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ABSTRACT. A solution of Dudeney’s round table problem is
given when = is as follows:

(i) n =pg + 1, where p and q are odd primes.

(ii) n = p° + 1, where p is an odd prime.

(iii) n = p°¢’ + 1, where p and q are distinct odd primes satis-
fying p > 5 and ¢ > 11, and e and f are natural numbers.

1 Introduction

In 1905, Dudeney [2, problemi 273) proposed the Round Table Problem as
follows:

“Seat the same n persons at a round table on (n — 1)(n — 2)/2 occasions
so that no person shall ever have the same two neighbours twice. This is,
of course, equivalent to saying that every person must sit once, and only
once, between every possible pair.”
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The problem proposed by Dudeney is equivalent to asking for a set of
Hamilton cycles in the complete graph K, with the property that every
path of length two (2-path) lies on exactly one of the cycles. We call such
a set of cycles in K, a Dudeney set in K, and denote it by D(n). Clearly
|D(n)| = (n—1)(n — 2)/2.

A Dudeney set in K, has been constructed when n=p+ 1 (p is prime),
n = 2p (p is prime), n = p* + 1 (p is prime), n = p+ 2 (p is prime and 2
is a generator of the multiplicative subgroup of GF(p)), and some sporadic
cases: n = 11,19, 23,43 [1,3,5,6]. It is also known that if there is a Dudeney
set in Ky41, then there is a Dudeney set in Kz, where n > 2 [3].

In this paper, we construct a Dudeney set in K., where either
(i) n = pg+ 1, where p and g are odd primes,

(ii) n = p® + 1, where p is an odd prime and e is a natural number, or
(iii) » = p°¢/ + 1, where p and g are distinct odd primes satisfying p > 5
and ¢ > 11, and e and f are patural numbers.

We note that Dudeney sets in K,,, where n = p° + 1, are constructed in
the above (ii) and [6] by different methods.

After we submitted this paper, a Dudeney set in K,, where n is even,
has been constructed in [4] by using the above (ii).

2 Preliminaries
Let p and ¢ be odd prime numbers and e and f be natural numbers. Put
n = p°¢f +1 = m + 1. We denote by K, = (V, E) the complete graph on
n vertices, where V = {0, 1,2, ...,m — 1} U {o0} = Zp, U {00} is the vertex
set (Zm is the set of integers modulo m), and E = {{a,b}|a,b € V,a #
b (mod m)} is the edge set.

For each integer «, 0 < £ < m — 1, we define the 1-factor:

F = {{a,b} € E | a+b= 2z (mod m)} U {{z, 00}}.

We consider the cycle structure of Fo U Fz (1 < z <m —1). The following
lemma is easy to prove.

2.1 Lemma([7],p168)
(1) If (z,m) = 1, then Fo U F; is a Hamilton cycle of Km+1.
(2) If (x,m) = my # 1, then, putting ma = m/m,, the cycle siructure of
- FgUF; is . .
FoUFz=CoU01UCQU-~-UC(ml_1)/2, ]

where the length of Co is mz+ 1 and the length of C; (1 <i < (my —1)/2)
is 2ma.
Using the notation of Lemma 2.1 it is not difficult to see that

V(Co) = {a € V | a =0 (mod m;)} U {oco}



and that we may choose C; so that
V(Ci)={a€eV | a= +i (mod m;)}.

Let V; = V(C;), 0 < i < (m; — 1)/2. For convenience, we extend the
subscripts of C and V to all integers:

C; =C;j (if i+ j =m,), Citrm, = C; (for any integer k),
Vi=V; (if i+ j =mi), Vigrm, =V; (for any integer k).

We next explain what we mean by exchanging edges between two 1-
factors. Let H; and H; be 1-factors of K, such that Hy U H, is not
hamiltonian. Let Hy U H have cycle structure:

H, UH2=CaUCpUC.,U---UC‘.,,

and let C be the union of a proper subset of {C4,Cg,C,,...,C.,}; that is,
C is the union of some of the cycles of H; U H,. We exchange edges of H;
and H; via C to obtain the two new 1-factors H] and Hj:

Hi=(H\C)U(HaNC) and
Hz = (H2\C)U(H.NnC).

