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Abstract

Let G and H be connected graphs and let GOH be the Cartesian
product of G by H. A lower and an upper bound for the indepen-
dence number of the Cartesian product of graphs is proved for the
case, where one of the factors is bipartite. Cartesian products with
one factor being an odd path or an odd cycle are considered as well.
It is proved in particular that if $;+S; is a largest 2-independent set
of a graph G, such that |S;| is as small as possible and if |S2]| < n+2
then @(GOPsny1) = (n+1)|S1| 4+ n|S;|. A similar result is shown
for the Cartesian product with an odd cycle. It is finally proved that
@(C2k410C2n41) = k(2n +1), extending a result of Jha and Slutzki.

Introduction

The determination of the independence number of a graph is one of the
difficult combinatorial problems (cf. [10, P-2, p.480]). Recently it was
shown that even approximating clique and independent set is NP-hard,

[

2, 5]. On the other hand, several polynomial algorithms for decomposing

*Supported in part by the Ministry of Science and Technology of Slovenia under the

grant P1-0206-101.

ARS COMBINATORIA 43(1996), pp. 149-157



a graph with respect to the Cartesian product were proposed (3, 6, 14]. In
fact, the decomposition of a graph G can be done in O(|E(G)| - log |V (G)|)
time. Hence it might be possible to determine the independence number
of a graph via its factors, because the problem size is much smaller in the
factors than in the product. Furthermore, some important classes of graphs
are Cartesian products of smaller graphs, as for example hypercubes. We
therefore investigate the problem of calculating the independence number
of a product graph by the independence numbers of the factors.

A set of vertices (edges) of a graph is independent if no two of them are
adjacent. The size of a largest independent set of vertices of a graph G is
called the independence number of G, a(G). A k-independent setin G is the
union of k disjoint independent sets in G. We denote by a(G) the size of
a largest k-independent set of a graph G. Clearly, a1(G) = a(G). Besides
a; we will be also interested in a3, the problem which is also (apparently)
NP-hard.

An independent set of edges is also called a maiching. The size of a
largest matching of a graph G is called the matching number of G, 7(G). A
matching which includes every vertex of a graph is called a perfect matching.
The chromatic number x(G) of a graph G is the smallest number of colours
needed to colour the vertices of G such that no two adjacent vertices are
assigned the same colour. A set of vertices which receive the same colour
is called a colour class (with respect to a given colouring).

The Cartesian product GOH of graphs G and H is the graph with
vertex set V(G) x V(H) and (a,z)(b,y) € E(GOH) whenever ab € E(G)
and z = y, or a = b and zy € E(H). Whenever possible we shall denote
the vertices of one factor by a, b, ¢, ... and the vertices of the other factor
by z,y,2 Forz € V(H) set G, = G O {z} and for a € V(G) set
H, ={a} O H. We call G, and H, a layer of G and of H, respectively.

The Cartesian product is commutative, associative and K, is a unit.
Also, GOH is connected if and only if both G and H are connected. We may
therefore assume that all the graphs considered in this paper are connected,
as well as finite, undirected, simple graphs, i.e. graphs without loops or
multiple edges. P, will denote a path on n vertices. We say that P, is an
odd (resp. even) path if n is odd (resp. even).

In the next section we recall some known results on the independence
number of the Cartesian product and point out where difficulties lie. In
Section 3 we prove that for a bipartite graph H and any graph G,

4]
2
In the last section we first give two examples showing that the Cartesian

product with an odd path gives rise to an interesting problem. Then we
prove that if S; + S, is a largest 2-independent set of a graph G, such

a3(G) < a(GOH) < 7(H)a(G) + (|H| - 2r(H)) «(G).

150



181

o : ‘1'% waz09y],
urolj smo[oj punoq Iaddn ayJ, ‘smo[[0] puUnoq Iamoj ay) 'z welody], Sui
-A1ddy ‘sesse[d 1nojod 3sa81e[ ¥ 3993 am ) Jo Suumo[oI-(nH)X e uj ‘Jooxrg

‘@py1 > (Wyoo)e S %

uay ] ¥y < (D)X 13) puv s203490 u uo ydoib v 39 H 197 g'g Arefjoion

“([r1] ospe 238) |9] = (Tyy00)0 5
Auo pue 31 ¥ S (D)X yeyy smoys re[norpred ul gz WAIOAY], 1Yy 2JON

‘(O)io = (Tyyoo)o ‘O ydoib fuv o4 7'z wozodY],

"ydeid sja1duios & y3im jonpoid & uo uaAs
noYIp st wdjqoid ayy souls ‘sonpoid welsejre)) Jo JPquInu sduspusdopur
2y} Sunge[no[e? jo Aymoyyip e smoys [1g8¢'d ‘y] woxy ymsa1 Suimor[og oy J,

