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ABSTRACT. A balanced tournament design, BT'D(n), defined
on a 2n-set V, is an arrangement of the (22") distinct unordered
pairs of the elements of V into an n x 2n — 1 array such that
(1) every element of V is contained in precisely one cell of each
column, and (2) every element of V is contained in at most
two cells of each row. If we can partition the columns of a
BTD(n) defined on V into three sets Cy, Ca, Cs of sizes 1,
n —1, n —1 respectively so that the columns in C; U C, form
a Howell design of side n and order 2n, an H (n,2n), and the
columns in C,UC;3 form an H(n,2n), then the BT D(n) is called
partitionable. We denote a partitioned balanced tournament
design of side n by PBTD(n). The existence of these designs
has been determined except for seven possible exceptions. In
this note, we describe constructions for four of these designs.
This completes the spectrum of PBT D(n) for n even.

1 Introduction

A balanced tournament design, BT D(n), defined on a 2n-set V, is an ar-
rangement of the (2;) distinct unordered pairs of the elements of V into an
n X 2n — 1 array such that

(1) every element of V is contained in precisely one cell of each column,
and

(2) every element of V is contained in at most two cells of each row.

A BTD(r) is a generalized balanced tournament design with block size
k =2, a GBTD(n,2), 3]. The existence of balanced tournament designs
was established in 1977 by Schellenberg, Van Rees and Vanstone.

Theorem 1.1 [12]. For n a positive integer, n # 2, there exists a BTD(n).
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Balanced tournament designs with additional structure and generalized
balanced tournament designs have been investigated extensively in the past
few years. A survey of results on balanced tournament designs can be found
in [9]. More recent results on generalized balanced tournament designs
can be found in [3, 4, 5]. Generalized balanced tournament designs are
of interest because of their close connections with several other types of
combinatorial designs, see for example [3].

In this note, we are interested in partitioned balanced tournament de-
signs. We will use Howell designs to define partitioned balanced tournament
designs.

Let V be a set of 2n elements. A Howell design of side s and order 2n,
or more briefly an H(s,2n), is an s x s array in which each cell is either
empty or contains an unordered pair of elements of V' such that

(1) each row and each column is Latin (that is, every element of V is in
precisely one cell of each row and column) and

(2) every unordered pair of elements of V' is in at most one cell of the
array.

It follows immediately from the definition of an H(s,2n) that » < s <
2n—1.

If we can partition the columns of a BT D(n) defined on V into three
sets C;, Cs, Cs of sizes 1, n—1, n — 1 respectively so that the columns in
C,UC; form an H(n,2n) and the columns in C,UC3 form an H (n,2n), then
the BT D(n) is called partitionable. We denote the design by PBTD(n).
Partitioned balanced tournament designs are related to both Room squares,
[14], and the even sided analogue of Room squares, [8]. They can be used
to provide schedules of play for round robin tournaments which balance the
effects of court and round assignments.

Partitioned balanced tournament designs were introduced by D.R. Stin-
son in [14], and he conjectured that PBTD(n) exist for all » > 5. In a

series of papers, this conjecture was settled with 7 possible exceptions for
n.

Theorem 1.2 [6, 7, 8, 2]. Let n be a positive integer,n 2> 5. There exists a
PBT D(n) (or a PGBT D(n,2)) except possibly for n € {9, 11, 15, 26, 28, 34,
4}.

The purpose of this note is to describe constructions for PBT D(n) for

n € {26,28,34,44}. This will complete the spectrum for PBT D(n) when
7 is even.
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2 Direct Constructions

Intransitive starters and adders can be used to construct PBTD(¢) for
€ =28 and 34. We define an intransitive starter over Z,, for a BT D(n+m)
written on the symbol set Z3, U {oo0; | i =1,...,2m}. In order to describe
the intransitive starter and adder, we need some additional notation.