3 Exchanging edges

Suppose z is an integer, (z,7) = m; # 1,and 1 < z < (m —1)/2. Then
F; U F_; is not a Hamilton cycle. This is easily seen by observing that
F: U F_; = Fp, U Fy. Thus we have the cycle structure

FUF_, =C(I)UC{U'“UC£'M1—1)/2’

where V(C;) = V(C;) = V;, using the notation of Lemma 2.1. Let k be
any integer with 1 < k < (m1 —1)/2. Let C;,C},,...,C}, be k distinct
cycles of F U F_z not containing the vertex oo; that is, not equal to C§.
Put D=Cj UC; U---UC] . We exchange edges of F, and F_, via D to

obtain the new 1-factor F;(D):
FE(D)=(Fz\D)U(F_:ND)C FUF_,.
Note that when we exchange via D we are only exchanging edges in Vi u

VLiU---UVL.

3.1 Proposition Letl1<z<(m—-1)/2, (z,m)=m; #1and1 <k <
(m1 —1)/2. Put ma = m/m,. Let D be the union of any k distinct cycles



of Fz U F_; not containing the vertez oo. If an integery, 1 <y <m —1,
satisfies y = x — 4kz/m; (mod my) and (y,m,) =1, then Fz(D)UF,, is
not hamiltonian and the length of the cycle containing co is m; + 1.

Proof. Note that {co,z} € F(D). We consider the cycle Co, of Fz(D)U
F,, which contains the vertex co. Thus

Coo = (00’2,2?/—2: 21,W1, 22,W2,...,2t, Wt =y:°°)

where {00, z}, {z1,w1}, {22, w2}, ..., {2, w:} € Fz(D), {z, 21}, {w1, 22},
{wa, z3}, ..., {we-1, 2}, {y, 00} € Fy, and the length of the cycle Cy is
2(t +1). We have oo,z € Vo, 21, w1 € Vo, z3,wp € Vyy,... ; in general
for 1 < j <t, z;,w; € Vaj,,. Note that to guarantee w; = y € V;, we must
have Voy, =V, or 2t = %1 (mod m,). So we can assume ¢ > (m; —1)/2.

For j,1 < j < (my — 1)/2, the vertex sets V3;, are disjoint. This follows
as if Vo N Vajy # 6,1 < i < j < (my —1)/2, then 2iy = 25y (mod m,)
or 2iy = —2jy (mod m,). Since (m4,2y) = 1, we have i = j (mod m,) or
i = —j (mod m;), which contradicts 1 < i < j < (my — 1)/2. Therefore
exactly k edges among

{z1, w1}, {22, wa}, s {Z(m1—1)/2) Wm, - 1372}
belong to F_, (as the exchange uses k cycles), and the other edges belong
to F.. Hence
Wimy-1)2 =Yy +mu(z—y) —dkz=y (mod mimsz).

Thus we have verified that ¢ = (m; —1)/2 and the length of Co is 2(t+1) =
m1+1. a

We next exchange the edges of F(D) and Fy, via the cycle Co (as defined
in the preceding proposition), to obtain the two 1-factors

F; y(D) = (Fz(D)\ Coo) U (Fy N Coo) and

F;y(D) = IFy \ Coo) U (F2(D) N Coo).
Note that {oo,y} € Fy(D) and {oo,z} € F; (D).

3.2 Proposition Let1 <z <(m-1)/2, (z;m)=m1#1andl <k <
(my —1)/2. Put ma = m/m,. Let D be the union of k distinct cycles of
F, U F__ not containing the vertex co. Let y be any integer with1 <y <
m—1, y=z—4kz/m; (mod my) and (y,m,) = 1. Then Fy U F; (D) is
a Hamilton cycle of Kiny1.

Proof. Recall that F ,(D) is obtained by exchanging the edges of F»(D)
and Fy via the cycle Co,

Coo: (00, T,2y — T = 21, W1, 22, W2, - - - Z(my1—1)/2>W(im,~1)/2 =¥ 00),



where oo,z € Vg and z;,w; € Vaiy(1 < 4 < (my — 1)/2) and the length of
Cy is my + 1.
Fy U F(D) has cycle structure

FRyUF;(D)=CqUC{U---UC, _1y/2s

where V(C}') = V;. (To see this consider Fo U F;;, FoUF_; and F,UF_;.)
We consider the cycle C of Fy U F; 5, (D) which contains the edge {co, 0}
and determine that

