also intersecting with intervals, which intersecting
with the part of the real line from the left to the right vertical line. Figures
4, 5 and 6 show examples of the construction, one for lemma 3.1 and two
for lemma 3.2 respectively. In this figures we use the same notations for
the intervals as in the proofs above.

D;j Dky Fy EnnEop F

H---H R R
1 I 11 I4 | ~ 1 I [ I4 |
I 1T 1 1 i ]
| I 11 I3 11 Is | l I 11 I3 11 Is |
I 11 17 1 | 1 1= 11 1
Dg‘.jEfp,ﬂ
D;c,l E;.p

Figure 3: Two equivalent illustrations

Using these preliminaries, we can now construct the depth—r interval
representations to complete the proof of our main theorem.

Lemma 3.1 Ifr€ IN, r >3 and n=3(r — 1) + 2. Then:
ir(Kn) <2

Be aware, that this is analog to Lemma 3.2 with ¢t = 2.
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By Bz By Bs B¢ By Bg Bg

R T P
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1 As 1| Az 11 An ]
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I LI | LI | [ ] 1
[ Ay 11 As 1] Ao 11 Ai3 |
— i i 11 1
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B2
B3

Figure 4: Example for i5(K14) < 2

Proof. (by construction)
Figure 4 shows an example of this construction.

step 1: We construct an (r — 1)-level n—chain of intervals A; (1 <i < n)
and assign to each vertex v; the interval A;. Hence all edges {v;,v;} with
i+1<j<i+r—2<narerepresented (1 <i<n).

step 2: Bl: Choose B; as a closed interval with its left endpoint be-
tween the right endpoint of Ar_; and the left endpoint of A(-_1); the right
endpoint of B; lies between the left endpoint of As(-_1);1 and the right
endpoint of A,,;. Bj intersects with the same intervals of the (r — 1)-level
n—chain as an interval of typel(1 + (r — 1)), but the left endpoint of B; is
lower than the left endpoint of Ag._1). For (2 < i <n—r)let B; be an
interval of type 1(i + (r — 1)).

B2: Fori =n—-r+1 = 2(r —1) + 2 choose closed intervals B; with
left endpoint between the right endpoint of A,_; and the left endpoint of
Bj; the right endpoint of B; lies between the left endpoint of B; and the
left endpoint of Ay(,_1y. B; is similar to an interval of type3(r), which
intersects additionally with Bj.

B3: For (n —r+2 < i <n—1) let B; be an interval of type2(1).

B4: B, should intersect only with 4; (1 £ ! < 2(r —1) — 1) and
with Byp_r4+1. The left endpoint of B, lies between the righthand limit
of Bp—ri2, ..., Bn—1 and the right endpoint of A,. The right endpoint of
B,, lies between the left endpoint of B,_,—; and the left endpoint of B).

We assign to each vertex v; the interval B; (1 < i < n). By this con-
struction the following edges are represented:
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(B1) For (1 < i < n) the edges {v;,v;} (i+r—1 < j < k) with
k = min{ + 2(r — 1),n} are represented.

(B2) For (r <i <2(r—1) —1) and i =1 the edges {vy(,_1)42,%:}.

(B3) For (1 < i < r—1) the edges {v;,v;} withn—r+2=2(r—1)+3 <
ji<n-1.

(B4) For (1<i<2(r—1)—1)and i =n—r+1 the edges {v;,vn}.

We assigned 2 intervals to each vertex of the K, and clearly each real

number lies in at most 2 of the intervals of the representation. As in lemma
3.2 it is possible to show, that all edges are represented. a

B, By By By By Bg By Bg Bg Bjg By Byz Bys

By
P
A3 Ci11s As Ao 12 A15
1 1 b i} 1} |
A2 C114 Ay A8 A1l A14 A1y
: : I l : J L L ] s ' L
Ay Aq A7 Alo 413 418
] L L |- ] L ] L ]
| I }
By €1,16€117 €1,1 C1,2 €1,3 C1,4 €1,5 C1,8 €1,7 C1,8 €1,9C1,10
Bs
Bg
1,11
C1,12
C1,13

Figure 5: Example for iy (K;7) <3

Lemma 3.2 Letr,t € IN,r 23, t 23 andn= (2t —1)(r — 1) + 2, then:
ir(Kn) <t

Proof. (by construction) °
Figures 5 and 6 show examples of this construction.

step 1: We construct an (r — 1)-level n—chain of intervals A; (1 < i < n)
and assign to each vertex v; the interval A;.