Suppose n > 2m. Define

Bi= {oos,y} fori=1,...,2m
Bz,,,+.' = {zu,:r.-g} fori= 1, reey N — 2m
Rj= {u,-l,ujg} forj=1,...,m

Cj= {vjl,vjz} forj=1,...,m—l

An intransitive starter for a BT D(n+m) defined on Z,, U {001, 009,...,
©02m} is a triple (S, R, C) where S = {B; li=1,2,...,n}, R={R; |
J=12,...,m}and C={Cj|j=1,2,...,m — 1} satisfying the following
properties.

(1) J B=2ZmU{oo1,00,...,000m}

BeSUR

(2) Let Do = {O,n}. {:1:(3:‘-1 - z,-z) l 1= 1, ceey B — 2m} U {:!:(Ujl - sz) I

ji=1,...,m}u {:I:(‘Ujl —v9)|i=1,...,m~ 1} = (Z2n — Dy).

(3) n=1 (mod 2) and {£(vj1~vj2) | § =1,...,m—1}N{0,2,4,..., 2(n—

1 i

Let A= (ay,ay,...,a,) be a complete set of coset representatives of the
subgroup {0,n} in Zp,. A is called an adder for the intransitive starter

(S,R,C) if
1 n m—1
U (UB.-+a.~+€nU U c,-+en)

£=0 \i=1 j=1
is equal to the multiset
2(Zop U {o01,009,..., ooom}) — {D,-l (U] Dg,}
where D; =Dy +35,0<j<n-1.

Theorem 2.1(?). If there is an intransitive starter (S,R,C) over Z,, for
a BTD(n 4+ m) and a corresponding adder, then there is a BTD(n +m)
which is missing as a subarray a BT D(m). If there exists a BTD(m), then
there exists a BT D(n + m).

We will use the following corollary of Theorem 2.1 for PBT Ds.

Corollary 2.2 [4]. Suppose there exists an intransitive starter (S,C,R)
and a corresponding adder for a BT D(n+m) defined on Za, U{0o1, 002, . ..,
002, } With the following properties.
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(i) {:i:(ujl —‘ujz) I] = 1,2,...,m}n{0,2,4,...,2(n—1)} =0
(i) A=1{0,2,4,...,2(n — 1)}

m—1

n
(iii) | J(B: +a)U |J Ci = ZanU {o01,...,002m} — D; for some j

i=1 i=1

Then there exists a PBTD(n + m) which is missing as a subarray a
BT D(m). If there exists a PBT D(m), then there exists 8 PBT D(n +m).

Lemma 2.3.
(i) There exists a8 PBT D(28) which contains as a subarray a PBT D(5).
(ii) There exists & PBT D(34) which contains as a subarray a PBT D(T).

Proof:

(i) An intransitive starter and adder for a PBT D(234-5) defined on Z4U
{oco1,...,0010} is listed in Table 1. Since there exists a PBT D(5)
(Theorem 1.2), there exists a PBT D(28).

(i) Anintransitive starter and adder for a PBT D(27+-7) defined on Z54U
{oc01,...,0014} is listed in Table 2. Since there exists a PBTD(7)
(Theorem 1.2 or [11]), there exists a PBT.D(34).

a

Table 1
An intransitive starter and adder for a PBT D(28)

S 0,2 1,5 7,13 10,18 30,40 3,15 20,34 21,37
A 2 0 4 12 24 34 8 18
S 24,42 6,26 9,31 12,43 22,41 00,16 002,23 003,27
A 14 6 44 22 30 20 36 40
S 004, 32 ©0s, 33 006,28 07, 39 oog, 17 09, 14 0010,45
A 38 10 32 412 28 26 16
R 3536 29,38 8,25 44,19 4,11
C 41,44 26,31 16,27 20,33
Dy 0,23
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Table 2
An intransitive starter and adder for a PBTD(34)