*

C= 100,0,2:1:,...,x,zl,...,wl,zg,...,wg,...,f(ml_l)/g,..v.,'w(,,,l_l)/z,oo)

Vo Vay Vay A
which is a Hamilton cycle (Figures 1,2,3). O
Vo Voy Vay vy
o0 o |
X 2x <

N Zm,-1)2

' ‘WZE * e o o o

w1

——— , =eeau  are edges of Fy U F.(D)

Figure 1. Fo U F;(D)



—_———, — are edges of C,,

Figure 2. C

) e are edges of Fo U Fry(D)
Figure 3. Fo U F; (D)
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4 Hamiltonicity of Fo U F;, (D)

Assuming all notation from the previous sections, we now assign the special
value of k and the cycles of D as follows. Since 1 < z < (m—1)/2, (z,m) =
my # land my = m/m;, wecanputz =im; (1 <i < (m2-1)/2,(3,m2) =
1).

Put k = (m; + (~1)(™*1/2)/4. Choose y,1 < y < m — 1 so that
y = (-1)"=1/2i (mod m,) and (y, m1) = 1. Since (i, my) = 1, (y, mp) = 1
and so (y,m) = 1. Therefore Fy U F,, is a Hamilton cycle. Put

D =C3,UCg,UCip,U---U Clak—2), (a union of k cycles).

4.1 Proposition Assuming all notation and parameters as given above,
FoU F7 (D) is a Hamilton cycle of Ky 1.

Proof. Note that F3 (D) is obtained from F,, by exchanging edges with
F.(D) via the cycle Cyo:

Cco = (00,3,2?} —T=21,W1,22,W2,...,2, W =y:°°)t

where £ = (m; —1)/2, oo,z € Vp and z,w; € Voiy(1 < i < t). By the
definition of D, we have

2y (mod m),
(-1)*2z (mod m),

Wi—1 + %
2 + Wy

fori=1,2,...,t, where wp = z. Inductively, we find

z = 2iy+(-1)'z (mod m),
=2y + (~1)'z (mod m),

w;

fori=1,é,...,t. Also
Wit1 = —2 — 2y (mod m),

fori=1,2,...,¢t — 1. Therefore, we have in Fy U Fz (D) the cycle:

C= (00, T, -z, z+ 2y1 wy, 2,
=21,  21+2y, wsy 2,

—2t—1, 2t—-1 +2?/, We, 2, P) OO),

where P is a path in Fo U F,,. The path from oo via z to z; contains all the
vertices of the cycle Css. Suppose Fp U F3,(D) is not a Hamilton cycle.
Then there exists a cycle C’ not containing any vertex of Coo- So every
edge of C’ is in Fy U F,, but this contracicts the fact that Fp U F,isa
Hamilton cycle. The proof is finished. 0



5 Construction of a Dudeney set in K,

We are now ready to construct Dudeney sets in K,,, where n = o¢f +1=
m+ 1. Put

X={z|(x,m)#1land 1<z < (m-1)/2}.

For each z € X we will specify kz,yz and D which will be used to obtain
1-factors Fy,, (D:) and F;‘y‘(D,). For each z € X, let (z,m) =m; # 1,
let m/, = m/m,, and let = ='im_, where 1 <i < (m; —1)/2.

We determine k. as

ky = (mg + (=1)™=t1/2) /4,

Substituting these values into the congruence equation of Proposition 3.1,
we obtain '
vz = (=1)™="/2; (mod m7).

In order to employ Proposition 3.1, it is necessary that, as well as satisfying
these conditions, y- be chosen so that

1<y, <m-—1, and (5.2)

(yza mz) =1. (5.3)
(Note again that (yz,m) = 1.)
Once we have determined ., we will specify D as follows:

Dz = Céyz U Céys U C{Oys U.--u C€4k=-2)y='

What remains then, is to determine y, for each z € X. (Recall that as yet
yz could take on many values.)

Let H be a subset of Z2, = Zn \ {0}. We call H a half-set modulo m
if HN(—H) = ¢ and HU (—H) = Z;,. If H is a subset of Z7, such that
Hn (—H) = ¢, then, putting Z = {1,2,...,(m —1)/2} \ (H U (-H)), we
obtain a halfset H U Z. In this situation, we say H can be extended by Z
to a half-set.