(A1) The edges between v; with 1 < i < n — 1 and the j-successors
(1 £ < (r —2)) are represented.

step 2: B1: For (1 < i < n—r) let B; be an interval of typel(i+(r — 1)).

B2: For(n—r+1<i<n-1)or((2t-2)(r—-1)+2<i<n-1)let
B; be an interval of type2(1).

B3: B, should intesect only with A; (1 <1 < 2(r —1) — 1) and with
Bn_rt+1. The left endpoint of B, lies between the right-most point of
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Bn_r41, -+, Bn-1 and the right endpoint of A;. The right endpoint of
B,, lies between the right endpoint of A,._; and the left endpoint of Ag(,_1).

We assign to each vertex v; the interval B;. By this construction the
following edges are represented:

(B1) For (1 £ i < n — ) the edges between v; and the j-—successors
with r —1 < j < 2(r —1). i.e. for all ¢ all edges are represented between
v; and the j-successors (r — 1 < j < 2(r — 1)) with exception of the edge
{'vn—(r—l)’ 'Un} .

(B2) For (1 < i <1 —1) the edges {wi;,v;} with (2t —2)(r —1)+2 <
i<n-1. ;

(B3) For (1 i £2(r —1) — 1) the edges {;,v.}.

step 3: We still have ¢ — 2 intervals per vertex as yet unallocated. Now
we will assign ¢ — 2 intervals to each vertex. We denote them using C;; (1 <
Il <t—-2) (1 <i<n). The index ¢ indicates the vertex, to which we will
assign this interval.

Cl:For(1<1<t—2)and (1<i<n—(+1)(r—1)—-1) let Cis be an
interval of type2(i + (I + 1){(r — 1) +1).

C2: For (1 <1 < t—2) let the next r — 1 intervals C;; with n—(I4+1)(r -
1)<i<n—(+1)(r—1)+r—-2=n—I(r —1) -1 be intervals of type2(1).
je for(1<!<t—2)and ((2A-1-2)(r—1)+2<i<(2-1-1)(r—-1)+1)
let Cy; be an interval of type2(1).

C3: For (1 <1 < t—2) let the next r — 2 intervals Cy; with i =
(2t —1—-1)(r — 1) +2+j with 0 < j <7 — 3 be of type3(3 + ), which also
intersect with B,.

C4: For 1 <! <t—-2)and (2t -O(r-1)+1 < i < n) e for
i=2t-)(r-1)+14+5with0<j<({-1)(r—-1)+1and 1 <I<t-2)
let C;; be an interval of type2(r + 7).

For (1 <1< t—2)and (1 <1< n) we assign the intervals Cy; to each
vertex v;. Hence the followin'g edges are represented:

(C1) Between v; with 1 <i < n—(I4+1)(r —1) —1 and the j-successors
with ({+1)(r—1)+1 < j < (I+2)(r—1)and (1 <! < t-2). Le. for all i the
edges between v; and the j—successors are represented by (I+1)(r—1)+1) <
F<(+2)(r-1)and (1 <lI<t-2).

As the upper bound+1 with [ = [* equals the lower bound with [ = I*+1,
all edges between v; and the j-successors 2(r — 1)+ 1 < j < ¢(r — 1)) are
represented.

(C2) For (1 < i < r—1) the edges {v;, v;} with (2t —1-2)(r—1)+2 <
j<(2t=1-1)(r—1)+1and (1 <! <t—2). Asthe lower bound with [ = I*
equals the upper bound+1 with I = I*+1, all edges between v; and v; with
((2-(t-2)-2)(r—1)+2=t(r—-1)+2<j<(A-1-1)(r—1)+1=
(2t — 2)(r — 1) + 1 are represented.
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(C38) Aninterval A, intersects with an interval of type3(3+j7) if k—r43 <
34+j5<k For(1<1<t—2) Cywithi=(2t—1—1)(r—1)+2+ and
(0 € j €7 —3) is an interval of type3(3 + j). So Ay intersects with C, ; if

i)i=(@t—1-1)(r—1)+2+jandii)0<j<r—3andiii) k—r+3 <
3+j<kie k-r<j<k=3andiv)1<i<t—-2andv)1<k<n

i) and ii) can be rephrased as i) (2t =l - 1)(r —1)+2<i < (2% -1 -
Nr-1)+2+r-3=2t-1)(r-1).

i) and iii) can be rephrased as ii) (2t —1-1)(r—1)+2+k—-r=(2t -1
(r-1)+1+k<i < (2—-1-1)(r-1)+2+k-3= (2t -1-1)(r—1)-1+k.