0,2 1,5 3,9 4,12 30,40 17,29 7,21 22,38
2 4 8 10 0 6 12 14

33,51 8,28 23,45 20,44 6,32 001,10 002,11 003,25
16 52 24 22 38 18 46 28

004,53 005,24 006,26 007,35 o©0g,27 009,39 0010,52 0011,47
32 26 20 48 A 36 50 44

0012,34 ©0013,49 0014,50
40 30 42

41,42 16,31 46,37 48,13 43,14 36,19 18,15
34,33 1,8 43,32 51,10 45,24 41,18

0,27

3 Basic Frame Construction.

The case n = 26 can be done using the basic frame construction (f6]). In
order to describe this construction and the constructions in the next section,
we need several definitions.

Let V be a set of v elements. Let Gy,Gs, ... »Gm be a partition of V
into m sets. A {G,,Gy,...,Gnp}-frame F with block size k, index A and
latinicity 4 is a square array of side v which satisfies the properties listed
below. We index the rows and columns of F by the elements of V.

(1) Each cell is either empty or contains a k-subset of V.
(2) Let F; be the subsquare of F indexed by the elements of G;. Fiis

empty for i = 1,2,...,m. (The F;’s are often.called the holes of the
frame.)

(3) Let j € G;. Row j of F contains each element of V — G; p times and

column j of F contains each element of V — G; p times.

(4) The collection of blocks obtained from the nonempty cells of F is a

GDD(v; k;G1,Gya,...,Gm;0,)). (See [16] for the notation for group
divisible designs (GDD).)

If there is a {G1,Ga,...,Gn}-frame H with block size k, index A and
latinicity u such that
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(1) H;=F, fori=1,2,...,m and

m
(2) H can be written in the empty cells of F' — U E,

i=1

then H is called the complement of F and denoted by F. If a complement
of F exists, we call F a complementary {G;,G3,...,Gm}-frame. A com-
plementary {G1,Ga,...,Gm}-frame F is said to be skew if at most one of
the cells (,7) and (5, 1) (i # j) is nonempty.

We will use the following notation for frames. If |Gi| = h for i =
1,2,...,m, wecall F a (u, \; k, m, h)-frame. The typeofa {G1,Ga,...,Gm}-
frame is the multi-set {|G,],|Gal,--..,|Gm|}. We will say that a frame has
type t}1¢3? ... ty¢ if there are u; Gj’s of cardinality ¢;, 1 < ¢ < £. In this
note, we will only use frames where = A = 1 and k = 2. These frames are
usually called Room frames. For notational convenience, we will denote a
Room frame simply by its type or partitioning ({G1,G3,...,Gm})-

The frame constructions for BT Ds also use sets of mutually orthogonal
partitioned incomplete Latin squares (OPILs). Let P = {5),5,...,5m}
be a partition of a set S (m > 2). A partitioned incomplete Latin square,
having partition P, is an |S| x |S| array L, indexed by the elements of S,
satisfying the following properties.

(1) A cell of L either contains an element of S or is empty.
(2) The subarrays indexed by S; x S; are empty for 1 < i < m.

(3) Let j € S;. Row j of L contains each element of S — S; precisely once
and column j of L contains each element of S — S; precisely once.

The type of L is the multiset {|S1],|Szl,...,|Sm|}. If there are u; S;’s of
cardinality ¢;, 1 < i < k, we say L has type ¢]'¢3%... ;.

Suppose L and M are a pair of partitioned incomplete Latin squares
with partition P. L and M are called orthogonal if the array formed by
the superposition of L and M, L o M, contains every ordered pair in S x

m

S — U(S,‘ x S;) precisely once. A set of n partitioned incomplete Latin

i=1

squares with partition P is called a set of n mutually orthogonal partitioned
incomplete Latin squares of type {|S1], |S2, ..., |Sm|} if each pair of distinct
squares is orthogonal.

We are now in a position to state and apply the basic frame construction
for PGBT Ds.

