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Abstract: Parallel processing has been a valuable tool for improv-
ing the performance of many algorithms. Solving intractable prob-
lems is an attractive application of parallel processing. Traditionally,
exhaustive search techniques have been used to find solutions to NP-
complete problems. However, the performance benefit of paralleliza-
tion of exhaustive search algorithms can only provide linear speedup,
which is typically of little use as problem complexity increases expo-
nentially with problem size. Genetic algorithms can be useful tools
to provide satisfactory results to such problems. This paper presents
a genetic algorithm that uses parallel processing in a cooperative
fashion to determine mappings for the rectilinear crossing problem.
Results from this genetic algorithm are presented which contradict a
conjecture that has been open for over 20 years regarding the minimal
crossing number for rectilinear graphs.

keywords: Rectilinear Minimal Crossing, Parallel Genetic Algo-
rithms

Introduction

Parallel processing has proven to be a valuable tool for increasing the per-
formance of various algorithms. Intractable problems solved by exhaustive
search techniques seem to resist the speedup typically brought about by
parallelization. Algorithms for these problems, when run in parallel, typi-
cally only give a speedup directly proportional to the number of processors

*Current Address: AT&T Global Information Solutions, GIS WP&S, CDT,

Liberty, SC 29657, jthorpe@admin.clemsonSC.NCR.COM

ARS COMBINATORIA 43(1996), pp. 135-148



working in concert on the problem. This paper presents an alternative
to traditional exhaustive search methods by using a variation on genetic
algorithms (7, 4].

In the early 1970’s, John Holland at the University of Michigan developed
a heuristic search technique known as a genetic algorithm [7]. Because
they are heuristic techniques, genetic algorithms are not guaranteed to find
optimal solutions but rather to find “acceptable” solutions when searching
complex systems. An acceptable result is defined by the problem at hand,
and by how close to the optimal solution the user deems satisfactory. It
is hoped that using genetic algorithms in parallel can produce results in a
“reasonable” amount of time as good as or better than exhaustive search
techniques.

The problem chosen to demonstrate the viability of using genetic algo-
rithms in parallel is the rectilinear crossing problem. The rectilinear cross-
ing problem is an extension of the minimal crossing problem as described
by Garey and Johnson [6] as the GRAPH GENUS problem. Johnson [11]
places the crossing problem in its own category as an NP-complete problem.
In general, crossing problems attempt to find some optimal mapping of a
graph such that the number of edge crossings (intersections) is minimized.
First of all, it is necessary to define the criteria for a valid graph in order
to determine what the crossing number of a valid graph is. Chartrand and
Lesniak [3] state the definition this way: the crossing number of a graph
G, denoted v(G), is the minimum number of crossings (of its edges) among
the drawings of G in the plane. Assumptions about the drawings are as
follows:

(a) adjacent edges never cross — i.e. edges with a common vertex;

(b) two non-adjacent edges cross at most once;

(c) no edge crosses itself;

(d) no more than two edges cross at a point of the plane; and

(e) the (open) arc in the plane corresponding to an edge of the graph
contains no vertex of the graph

The number of crossings produced by such a mapping gives a measure
of how non-planar the graph is. Extending the constraints of the minimal
crossing problem by requiring that edges of the graph must be straight
lines creates the rectilinear crossing problem. So the question to be solved
is: What is the crossing number of a complete graph G given that G is
rectilinear and lies in a bounded planar region, and what mapping will
provide a minimal crossing number for that graph?

For complete graphs that have ten or fewer vertices, the crossing num-
bers are known [8]. For larger graphs, no minimal crossing number has
been verified. Formulas that postulate what the crossing numbers should
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be and methods to produce mappings with that many crossings have been
developed but not verified for their minimality [8, 1]. Verification has been
difficult mainly due to the sheer number of edges and the difficulty of count-
ing the crossings by hand. Additionally, isomorphic transformations of the
solutions can compound the difficulty of identifying unique solutions.

Once the crossing numbers for complete graphs have been determined,
the problem can easily be generalized to apply to less than complete graphs.
Examples of such graphs are circuit diagrams, communication networks,
railroad track and highway networks, and other interconnection diagrams.
Recent papers by Chang [2] and Wang, Lee, and Chang [12] have described
circuit design in similar terms to the minimal crossing problem. Chang [2]
proposed an algorithm for minimizing vias in multi-layer circuits, which is
a transformation of the minimal crossing problem.

