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ABSTRACT. A rooted graph is a pair (G, z), where G is a simple
undirected graph and z € V(G). If G is rooted at z, its k-th
rotation number hx(G,z) is the minimum number of edges in a
graph F of order |G| 4 k such that for every v € V(F') we can
find a copy of G in F with the root vertex x at v; any such F of
size hi(G, ) is called a minimal graph. In this paper we prove
that if (G, z) is a rooted graph with dg(z) = d then
= lim 1(G:2)
p(G,z) = lim ==

exists and satisfies d/2 < p(G,z) < d, where p(G, z) is termed
the rotation index of (G, z). We obtain the precise value of this
parameter for several classes of rooted graphs and describe the
asymptotic behaviour of corresponding minimal graphs.

1 Introduction

A rooted graph is a pair (G, z), where G is an undirected graph without
loops or multiple edges, and z is any vertex of G. If (G,z) and (F,y)
are rooted graphs, then (G, z) is a rooted subgraph of (F,y) if there is an
injection f from V(G) to V(F) such that f(z) = y and f(a)f(b) € E(F)
whenever ab € E(G). This property is denoted by (G, z) < (F,y); we call
(G, z) a homogeneous rooted subgraph of (F,y) if (G,z) < (F,y) for each
y € V(F), and write (G,z) < F.

Let k be a non-negative integer. The k-th rotation number hi(G, ) is the
smallest number of edges in a graph F of order |G|+k such that (G,z) < F.
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Thus informally, the parameter hx(G,z) is the minimum size of a graph of
order |G|+ k such that for every v € V(F) we can find a copy of G in F with
the root vertex z at v. Following the convention of [3], [9]-[11], any graph
F of order |G|+ k with the property (G,z) < F is called a feasible graph for
hi(G,z). A feasible graph of minimum size is termed a minimal graph for
hi(G, z), whilst the complement of a minimal graph is an eziremal graph
for hi(G, z).

Note that when k = 0 the definition given becomes that of the rotation
number (in which case we abbreviate ko(G,z) to h(G,z)), which was in-
troduced in [5] and determined for various different types of graphs in (1],
(2], [4], [6]-[12]. Generalized rotation numbers were introduced in [3} and
calculated for complete bipartite graphs G = Kn » with n > r+ k and root
z in the vertex class of order n, thereby extending theorems of [1], [9], [10].

As indicated above, previous research in this area has focussed upon
bounding k«(G,z) for specific types of rooted graphs, and classifying the
associated minimal graphs (or the complementary extremal graphs), for
values of k < |G|. However, if k takes values outside this range, then
in some cases we can expect the behaviour of hi(G,z), and the related
minimal graphs, to differ considerably from that described in earlier work.
For instance, if (G, z) is connected and k < |G|, then any minimal graph
for he(G,x) is connected also, as each vertex therein must appear in a
subgraph isomorphic to G. Evidently the same argument does not apply
for k > |G|, an observation which prompted the current investigation, since
it suggests that for larger k there may be disconnected minimal graphs for
hg (G, :C).

The aim of this paper is to examine the growth of hx(G,x) as k — oo for
any rooted graph (G, z). In the next section we obtain general upper and
lower bounds for the parameter

p(G,z) = lim

k—ro0

he(G, x)
—%

We term this quantity the rotation indez of (G, z), and illustrate our study
by computing the exact value of this parameter for several types of rooted
graphs featured in related papers (Theorems 4-7). The constructive nature
of the proof techniques yields structural information about the correspond-
ing minimal graphs.

2 General Results

Let (G, z) be a rooted graph. In this section we prove a basic result (The-
orem 3) which describes the asymptotic behaviour of hx(G, ). Our proofs
are achieved via an examination of the properties of feasible graphs for
hi(G,z). We start with the following elementary lemma.
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Lemma 1. If H is any feasible graph, then for all k > |H| - |G|,

e(H)

<
he(G,z) € a+ k——= ]

for some constant «.

Proof: Suppose H is feasible. For each i =1,...,|H|—1 choose a further
feasible graph F; of order |H| + i, and let Fo = H. For k > [H| - |G|, we
have |G| + k = q|H| + i, where ¢ > 1 and 0 < i < |H| — 1. The graph
F which is the disjoint union of F; and q — 1 copies of H is feasible for
hi(G, z), and so

hi(G,z) < e(F)

— e(F) + (g — 1)e(H)

g [(GIER =)

=e(F)+ [—|H| 1] e(H)
e(H) e(H)
e

<e(F)+|G|

e(H)
|H|

e(H)
|H|

Corollary 2. Let H be a feasible graph for hi(G, z); then

he(G,z) _ e(H)
FOSTED

= max{e(Fi)} + G|

lim sup
k—o0

Proof: It is easily seen from Lemma 1 that hx(G,z)/k < a/k+e(H)/|H|,
which implies the result. a

Theorem 3. Let (G,z) be a rooted graph with dg(x) = d; then the
rotation index (G
p(G,z) = lim he(G,z)
k—ro0 k

exists and satisfies d/2 < p(G,z) < d.