Theorem 3.1 [6, 4]. If there exists a complementary {G1,Gy,...,Gm}-
frame (m > 2) , a pair of orthogonal partitioned incomplete Latin squares
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with partition {G1,Gs,...,Gm} and PBTD(|G;|+1) fori=1,2,...,m,
then there is a PBTD((Xr~, |Gi|) + 1).

Lemma 3.2. There exists a PBT D(26).

Proof: A starter and adder for a complementary (skew) frame of type 55
are:

S 1,2 4,6 8,11 12,16 17,23 21,3 14,22 9,18 13,24 7,19
A 21 13 23 16 1 8 19 3 14 7

Since there is a pair of OPILS of type 5° [15] and a PBTD(6) (8], we
apply Corollary 3.2 to construct a PBT D(26). O

4 A Frame Product Construction

A frame product construction was used in [2] to take care of several special
cases of PBT D(n)s. In this section, we show that a much weaker version
of this construction can be used for the case n = 44. The construction uses
a complementary frame and a pair of OPILS with a single shared (holey)
ordered transversal.

n n
LetV = U Viandlet W = U Wi;. Let F be a complementary {V}, V5, ...,
i=1 i=1
Va}-frame of type t" defined on V. Let F be the complement of F defined
on W; Fis a {W;,Ws,..., W, }-frame of type t®. Let F’ be the array of
pairs formed by the superposition of F and F, F’ = FoF. Suppose T is a
transversal of F” such that ‘

(i) Every element of (V — V;) U (W — W;) occurs precisely once in T for
some i.

(ii) T contains ¢ empty cells from hole F;.

Let L = {L1, L2} be a pair of OPILS of type t" where L, is defined
on V with partition {V},V2,...,V,} and L, is defined on W with partition
{W1,W,,...,W,}. Let L’ be the array of pairs formed by the superposition
of L, and L3, L' = L, o Ly. Suppose S is a transversal of L’ such that

(i) Every element of (V — V;) U (W — W;) occurs precisely once in S for
some 1.

(ii) S contains ¢ empty cells from hole L.

If we can order the pairs in T and S so that every element of V-v)u
(W — W;) occurs precisely once as a first coordinate and precisely once as
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a second coordinate, then we say that the complementary frame F and the
pair of OPILS, L = {L, Ly}, share a (holey) ordered transversal, TU S.

To illustrate these definitions, we describe a complementary frame of type
27 and a pair of OPILS of type 27 with a shared ordered transversal. A
skew 27 frame ([13]) is displayed in Figure 1 and a pair of OPILS of type
27 is {L,, L2} where L, is the holey self orthogonal Latin square displayed
in Figure 2 ([10]) and Ly = LT. They share a (holey) ordered transversal,
T US. The hole F; is defined on {z,y}. The ordered pairs in T U S are:

2,4 7,11 6,9 810 1,5 0,3 24 7,11 69 810 1,5 0,3
42 472 T1i,7 11,7 9,6 9,6 10,8 10,8 51 51 3,0 3,0
25 11,y 48] 13]7,2]9,0
8,z 3,6 0,y 59 ] 24 10,11
35 |9,z 4,7 1,y 6,10] 11,0
711 4,6 | 10,2 5,8 2,y 0,1
80| 57 |11,= 6,9 3yl 12
4,y 9,1)] 680,z 7,10 23
B,y 102] 79 |1,z 8,11 3,4
6,y 11,3]8,10] 2,2 9,0 45
10,1 7,¥ 04 |9,11{3,= 5,6
11,2 8,y 1,5 | 100] 4,2 6,7
0,3 9,y 2,6 [11,1] 5,z 78
1,4 10,y 37]02]|6,z 89
3,10 5,0 7,2 9,4 11,6 1,8
29 4,11 6,1 83 10,5 0,7
Figure 1