The purpose of this paper is to demonstrate the effectiveness of using
genetic algorithms in concert with parallel processing in obtaining good
solutions for large or intractable problems. In Section 2, previous work on
the minimal crossing problem, NP-completeness, and genetic algorithms
are presented. Section 3 explains the heuristic used to solve the problem,
as well as describing the platform that the heuristic was implemented on.
Results and analysis of the algorithm are presented in Section 4. Section 5
provides some conclusions and future work is presented in Section 6.

2 Previous Work

Minimal Crossing Problem

Twenty years ago, almost all questions about the minimal crossing prob-
lem were unanswered. Methods for generating mappings to provide graphs
with conjectured minimal crossing numbers have been developed, and for-
mulas that provide the expected minimal crossing number have been pro-
posed [8, 1]. The majority of these formulas and methods have been verified
by visual inspection for a small number of vertices. As the number of edges
and vertices in the graphs grow in number, this method of verification be-
comes progressively more difficult. Even exhaustive searches by computer
programs to find and verify mappings become prohibitively time consuming
with increased problem size.

For graphs of size 10 and less, a simple formula provides the minimal
crossing number for complete graphs [8, 3]:

(i) = LRI

The minimal crossing number for fully connected rectilinear graphs also
holds for this formula, with the notable exception of graphs with 8 vertices.
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For Kg, the crossing number is 18; while for rectilinear graphs the crossing
number is 19. As the crossing problem increases in size (11 vertices or
more), a different formula appears to hold true:

(Tn* — 5603 + 128n? + 48n| 50| + 108) |
432

p(Kq) < |

Guy [8] proposed this formula in 1972, and has conjectured that this
formula is actually an equality. In private communication however, Guy [9]
noted that if equality does not hold for graphs with 12 vertices, then graphs
with more vertices are also likely to have smaller crossing numbers than the
formula suggests.

NP-Completeness

NP-complete problems are a class of decision problems that are consid-
ered to be intractable. In other words, solutions to these problems probably
will not be found by using a polynomial time algorithm. Although it has not
been proven whether or not NP-complete problems are truly intractable, it
would appear that a major breakthrough will be necessary to solve them
in polynomial time. The crossing number problem has been classified as
an NP-complete problem that is a transformation of the OPTIMAL LIN-
EAR ARRANGEMENT problem [6], and Johnson has cited a variant of
the crossing problem that is related to the GRAPH GENUS problem [11].
For a more complete overview of NP-completeness, see [6], and for a list
of known NP-completeness problems see [6], and Johnson’s series of NP-
Completeness Columns [11].

Genetic Algorithms

Genetic algorithms were first developed by John Holland at the Uni-
versity of Michigan in the early 1970’s. Holland was interested in how
an algorithm could simulate natural selection. The goals of Holland’s re-
search included explaining the adaptive processes of natural systems and
then designing artificial systems software which would retain the important
mechanisms of natural selection [7]. Thus, the power of genetic algorithms
lies in their robustness, or ability to adapt, just as in natural systems.

Genetic algorithms are heuristic search algorithms. Thus, the goal of
a genetic algorithm is not to necessarily find the optimal solution, but to
produce a “satisfactory” solution when searching a complex system. Ran-
dom choice is used as a tool to guide a genetic algorithm as it searches.
As a genetic algorithm produces new generations, better solutions may be
discovered.
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The structure of a genetic algorithm is based on natural selection. First,
an initial population of feasible solutions is randomly generated. The ini-
tial population consists of chromosomes representing particular encodings
of solutions. Reproduction takes place between members of the population,
and a child is formed from a combination of the parent chromosomes. For
each new child, an evaluation function is used to determine the fitness of
that child. Whether or not the child becomes a member of the popula-
tion depends on its fitness value. Each new child chromosome is compared
against the worst member of the population, and the better one is kept in
the population. By producing new generations in this manner, the popula-
tion improves and the best member of the final population is the solution
which is returned by the algorithm.

3 Method

Why use genetic algorithms implemented in parallel to find solutions to
the rectilinear crossing problem? An initial solution might be to use an
exhaustive search method to place vertices in a plane, and then evaluate
the resulting graph. For large problem sizes(graphs of size 12 or more), this
approach is obviously time consuming, and is not guaranteed to produce a
“good” result within a reasonable amount of time.

An alternative to exhaustive search is a heuristic such as a genetic algo-
rithm. The premise of the genetic algorithm is that by generating a large
number of solutions (a population) and continually recombining the solu-
tions, a “good” result will eventually be produced through “survival of the
fittest” as good results replace “worse” results. A genetic algorithm work-
ing on a single processor may produce good results, but if multiple versions
of the algorithm were to operate in parallel in some cooperative fashion, it
is likely that the concurrent version would produce even better results than
the single processor implementation.