Proof: Clearly limg_,o0inf h(G,z)/k = limg_,o0 inf hi(G, z)/ (|G| + k).
Note that if ¢ > limg_,co inf hx(G, z)/(|G|+ k) then there is a feasible
graph H with e(H)/|H| < . By Corollary 2, we have limg_,o sup hi(G, z)/k
< e(H)/|H| < %, so limg_,0 sup hi(G, z)/k < limg_,o0 inf he(G, z)/k and
hence the limit exists.

Now if H is feasible, each vertex has degree at least d, so e(H) > (|G| +
k)d/2, and thus p(G,z) > d/2. On the other hand, if H is feasible for
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hi(G, z) then we can construct a graph H'’ which is feasible for hx+1(G, z),
with e(H’) = e(H) + d, as follows. Choose from H a rooted subgraph
(G',z') isomorphic to (G, z), then let V(H') = V(H)U {¢'} and E(H') =
E(H) U {vv';v € Tg/(z')}. Obviously H’' is feasible, and by induction
hk(G: .’E) < hO(G) I) + kd! so p(Ga I) < d. a

3 Particular Examples

The general upper and lower bounds for p(G, z) obtained in Theorem 3 are
employed heavily in this section, where we focus on particular classes of
rooted graphs from the references, and determine the exact values of the
associated rotation indices.

Our proof strategy involves deriving a lower bound for the size of any
feasible graph for hx(G, z), and then citing one with precisely this number
of edges (or one with size tending asymptotically to this number). The first
example arose from work of [9] and [10].

Theorem 4. If G = K, ,, where n < r and z is any vertex of the n-set,
then ;
p(G,z) = 2

Proof: Each vertex of a feasible graph for hi(G, =) has degree at least r, so
by Theorem 3 we have p(G, z) > r/2. In addition the graph K, is feasible
for hy—n(G, z), so

e(Kre) T

< AN
p(G,z) < Korl ~ 2

which proves the result. a
The rooted graphs of Theorem 5 were investigated in [7].

Theorem 5. If G = Ky , UK}y, where n > m is even and z is the centre
of Ky, then

n
p(G, .'B) = E

Proof: Each vertex of a feasible graph for hx(G, z) has degree at least n,
so Theorem 3 implies p(G, z) > n/2.

By Theorem 2.1.1 from (7], h(G,z) = n(n + m +2)/2. An example of
a corresponding minimal graph H is the n-regular graph with vertex set
V ={0,1,...,n+m+ 1} and edge set

E={iji-2<ji<i+3}

with addition mod(n+m+2). Denote the closed neighbourhood of a vertex
i€ Vby T(i) = {i}u{j € V;ij € F}, and write H[X] for the subgraph of
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H induced by X C V. To see that H is feasible for h(G, ), observe that
H[T(3)] contains a copy of K ,, centred at i, whilst H[V — I'(i)] contains
a copy of Ky, centred at i + [(n+m+2)/2]. We have |H|=n+m+2
and e(H) = n(n +m+2)/2, so

e(H) _
4|

and the theorem is proved. g

p(G,z) <

n
21

It is a straightforward matter to adapt the proof of Theorem 5 to yield a
similar result for the case when n is odd. The next theorem extends work
on rotation numbers from [8].

Theorem 6. If G = C3UC,_3 (n > 6) and z is a vertex of Cs, then
PG z)=1.

Proof: Each vertex of a feasible graph for hx(G, =) has degree at least two,
so p(G,z) > 1 by Theorem 3. Furthermore, it is clear that we can create
a feasible graph for h4(G, z) from the disjoint union of a feasible graph for
h(G, z) and a feasible graph for hix_3(Cs, z).

Now any minimal graph for h(G,z) has at most (3n + 4)/2 edges (see
[8], Theorems 1-5). For example, if n = 0 (mod 6) then we can construct
a minimal graph H of size 3n/2 as follows. Take a set of m = n/3 vertices
{0,...,m —1}, and construct a 3-regular graph by adding edges

{0(m/2)}u{i(m —i); 1 <i<m/2-1}U{i(i +1)( mod m); 0 <i<m—1}.