A skew frame of type 27, [13]
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5081031 9267 |11] 4
3 y| 519|420 78|10z ] 6
82 11|y [7]0[10]5 z | 9|41
51918 6|11z [3]4 ]y 1|70
1 [y |[7]0 10] 6 [ 5] 20111 3 |z
0|3 [11]=z]|7 4 |1 |y 8516 2
O[4[2[6 1]z 83119 [y |10
105 [1[0][8]3 6 |4l 71129
2 4 [y [3[5]917 10{]0[z|6][8
7 [ 8 0|11 2 [y |9z 45110
11|z ]9 5168|471 0y |3
96|17 y|10[2[0 |z |3 5 | 11
4 [7[|10] 3]z 1168512 Y
610 |z|4]2]1 11[10] 9 3[8
Figure 2

Ly, a holey self orthogonal Latin square, (10]

The frame product construction also uses the existence of I A(n,k,4)s,
(1) Let V be a finite set of size n. Let K be a subset of V of size k. An
incomplete orthogonal array I/ A(n, k, s) is an (n2 — k2) x s array written on
the symbol set V' such that every ordered pair of (V x V) — (K x K) occurs
in any ordered pair of columns from the array. An I A(n, k, 8) is equivalent
to a set of s — 2 mutually orthogonal Latin squares of order n which are
missing a subsquare order k. We need not be able to fill in the k x k missing
subsquares with squares of order k.

Theorem 4.1 [1]. An 1A(n, k,4) exists if and only if n > 3k and (n, k) #
(6,1).

Theorem 4.2. Let m be a positive integer, m # 2 or 6. Suppose there
exists
(1) a complementary frame F of type t" and a pair of OPILS of type
t™ with a shared (holey) ordered transversal,
(2) an IA(m + k, k,4),
(3) a PBTD(tm +1) and
(4) a PBTD(tm + k +1).

Then there exists a PBTD(tmn + k + 1).
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n n
Proof: Let V = U Viandlet W = U W; where |V;| = |W;| =t for all 1.

i=1
Let M ={1,2,. ,m}

Let F be a complementary {1, Va,..., V,,}-frame of type t® and let F
denote the complement of F defined on W. F is a {W;,Ws,..., WL}
frame. Let F’ be the array of pairs formed by the superposition of F
and F, F' = FoF. Let L = {L, L} be a pair of OPILS of type
t®. Suppose L; has partition {V;,V5,...,V,} and suppose that L, has
partition {W;,Ws,...,W,}. Let L’ denote the array of pairs formed by
the superposition of L; and Lo, L’ = Ly o Ly. F and L share an ordered
transversal TU S. T is a transversal of F’ which contains ¢ empty cells
from hole F,, and S is a transversal of L’ which contains ¢ empty cells from
the last hole defined on V,, U W,,. We need some additional notation for
the pairs in T and S. Let (i) denote the pair in T which occurs in row ¢
of F’ and let b(:) denote the pair in T which occurs in column i of F” for
i=1,2,...,w where w = t{(n — 1). Similarly, let ¢(i) denote the pair in S
which occurs in row i of L’ and let d(f) denote the pair in S which occurs
in column i of L’ for i = 1,2,...,w. The pairs in T U S are ordered so
that each element of (V — V;)) U (W — W,,) occurs precisely once as a first
coordinate and once as a second coordinate.

Since m # 2 or 6, there exists a pair of orthogonal Latin squares of side
m defined on M, N; and Na. Let N denote the array of pairs formed by
the superposition of N; and N, N = Nj o Na. N, is the array formed by
replacing each pair (a,b) in N with the pair ((a, z), (b, y)).