The algorithm used for the rectilinear crossing problem is basically a
genetic algorithm with some modifications that enhance its use on a par-
allel processing system. First, eight nodes of a parallel processing machine
(iPSC/2) are allocated to run the genetic algorithms. Each node gener-
ates its own initial population, and begins executing the genetic algorithm.
Each iteration of the genetic algorithm produces two children to evaluate
and possibly insert into the node’s population. Every so often, a “mutant”
is generated and inserted into the population. Mutation is a technique
to help prevent stagnation of the population. Once the genetic algorithm
meets one of its convergence criteria (time limit, number of iterations, differ-
ence in the number of crossings between the best and the worst solutions),
the algorithm halts and broadcasts its results to the host program. If all
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nodes have converged to the same crossing number, the host stops and
reports the results.

As previously noted, the algorithm used does not follow the traditional
approach described by Goldberg [7] in which the entire population is re-
placed at each iteration. Instead, a combination of Davis’ and Goldberg’s
approaches were used in which each genetic algorithm uses a Davis-like
approach, [4], to insert a few new members into the population.

There is no strategy involved in creating initial populations. The graph
vertices are randomly placed in a rectangular area, and the number of cross-
ings for each resulting graph are determined. After the initial population is
generated, the genetic algorithm selects two sets of parent “chromosomes”
to recombine. One set is chosen via a simple linear bias, the other is chosen
from a normal distribution of the best ten percent (10%) of the population.

Genetic algorithms were designed for use on sequential machines. In order
to take advantage of parallel processing, a variation on traditional genetic
algorithms can prove useful. By allowing some sort of cross-pollenation of
chromosomes between genetic algorithms operating in parallel, information
can be shared, and it is hoped that the interaction will improve performance
of the genetic algorithms. This modification is logically consistent and
exists in “real-world” genetics.

A pollenation rate, P, is set as a parameter to the program, and once
every P iterations, each genetic algorithm sends a solution to the host pro-
gram. The host then chooses the best solution and broadcasts it back
to all the nodes to use in their recombination. This method of cross-
pollenation has provided exceptionally better results then simply running
eight genetic algorithms independently, an observation previously made by
the authors [10]. One additional note: when cross-pollenation occurs too
frequently, the populations tend to converge very quickly, and rarely do
they produce a “good” result.

The recombination technique used in this work is based on uniform order-
based crossover presented by Davis [4]. According to this recombination, a
chromosome is a bit string that represents the contribution of the parents
to a child. A one in the bit string indicates that the vertex correspond-
ing to that bit index will contribute to the construction of child 1, and a
zero indicates that the vertex will contribute to child 2. This bit string
is generated randomly for each generation with parent 1 receiving the bit
string and parent 2 receiving it’s complement. Hence, child 1 is composed
of vertices marked with ones and child 2 is made of vertices marked with
zeroes. This type of chromosome recombination is illustrated in Figure 1.
These children are then evaluated by the cost function and inserted into the
population if the value returned is better than that of the worst member of
the population.
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Figure 1: Recombination of Chromosomes

The cost function for the rectilinear crossing problem is fairly easy to
describe. All edges are checked in a pairwise fashion such that no edge is
compared to itself, and no pair of edges are compared more than once. If a
pair of edges cross, then the crossing number is increased by one. Whenever
the cost evaluation function detects colinear edges (something that violate
the problem constraints) a large penalty is invoked. Solutions containing
large penalty values tend to drop out of the population very quickly.

At first, verification was carried out by hand. As the problem sizes grew
larger, simple manual verification became increasingly difficult. A simple
graphics utility was written in the X-Windows environment to help verify
solutions by plotting graphs of solutions and plotting intersection points.

4 Results and Analysis

Some of the parameters used for this presentation came from experi-
ments done in previous work by one of the authors [10]. Whether they
are actually “good” parameters for this particu'ar problem has yet to be
explored. For instance, in all of the experiments run, the mutation rate was
held at 10% and the linear bias at 2.5. Parameters specific to this instance
of the minimal crossing problem include the boundaries of the planar region
occupied by the graph. The size of the area was limited to 1000 x 1000 units
(an arbitrary decision). As noted in Table 1, there was some minor exper-
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(894, 15) (544, 339) (610, 189) (205, 272)
(582, 815) - (490, 541) (521, 628) (552, 278)
(873, 29) (348, 275) (352, 279) (56, 252)

Figure 2: Complete Graph with 12 Vertices and 155 crossings

imentation with the pollenation rate. This experimentation showed that
more frequent pollenation led to faster convergence and sporadic results.
These preliminary results are probably not enough to justify the choice of
pollenation every 150 generations.