Finally replace each vertex with a C3 such that each vertex therein is adje-
cent to a different neighbouring edge of the original, so the resultant graph
H is 3-regular and thus of the required size. To see that H is feasible for
h(G, ), each vertex appears in a C3 corresponding to one of the original
m vertices, whilst it is easily checked that in all cases the graph induced on
the remaining n — 3 vertices is hamiltonian.

Also, it is obvious that any minimal graph for k;_3(Cs, x) has size k if
k = 0 (mod 3) and size k + 1 otherwise. Writing k =3a+ 8 (0 < 8 <2),
the graph comprising the disjoint union of (& — 1) C3 and a minimal graph
for hg(Cs,z) attains this bound. Hence we have

(Bn+4)/2+(k+1)
n+k
which achieves the result. O

It should be apparent that Theorem 6 can be generalized to any rooted
graph of the type G = C3UGy—3 (n fixed, n > 6), where G,,_3 is any graph

p(G: I) < lim =1,
k—o0
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of order n — 3 and z is a vertex of Cs. For it is always possible to form
a feasible graph for hx(G,z) from the disjoint union of a minimal graph
for h(G,z) and a minimal graph for hx_3(C3,z). Since K, is feasible for
h(G, z) for any rooted graph (G, z) of order n, then

() +k+1

1<p(G,z) < lim ey

=1.
In contrast to the examples above, our final class of rooted graphs (G, z)
with dg(z) = d satisfy p(G, z) > d/2; they were studied in [3].

Theorem 7. If G = Ky, , where n > r and z is any vertex of the n-set,
then r
p(G,z)=r (1 - %) .

Proof: Let H be a feasible graph for hx(G,z). Consider every copy of
K, contained by H as a subgraph, and denote by S the set of vertices of
H which appear in at least one of the independent r-sets. Write s = |S|.
We proceed by deriving two different lower bounds for e(H).

Each vertex of S has degree at least n, whilst each vertex of V(H) — S
has degree at least r, whence

1
e(H) ng +(n+r+k—2s) ; = a[s(n—r)+r(n+r+k)] = f1(s).
In addition, each vertex of S has degree at least r in S, whilst those of

V(H) — S have at least r neighbours in S, so
e(H) 25%+(n+r+k—s)r = [2(n+r+k) — 5] = fa(s).

Therefore e(H) > min, max {f1(s), f2(s)}. Since the minimum occurs when
f1(8) = fa(s), eliminating s between these two functions gives ne(H) >
r(2n—r)(n+r+k)/2,s0 e(H)/(n+7+ k) > 7(1 —7/2n) and

r
p(G)x) Z T (1 - %) .
We establish equality for this last lower bound by constructing the fol-
lowing feasible graph H*. Let k=n—r. Let Vbeasetofn+r+k=2n
vertices, and for disjoint sets X,Y C V, let Kxy denote the complete
bipartite graph with independent sets X and Y. To form H*, choose
N1, N2 C V such that [Ny| = |[N2] = n and V = N1y U N2. Then take
Ry CV — N; C Ny with |R1| =r,and R, CV — N; C N; with |R2| =7,
then V(H*) =V and

E(H*) = KNy, U KNy~ Ry Ry = KNa,Ry U KNy —Ro Ry -
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We have |H*| = 2n and e(H*) =r(2n —7), so

which completes the proof. a

4 Concluding Remarks

1. The proof of Lemma 1 shows that if hx« (G, z)/(|G| + k*) = p(G, z) for
some finite integer k*, then for k > k*, writing |G| + k = o(|G| + k*) + 8
(0 < B < |G|+ k* — 1), we can construct a feasible graph for hy(G,z)
from the disjoint union of & — 1 copies of a minimal graph for h.(G,x)
and a minimal graph for hiv4+s(G,z). Clearly in the case 8 = 0 this
is simply o disjoint copies of a minimal graph for hy.(G,x), which satis-
fies hi (G, ) /(|G| + k) = ahi+ (G, z)/ (|G| + k*) = p(G, ) and is therefore
minimal. Applying this observation to examples from Section 3 indicates
the asymptotic behaviour of corresponding minimal graphs for hx(G, ).

2. In the light of Theorem 7, a natural question to ask is whether there
are other obvious examples of rooted graphs (G, z) with dg(z) = d satis-
fying p(G,z) > d/2. Our examination of related papers has failed to yield
any. It remains an interesting open problem to find classes of rooted graphs
with this property.
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