As imust fulfill (2t—1—-1)(r—1)+2 < iandi < (2t-1-1)(r—-1)-1+k,k
fulfills k > 3, hence i fulfills i < (2t—1)(r—1) and (2t—-1-2)(r—1)+1+k <1,
k<2r—1)—1 Thusfor 3<k <2(r—1)—1and (1 <1 <t—2) the
edges between vy and the j-successors with (2t — 1 —2)(r—-1)+1< 35 <
(2t —1—1)(r—1)—1=rn—1I(r — 1) —3 are represented if the index of these
vertices is between (2t—{—1)(r—1)+2 and (2t-{)(r—1) = n—(l-1)(r—1)-2.

Additionally the edges {vi,vn} with (2t =1 —1)(r—1)+2 <i < (2t —
I)(r—1) and (1 <l <t —2) are represented. In particular (I = 1) the edge
between v, with k = (2t —2)(r — 1) + 2 =n —r + 1 and v, is represented.

(C4) For (1 < k < n) an interval A; intersects with an interval of
type2(r +3), ifk—(r—2) <r+j<k,ie. k=2r+2<j<k—r. Be
aware that Cj;isfor (0 < j < (I—-1)(r—-1)+1)and (1 <1<t -2)
with i = (2t —1)(r — 1) + 1 + 7 an interval of type2(r + j), so Ay intersects
with C, if i) 4= (2t — )(r — 1)+ 145 i) 0 < j < (1 — 1)(r — 1) + 1 i)
k—2r4+2<j<k—-riv)1<i<t-2v)1<k<n

As0<jandj<k—-rk>r,andasi=2t-l)(r—1)+1+5<n
and k—2r+2 < j, khasto fulfill (2t -)(r—-1)+1+k—-2r4+2<n,
ie. k< (I +1)(r—1)+1. We can now reformulate condition v) to : v)
r <k < (I+1)(r—1)+1. From ii) and iii) we develop max {0, k —2r+2} <
j <min {({-1)(r—1)+1,k —r} and with i) we imply that (2t —I)(r—1)+
14+max {0, k—2r+2} <i < (2=1)(r—1)+1+min {({-1)(r—1)+1,k—r}.

To summerize, Ay, intersects with Cy;, if i) (2t —{)(r—1)+1+max {0,k —
2r+2} <i<@2-Dr-1)+14+mn{(l-1)(Fr-1)+1k—-7} =
min {n, (2t — I)(r — 1)+ 1+ k—r} = min {n, (2t — I — 1)(r — 1) + k} ii)
r<k<(+1)(r—-1)+1i)1<I<t—2

First let us consider the case r < k < 2r — 3: max {0,k —2r+2} =0
and min{n,(2t - -1)(r-1)+k} < 2t -1-1)(r-1)+2r-3 =
(2t =1+ 1)(r = 1) — 1 < n, hence condition i) is equivalent to: i) (2¢t —
Dr-1D+1<igc@-1-1)(r—1)+kie for (1 <l<t-2)and
(r <k <2r—-3=2(r—1)—1) the edges between v; and the j—successors
with j < (2t — 1 —1)(r — 1) are represented, if the index of these vertices is
greater than or equal to (2t — l)(r — 1)+ 1.
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Now consider the case 2r -2 < k< (I +1)(r—-1)+1:

max {0, k — 2r + 2} = k — 2r + 2 so condition i) is equivalent to:

DE-Dr-1)+1+k-2r+2=2t-1-2)(r-1)+1+k<i<
min{n, (2t -l —1)(r—1)+k}ie. for2r -2 <k <(l+1)(r—1)+1and
(1 £1 < t—2) the edges between v, and the j-successors with (2t — [ —
2)(r—1)+1<j < (2t -=1-1)(r — 1) are represented.