We use an JA(m+k, k,4) to construct a pair of orthogonal Latin squares
of side m + k which is missing a pair of orthogonal Latin squares of side
k. (The smaller Latin squares need not exist.) Let I denote the m + k
square array of pairs formed by superimposing the pair of Latin squares.
Let ={fi |i=12,...,k} and let @ = {a; | i = 1,2,...,k} where
U = aUB. I, will denote I defined on the symbols M x {z,y} UU where
the missing subarray is defined on U. More precisely, if (z, y) is an ordered
pair in T or S, then the pair of Latin squares used to construct I, will be
defined on (M x z) U @ and (M x y) U B respectively, where the missing
subarrays are defined on a and 8. Iy can be written in the following form:

sz sz

R, 0

where O is an empty square array of side k.

Let B; = [F'L’). B, is a tn x 2tn array. We construct an (min + k) x
(2mtn + 2k) array as follows. Replace each pair (z,y) in F/~T and L' - S

Iy =
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with the m x m array N,,. Replace each ordered pair in TU S with the
m x m array Az,. The resulting array B, has size mtn x 2mtn. We add k
new rows and 2k new columns to Bs.

We define Bj to be the following k x (2¢mn + 2k) array. B; contains the
k new rows to be added to B;. The subarrays labeled E in B3 are empty
arrays of size k x tm and the subarray labeled E’ is an empty array of size
k x 2k.

Bs=|Ryy|... |Rewy|E|Rany|--- |Ruwy| E|E

We define By to be the following (tmn + k) x 2k array. B, contains the
2k new columns to be added to Bz. The subarrays labeled E in B, are
empty arrays of size tm + k x k.

Ca) | Ce(n)

B, =| : :
Ca(w) | Ce(w)

E E

We use B3, B3 and B, to construct an array B’ of size mtn+k x 2(mtn+
k).

BI = 32 34

Bs £

B’ has the following structure. The arrays labeled E are empty square
arrays of order mt. E, is an empty k x 2k array, E; is an empty mt x 2k
array and the arrays labeled E3 are empty arrays of size k x mt.

E E
E E

BI

E E | E
Es Es | By

We fill in the empty arrays of B’ with PBT Ds. Let D; be a PBT D(mt+
1) defined on M x (V; UW;) U {o0;,002} fori =1,2,...,n — 1. D; can be
written in the following form where D} and D? are square arrays of order
mt.
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pe| P | P | Dt

Dg D? 001, 002

The partitioning of Dj is the first m¢ columns of the array together with the
last column and the second mt columns of the array with the last column.

Let G be a PBT D(mt+k+1) defined on M x (VaUW,)UUU{o04, 002}.
G can be written in the following form. G; and G, are (mt+ k) x mt arrays
and G3 and G4 are (mt + k) x k arrays.

G= Gy Gy Gs Gy Gs
001, 002

The partitioning of G is G; U G3 together with the last column and
G2 U G4 together with the last column.

We place these arrays in B’ as follows.

B =
Dy Dy Dy
Dy D3 D3
Dy Dy Dy,

Gy Gq | G3 | Gy Gs

Dy | D3 Dp_y Dy|D3]... | Das 001,002

~ -~ s\ - L s
[} Ca Cs Ca Cs

The resulting array B is an (mnt+k+1) x (2mnt+ 2k + 1) array defined
on (M x (VUW))UU U {o0;,002}. It is straightforward to verify that
B is a PBTD(mnt + k + 1). The partitioning of B is C; UC3 U Cs and
CUC4 UCs. a

Corollary 4.3. There exists a PBT D(44).

Proof: Let n=7,t =2, m =3, k=1 in Theorem 4.2. A complementary
frame of type 27 and a pair of OPILS of type 27 with a shared (holey)
ordered transversal are described above. The 1A(4, 1, 4) exists by Theorem
4.1 and there exist PBT D(7) and PBT D(8) by Theorem 1.2. O
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5 Conclusions

We have shown that there exist PBT D(n) for n = 26, 28, 34 and 44. This
completes the spectrum for PBTD(n) for n = 0 (mod 2). The existence
question for PBT Ds has now been settled with 3 possible exceptions.

Theorem 5.1. There exist PBTD(n) for n > 5 except possibly for n €
{9,11,15}.
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