Table 1 lists out the parameters and results for various executions of the
parallel genetic algorithm. Guy’s formula [8] produces the number in the
Expected column, and output of the parallel genetic algorithm appears in
the Result column. This column displays some rather interesting numbers
for graphs of size 12 and 13. For these graphs the crossing numbers pro-
duced by the heuristic are lower than the minimum value proposed by Guy
in 1972 [8]. These values have been verified by hand, and the graphs that
correspond to those numbers are shown in Figures 2 and 3.

Another interesting feature of the genetic algorithms used is the num-
ber of iterations taken to produce a result. There appears to be no real
correlation between the “goodness” of a solution and how long it takes a
genetic algorithm to produce it. Intuition tells us that the longer a genetic
algorithm executes, the better its results should be through “survival of
the fittest.” However, as previously stated, genetic algorithms are heuris-
tic search techniques, and are not guaranteed to find an optimal solution.
Much of the disparity between the results of each execution lies in the use
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| Size | Pop | Pollen

| Expected || Result

| Generations | Time. ||

3| 150 150 0 0 1 0 sec
4150 150 0 0 127 | 1 sec
1 5| 150 150 1 1 247 5 sec
6 150 | 150 3 3 2,338 | 47 sec
7150 150 9 9 5,250 | 148 sec
7] 150 [ 150 9 9 5,007 | 145 sec
10| 100 | 400 60 62 134,409 | 3 hrs
10 | 100 [ 400 60 62 143,609 | 4 hrs
11] 150 | 100 102 120 196 | 2 min
11 | 150 5 102] 124 252 | 2 min
11 | 150 5 102 [ 102 7,770 | 15 min
1T 150 [ 150 102 [ 102 13,299 | 15 min ||
11 | 100 | 400 102 || 104 14,000 | 15 min ||
11| 150 | 150 102 102 152,550 | 2 hrs ||
12] 150 [ 150 156 | 157 138,599 | 2 hrs ||
12150 150 156 | 156 194,151 | 3 hrs ||
12 | 150 | 150 156 || 155 228,739 | 3 hrs ||
[ 18T 1507 150 231 231 139,711 3 hrs
[ 137150 150 231 231 189,809 | 3 hrs
13150 150 231 229 196,639 | 3 hrs ||
14150 [ 150 328 344 89,125 3 hrs
14| 150 | 150 328 || 334 131,250 | 3 hrs
14 [ 150 | 150 328 | 333 147,999 | 4 hrs
15[ 150 [ 150 453 465 97,679 | 3 hrs ||
15[ 150 | 150 453 469 126,099 | 4 hrs ||
[ 167150 150 612 638 77,639 | 3 hrs
[ 16150 150 612 636 81,009 | 3 hrs
7] 150 ] 150 808 874 45289 3 hrs
17 150 | 150 808 864 | 81,769 | 4hrs
[ 187 150 150 1,047 1220 57,809 4 hrs
[18] 150 150 1,047 T,:w 59,829 | 4 hrs __
19] 150 [ 150 1,338 ]| 1,562 32,449 3 hrs
19 [ 150 | 150 1,338 || 1,568 43939 | 4 hrs
20 150 [ 150 1,683 2,054 22,349 | 3 hrs
20 | 150 | 150 1,683 || 2,018 35619 | 4hrs

Table 1: Parameters and Results from Parallel Genetic Algorithms
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(541, 519) (639, 311) (611, 370) (811, 210)
(337, 330) (714, 125) (725, 265) (659, 657)
(109, 766) (153, 166) (231, 233) (523, 357)
(572, 552)

Figure 3: Complete Graph with 13 Vertices and 229 crossings

of randomness as a tool to guide the search. Some of the disparity is a
result of the error checking and cost evaluation functions required by the
minimal crossing problem. When a child’s chromosome is generated, no
two vertices in that chromosome can be the same. Whenever equal vertices
are found, the child is discarded. If the child passes error checking, it goes
through the cost evaluation function, which is a fairly expensive operation.
Once evaluated, then the child may be inserted into the population-another
expensive operation.