Let o be the vertex-permutation o = (0 1 2 ... m — 1)(co0), and put
T = {07 | 0 < j <m—1}. Clearly o induces a permutation of the edges of
Kum+1, and we will also denote this permutation by . When H is a set of
2-factors of K41, we define ZH = {H" | H e H,7 € }.

5.1 Theorem Assume we have an injection from X into Zy,, T = Yz,
such that y satisfies conditions (5.1), (5.2) and (5.3), X NY = ¢, where
Y = {y: | z € X}, and X UY can be eztended by Z to a half-set in Z,; so
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XUY UZ is a half-set modulo m. Put

Hi = {FoUFy.(D:)|ze X},
Hy = {RUF;, (D:)|ze X},
Hs = {FoUFz|z€Z}, and
H = HiUHUHs.

Then ©H is a Dudeney set of Hamilton cycles in K,.

Proof. All cycles of H are Hamilton by Propositions 3.2 and 4.1, and
Lemma 2.1 and hence so too are the cycles of £H. We next verify that
every 2-path of K, lies on precisely one of the cycles in TH.

Every 2-path of K, lies on exactly one cycle of

S{RUF|1<i< (m—-1)/2}.
It is not difficult to see that
HFPUF, |lweXUYUZ}=ES{RUF;|1<i<(m-1)/2}
since X UY U Z is a half-set and Fo U F; = 0®(Fp U F_;). Note that

L{RUF,|lweXUuYUuZ}
= E{RUF [ze X}UZ{FRUF, |z€ X}UZ{RUF, |zc Z)}.

Since F;(D;) is obtained from F, by exchanging edges of F, with those
of F_; in cycles C; € D of F;UF_; (Cj is given in §3) and £(C;) = X(C}),
where C; is (as given in §2) the cycle of Fo U F; on vertex set V; and C!is
the cycle of Fo U F_; on vertex set V;, we have

H{FoUFa(D;) |z€ X} =Z{RUF, |z € X}.

As Fz,. (Dz) and F;, (D;) are obtained by exchanging edges between
F,(D;) and F,_, we have

F’-':U: (D:) U F;,y, (Dx) = Fz(Dz) U F‘y:‘

Hence the 2-paths in { RUF; ,_ (D7), FUF;, (D)} are the same as those
in {FoUF;(D;), RUF,_}. So the 2-paths in H; UH> are the same as those
in {FRUF;(D:) | ze X}U{RUF,, |z € X}. Therefore every 2-path lies
on exactly one cycle of ZH. ]

The remainder of the paper will be concerned with showing that the
required conditions of Theorem 5.1 can be met whenever n = p%¢/ + 1 and
n satisfies one of conditions (i), (ii) and (iii) as described in the introduction.
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6 Determination of y, when n =pg+1
Let n=m+1=pg+1. Suppose p=gq. Let z € X. Then z = ip
(1 <i < (p—1)/2). We determine

_J i if p=1 (mod 4), and
Y==\ p—i ifp=3 (mod 4).

Assume p < q. For any z € X, we determine y. as follows:

Hz=ip(1<i<(g-1)/2).
If p=1 (mod 4), put

B if (i,p) = 1, and (6.1)
Y= (p—1)g+i  otherwise. (6.2)

If p = 3 (mod 4), put

_J pg—-i if (i,p) =1, and (6.3)
Y2=91 q-i otherwise. (6.4)

([i)z=ig (1 <i<(p-1)/2).
If g=1 (mod 4), put

y: =p(g—1)/2+1. (6.5)
Then y, = i (mod p) and (yz,q) = 1. If ¢ = 3 (mod 4), put
vz =p(g+1)/2-1i. (6.6)

Then y; = —i (mod p) and (yz,q) = 1.

We put Y = {yz | z € X} as before.

6.1 Proposition The set X UY can be eztended to a half-set modulo
m, that is, there exists a subset Z of Zy such that XUY U Z is a half-set
modulo m.

Proof. It is trivial to see that X UY = ¢, and that X UY can be
extended a half-set if and only if (X UY)N(—(XUY)) = ¢. So we will
show (X UY)N(—=(XUY)) = ¢. Observe that (XUY)N(=(XUY)) =
(XN (=X)UXN(=Y)U(YN(=X))U(YN(-Y)). Since X C [1,(pg—1)/2],
we have X N(—X) = ¢. It is clear that X N(-Y) =Y N(—X) = ¢ because
(yz,m) = 1. Thus we only have to show Y N (-Y) = ¢. When p = g, this
is trivial.