Think of k > 2r — 2 as fixed and choose I* with I*(r — 1)+ 1 < k <
(I*+1)(r —1)+1. Consequently, forall Iwith I* <1 <t-2 2r-2<k<
(l+1)(r — 1) +1, and therefore the edges between v; and the j-successors
2 -1-2)(r-1)+1<j<@2-1-1)r—-1) (* <1< t—2)are
represented. The lower bound with [ = I* is equal to the upper bound+1
with I =1* 41 and (I* <! <t—2). This implies that all edges between v,
and the j-successors with (2t — (t —2) -2} (r—1)+1=¢t(r-1)+1<35 <
(2t = I* —1)(r — 1) are represented. The ((2t — I* — 1)(r — 1))-successor of
v hasindex k4 (2 —1* = 1)(r=1) > F(r = 1)+ 1+ (2t =1 —1)(r —=1) =
(2t -1)(r—1)+1=n—1. As for 2r —2 < k < n the edges between v; and
all j—successors with 7 > ¢(r — 1) +1 are represented. By defining the type
of intervals, we used for the construction, it is clear, that each real number
lies in at most r intervals of the ¢—representation, therefore it remains to
be proved that all edges are represented by intersecting intervals:

From (A1), (B1), (C3) and (C1) we can immediately conclude, that for
(1 £ i < n) all edges between v; and the j—successorrs with 1 < j < ¢(r—1)
are represented. We will now see that the edges between the vertices v; and
j-successors with ¢(r —1)+1<j<n—iforl1<i<n-—-t(r-1)-1=
(t —=1)(r — 1) + 1 are represented:

Consider the vertices v; with 1 <7 < r —1: (C2), (B2) and (B3) imply
that the vertices between v; and v; with {(r—1)+2 < j < n are represented.

Consider the vertex v,: In (C3) we saw that for 1 < [ < ¢t — 2 the
edges between v, and the j-successors with (26 —1 —2)(r —1)+1 < j <
(2t —1—-1)(r —1) —1 are represented, if the index is greater than or equal to
(2t —1—1)(r—1)+2 and lower than or equal to (2¢t —I)(r—1). Both of these
conditions hold. Due to (C4) for 1 <! <t -2 the edges between v, and the
J-successors with j < (2t —1—1)(r —1) are represented, if the index of these
vertices is greater than or equal to (2t —1)(r—1)+1 (the (2t —l—-1)(r—1))-
successor fulfill this). To summerize it is shown that the edges between v,
and the j-successors (2t — I - 2)(r —1)+1 < j < (2t -1 —1)(r — 1), ie.
(2t—(t—2)-2)(r—1)+1 = t(r—1)+1 < j < (2t—-1-1)(r—1) = (2t=2)(r-1)
are represented. The ((2¢t — 2)(r — 1))-successor of vertex v, is vy,—;. Due
to (B3) the edge {v,,v,} is also represented.

Consider the vertices v; with 7 +1 < ¢ < 2(r — 1) — 1: In (C3) we saw,
that for 1 < I <t — 2 the edges between »; and the j—successors with
(2t —-1-2)(r—1)+1<j < (2 —1—-1)(r —1) — 1 are represented, if the
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index is greater than or equal to (2t — I — 1)(r — 1) + 2 and lower or equal
to (2t — I)(r — 1). Due to (C4) for 1 <! <t — 2 the edges between v; and
the j-successors with j < (2t — ! — 1)(r — 1) are represented, if the index
of these vertices is greater or equal to (2¢ — I)(r — 1) + 1 (this is held by
the ((2t — I — 1)(r — 1) — 1)-successors). Therefore the edges between v;
and the j-successors (2t -1 —2)(r—1)+1<j< (2t -1-1)(r—1),ie.
(2t=(t-2)—-2)(r-1)+1 = t(r-1)+1 < j < (2t-1-1)(r-1) = (2t-2)(r-1)
are represented. The index of the ((2t — 2)(r —1))-successors of the vertices
v; are greater than (2t — 2)(r —1) + r + 1 = n. Hence, all edges, which
incident with the vertices v;, are represented.

Consider the vertices »; with 2(r — 1) < i: From (C4) it immediately
follows that the edges between v; and the j—successors with j > ¢(r—1)+1
are represented.

Now we have shown, that all edges of the K, are represented by intersect-
ing intervals. To each vertex ¢ intervals are assigned and this representation
has depth r. O
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