Cost evaluation is expensive due to the method that selects edges to test.
Each edge is chosen in a pairwise fashion by vertices and tested against all
other edges. A simple algorithm to do this is briefly outlined in Figure
4, and it is highly likely that there are better methods for evaluating the
graph cost. The cost of this evaluation is characterized by the following
formula:

n(n —1)(n — 2)(n — 3) _ nt—T3412n2 —6n
2 - 2
Obviously cost evaluation is an O(n?) operation. In practice however, this

cost evaluation does not grow at the expected rate of an O(n*) operation.
This slow growth rate is due to the speed of the CPU which introduces
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function cost()

for i := 1 to (number of vertices - 1) do
for j := (i + 1) to number of vertices do
for k := 1 to (number of vertices - 1) do
for m := (k + 1) to number of vertices do

if ((edge(i,j) != edge(k,m)) AND
not_yet_tested(i,j,k,m)) {
total_cost := total_cost +
cost(edge(i,j),edge(k,m));
}
end /* for m */
end /* for k */
end /* for j */
end /* for i */
return(total_cost)
end /* function cost */

Figure 4: Cost Evaluation

a large constant that divides the entire function. This division appears
to provide a lower order function for the limited values of n that we are
pursuing. This savings is clearly illustrated by the time it takes to generate
and test the initial population. Figure 5 shows a plot of initialization time
versus problem size and compares it to n*, n3, and n2. From this plot,
it appears the checking mechanism’s performance lies somewhere between
O(n?) and O(n3) for the graph sizes considered.

5 Conclusion

The marriage of parallel processing and genetic algorithms seems to be a
reasonably effective tool for obtaining results for intractable problems. The
method presented is a somewhat crude tool; however, with refinement, it
has the potential of becoming an even more valuable problem solving heuris-
tic. As there was no comparison between the presented algorithm and an
equivalent exhaustive search technique, few, if any, conclusions can be made
about the superiority of one method over the other. The performance of a
traditional exhaustive search method is known to have a speedup linearly
proportional to the number of processors working in concert on the prob-
lem. Genetic algorithms do not provide any speedup; however, the results
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Figure 5: Initialization Time versus Number of Vertices

generated by this implementation encourage the conclusion that genetic
algorithms are a valuable search tool.

Guy’s boundary formula [8] was an outgrowth of his construction method
which placed the graph vertices in a triangular pattern. The final mappings
provided by the genetic algorithm are very close to the results one would
expect using Guy’s method. These results increase the confidence in the
usefulness and correctness of the genetic algorithm presented. The fact that
the genetic algorithm obtained results for K2 and K3 that were better
than those conjectured by Guy [8] is very exciting. The results we have
produced show that what was conjectured as an equality more than 20
years ago is merely a loose upper bound which can possibly be tightened
in the future.

6 Future Work

As with any project, extensions and modifications can be made to in-
crease its utility and/or its performance. As it stands, this project is limited
to the rectilinear crossing problem. With minor modification, the program
could handle more general cases of rectilinear graphs, or with more effort,
it could explore the general instances of the crossing problem.

A further, and perhaps more significant experiment would be to make
use of the general characteristics of “good” solutions. For instance, the
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results produced by the program have distinct characteristics which could
be exploited in generating the initial population(s). Research into the rep-
resentation of the solution should also be performed. A genetic algorithm
is only as good as its solution representation [10]. It is possible that the
representation used for this project is not the best available, but without
further investigation, this point is unclear.

Genetic algorithms are designed to provide acceptable results within a
reasonable amount of time. Improving the performance of the genetic algo-
rithm requires examination of the sorting methods, random number gener-
ation, communication, and the cost evaluation function. One improvement
to the implementation would be to sort the vertices of the graph to help
reduce error-checking time. Another area of investigation for improving
performance is to show the effects of various parameters on convergence
time.

At the moment, the current implementation of the parallel genetic al-
gorithm is a fairly crude tool. However, even this simple heuristic seems
to provide excellent results. Further refinement and experimentation needs
to be done in order to create a more robust program. Additionally, de-
velopment of an exhaustive search method to solve the rectilinear crossing
problem would provide a reasonable standard to compare the results of the
genetic algorithm with. Such a standard for comparison would prove in-
valuable to determining the desirability of using one heuristic over another.

Remarks

In private Communication which began after this paper was submitted,
Geoffrey Exoo[5] informed us of some very nice results for the Rectilinear
Minimal Crossing problem which improve upon some of the results we have
presented, and go well beyond the size of problems we have considered.
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