We consider p < ¢q. The elements of Y determined by (6.1) and (6.2)
liein Ay = [1,(¢—1)/2]U[(p — 1)g +1,(p — 1)g + (g — 1)/2]; so clearly
A; N (—A;) = ¢. Those determined by (6.3) and (6.4) lie in Az = [(g+
1)/2,9 — 1)U [pq — (g — 1)/2,pq — 1]; so clearly A2 N (—Az2) = ¢. Those
determined by (6.5) lie in J; = [p(¢—1)/2+1, (pg—1)/2]. Those determined
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by (6.6) lie in J2 = [(pg+ 1)/2,p(q + 1)/2 — 1]. Cleary J; N (—J;) = ¢ and
AinJ;=¢(i=1,235=12). If p=1 (mod 4) and g = 1 (mod 4), we
have Y C A ;U J;. If p=1 (mod 4) and ¢ = 3 (mod 4), Y C AjU J,. If
p=3(mod 4) and g =1 (mod 4), Y C A, UJ;. If p =3 (mod 4) and
g=3(mod4), Y C AU J,. It is easy to check that Y N (-Y) = ¢. This
completes the proof. O
The following theorem is gbtained from Theorem 5.1 and Proposition
6.1.
’ 6.2 Theorem Let p and q be odd primes with p < q. Put n = pg+ 1.
Then there exists a Dudeney set of K,,.

7 Determination of y, when n =p°+1

Let n =m+1=p°+ 1, where p is an odd prime and e > 2. In this case,
for any z € X, we can put = = ip, where 1 < i < (p°! —1)/2. For each ¢
satisfying 1 <t <e-1, put

Xe={zeX|z=14'(p)=1}.
Then X can be partitioned as X = X; UXaU---U X,_;. Put ap = 0, and
ag=p* ' +p°24...+p° (1 < t < e—1). Define the disjoint intervals

I = [a;_1,a¢) (1 <t < e—1), and note that Il =pt(1<t<e-1).
For any z = ip* € X, (1 <t < e — 1), determine y, € I, as follows:

_J a1+i ifp*=1 (mod 4); and
¥2=1 ax —i if p* = 3 (mod 4).

Clearly (yz,p') =1 and

_Ji (mod p*~*)  if p* =1 (mod 4), and
¥==1 i (mod p*) if p* =3 (mod 4).

Putting Y = {y, | z € X}, we have Y C [0, (p® — 1)/2] because a._; <
(p® —1)/2. Since X,Y C [0,(p®* —1)/2] and X NY 3 ¢, X UY can be
extended a half-set modulo p°. This yields a proof of Theorem 7.1.

7.1 Theorem Let p be an odd prime and e be an integer, € > 2. Put
n =p°®+ 1. Then there ezists a Dudeney set of Hamilton cycles in K,,.

8 Determination of y, when n = p%¢/ +1
Let n = m+1 = pq/ +1, where p and g are distinct odd primes, p < ¢, and
e and f are natural numbers. Put X = {z | (z,m) # 1,1 < z < (m—1)/2}
as before.

8.1 Lemma Letn=m+1=p° + 1, where p and q are odd primes,
P<gq, andz € X. Put m; = (z,m) # 1, mgy = m/m, and = = im,, where
1 <i < (m2—1)/2. If y satisfies
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(1) y = i (mod mgp) or y = —i (mod mz), and

(2) (y,m1) #1,
then (y + mg,my) = 1.

Proof. First, (i,mz) = 1 by the definition of m;, so (y,m2) = 1. Put
d = (y,m;) # 1. Then (d,mp) = 1. Since z € X, we have mp # 1. Thus
d=p>ord=g¢* (a>1). Assume d = p®. Since p | y (p divides y) and
p ] ma, we have p [ y +mgo and ma = ¢® (8 > 1). Since (y,m2) =1, we
have ¢ /y. So ¢ [ ¥y + ma. Therefore (y + m2,m;) = 1. An analogous
argument holds in the case d = ¢*. a

For any integer m; such that m;|m and m; # 1,m, put
X(my)={zx e X | (z,m) =my}.
Then
X(ml) = {z €X |z =imy, (z,m/m1) = 1}
Define three disjoint subsets of X:
X1 =X(p);
X3 = X(q); and
X3 =X\ (X]U X3).
And define three disjoint intervals:
Ii = [0, cl) U [(p - l)clipeqf)i

where ¢; = p*~1¢/;

I = [((g - 1)/2)ez2 — (2 = 1)/2, (g + 1)/2)c2 + (2 — 1)/2],
where ¢ = p®q/~!; and
I;=[0,(m-1)/2]\(I]U I).
Clearly X = |J  X(ma), |[jnZ| =2¢,, |5NZ]| = 2c; and [N Z] =

mp|m
my#1,m,pq

(m —1)/2—c1 —c2 + 1, where Z is the set of all integers.

8.2 Lemma Let m = p°¢f, where p and q are odd primes satisfying
p<qp>5andq>1l, and e and f are natural numbers. Let S be
the sum of all divisors of m which are not equal to 1,p°¢,p*"1¢/,p%¢/~1.
Then 2S < |I3 N Z|.

Proof. Since the sum of all divisors of m is (1+p+p®+...4+p°)(1+q+
@+ ...+ ¢f) = (pet! = 1)(¢/*! = 1)/(p — 1)(g — 1), we have to show that

2+ - 1)’ - 1)/(p—-1)(g - 1)) -1 —p°¢ —p* ¢/ —p°¢/'}
<@ -1)/2-p°'¢/ —p°¢/ T + 1.

14



Therefore we have to show that
»*"'¢/1g9(p,q) + h(p,q) 2 0,

where
9(p,q) =p%¢* — 3p’q— 3pg®> + pg— 2*> — 26 + 2p +2g

and
h(p,q) =4p°*! +4¢’* + 3pg—3p — 3¢+ 1.

For any p and q with 3 < p < g, we have h(p, q) > 0. In the equation
9(p, q) = 17¢%(p*—72p/17—48/17) /24+Tp*(q* 729/ 7T—48/7) | 24-+pg+2p+2q

the first term is at least 0 when p > 5 and the second term is at least 0
when ¢ > 11, and so the lemma follows. a

For any z = ip € X{, we have 1 < i < (¢; — 1)/2. We determine y, € I
as follows. If p =1 (mod 4), then

_ [ ’ if (i,p) =1, and
b= = (p—1)cy +1 otherwise.

(Note that if e > 2, then (i,p) = 1, and if e = 1 and (i,p) # 1, then
((p —1)e1 +14,p) = 1.) If p=3 (mod 4), then

= peq! -1 if (iap) = lv and
Y= = ¢ —1 otherwise.

For any z = ig € X3, we have 1 < i < (c; —1)/2. We determine y, € I}
as follows. If ¢ =1 (mod 4), then

ve = { ((g—1)/2)e +i if (9 - 1)/2)ez +4,9) =1, and
Tl ((@+1)/2)cp +14 otherwise.

If ¢ = 3 (mod 4), then

ve = { ((g—1)/2)cp — i if (((¢ - 1)/2)c2 —i,9) =1, and
z ((g+1)/2)c —i otherwise.

For any z = im; € X(m,) with m; # 1,m,p, q, there exists y, satisfying
conditions 5.1, 5.2 and 5.3 in any given interval [a, b)(C [0, (m —1)/2]) with
length 2m3, where mg = m/m;, and a and b are integers. In fact, from
Lemma 8.1, for all such z, there exists an integer y € [a, b) such that

_Ji (mod my) if m; =1 (mod 4), and
Y —i  (mod my) if m; = 3 (mod 4),

15



and (y,m;) = 1.
Therefore to choose y, for'all z € X3 it is sufficient to use an interval
of length E 9ms, where mg runs all divisors of m except m,1,p°"!¢f and

ma
p°q/ 1 (because m; runs all divesors of m except 1,m, p and g). Lemma 8.2
says that Z2mz <'|I§], so we can determine y for all z € X3 satisfying

ma
Y4 C I, where Y4 = {yz | z € X3}.
It is clear that XNY = ¢ and X UY can be extended a half-set modulo
m. This and Theorem 5.1 enables us to prove the following theorem.

8.8 Theorem Let p and q be distinct odd primes satisfyingp < ¢,p 2 5

and q > 11, and let e and f be natural numbers. Puln = p°¢’ + 1. Then
there exists a Dudeney set of Hamilton cycles in K.
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