‘stydesd ay91ediq jo sponpoid uo usAs jas
juspuadaput )sefre[ ® 9q j0U pasu 3os juspuadopur [euoSerp e ‘0as [[1M om
se ‘JoA9MOH ‘7S puapuadapur jpuoboip e [[ed [[IM M YITYM ‘39s juapuadapur
[ewxew e seanpoxd wiyjtiod[e ayy yeyy ‘ess 0y piey jou st )] '10j0€j puo
-298 33 Ul $321}10A Futurewral 3y wo 3as juspuadoput 9safre] & yjm 10j0ef
3UO Ul SIIYIAA uTureulal Y3 uo js juspusdepur )safre| e jo jonpoad a1y
soye} 11 dogs A1949 uo ‘A[esioard 210 -eapl SIY} SaJRIAN YOIYM ‘WIyjIoS|e
systutunagepuou e ssodoxd o joej stqy pasn [g] ‘TfZIn{S pue ey 19s Jusp
-uadaput ue st s39s Judspuadapur om) Jo jonpoid 3y JeY) 9A195q0 am Aj1jenbs
-u1 puodas ayj 398 oF, ‘A[A130adsar ‘Iofe[-j pue Iafe[-oH) Aue uwl s9O1I9A
juspusdspul (7)o pue () 3sour ge ST 917} 29UY ‘s10joe) 09 drydiowost
ale jonpoid ay) jo siake| jey) J9e] 9y asn am Ajifenbaur 9s1y oY) AJuaea of,

{(H)o=|(H)Al ‘BO)o-|@)Al}uru+(H)o (D)o Z (HoD)e
pur {|(9)Al (H)® ‘|(H)Al (9)o}ur S (goo)»

‘H puv o) sydvub fup sof °g wrazoay],

:[e1]} Suiztp o9 onp st sydeis
Jo jonpord uelssyie)) 2y} jJo squnu OuUPuUIdIpUI UO JnsaI 9SIY OYJ,

solreutwIRIg g

(1 +ug)y = (M*pp+1e))o ‘u > § S 1 10§ 1eyy ar01d pue
3242 ppo ue y3im jonpoid uelsajre)) Yj I0] J[NSI IR[IUIS © MOYS A[[eUY A\
= u—(|%5] +1'6]) (1 +u) 5 ("+*2ggp)w ssmidyo 25| u+ 15| (1 +u)
= ("*"edop)o ueyy g +u > |7g| yt pue ‘d(qissod se [rews se st 25| yeyy



It is clear that the lower bound from Corollary 2.3 can be improved in
the case when we have a colouring of G with nonequal sized colour classes.
However, the m—partite graph G2 2,...,2 is an example of a graph for which
the upper and the lower bound from Corollary 2.3 coincide.

3 Products with Bipartite Graphs

In this section we consider products where one factor is bipartite. As we
will see, the problem is closely related to the determination of a largest
2-independent set.

Proposition 3.1 If H is a bipartile graph then for any graph G,
1H]

2
Proof. Let {a1, a2, ...an} + {1, b2, ..., bm} be a largest 2-independent

set of G, n > m. Let V(H) = Vi 4+ V; be the bipartition of H with
Vil > |V2]. Set

a(G) < a(GOH) < 7(H)aa(G) + (H| - 27(H)) «(G).

S={(ai,z) |1<i<nmzeV}U{(b,y) | 1<i<myeVe}.

Because the product of independent sets is an independent set it follows
that S is an independent set. Furthermore,

1S1=n Vil + mval > B oy W,
and the lower bound is proved.

Let S’ be a largest independent set of GOH and let X be a largest
matching of H. Then for each edge zy € X, |S' N (G: U Gy)| < a2(G),
while for an unmatched vertex = € V(H) we have |S' N G;| < «(G). This
implies the upper bound. u]

Note that the set S from the previous proof is always a maximal inde-
pendent set. However, it need not be a largest one. But we have:

Corollary 3.2 Lel G be a graph and lel H be a bipartile graph.
(i) If H has a perfect matching, then o(GOH) = IL(;_’ZI as(G).
(i) If a2(G) = 2a(G) then a(GOH) = o(G) |H|.

Proof. (i) Since H has a perfect matching, 2 7(H) = |H|.
(ii) As a2(G) = 2a(G), we have from Proposition 3.1:

|H|a(G) < «(GOH) < 2r(H) «(G) + (|H| - 2r(H))e(G) = |H| (G),
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and the proof is complete. o

It is easy to see that if at least one factor of a product has a perfect
matching then the product has a perfect matching as well. It follows the n—
cube @y, has a perfect matching (Q; = K> and for n 22,Qn = Qn_10K,).
Hence, let us state:

Corollary 3.3 For any graph G, «(GOQ,,) = 2"-1 a2(G).

4 Products with Odd Paths and Odd Cycles

Let V(H) = {21, z3,..., 25} and let S C V(GOH). Let X; = SN G,,.
Then we will write S = (X;, Xa, ..., Xn).

Let H be an even path or an even cycle. Then it is easy to see that there
is 2 maximum independent set of GOH of the form (A, B, A, ..., A B).
Moreover, if G is a bipartite graph with the bipartition V(G) = Vi + Vs,
then there are exactly two maximum independent sets of GOH, namely
Vv, ..., W, Va) and (W, W, ..., Vs, Vi). Such solutions will be called
bipartite solutions.

The situation is more complicated with odd paths and odd cycles. We
first show two examples demonstrating this. Consider first the product
GnOP;, where G, is the graph on 2n + 2 vertices depictured on Fig. 1
(G is sometimes called a double star). It is easy to verify, that a bipartite
solution is of the size 3n + 3, while the diagonal independent set is of the
size 4n + 1.

Figure 1: Graphs G,, and H,

For the second example consider a bipartite graph H, with the bipar-
tition V(H,) =V} + Va:

/ / / / U /
{(11, asz, ... an, bl, 62, ceay bn+1} + {al, a2, ...an, bl’ bz, seey bn+l}'
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In H, a vertex a; is adjacent to every vertex in V2 and a vertex aj is
adjacent to every vertex in V; (see Fig. 1). Consider the product H,0OPs.
It is again easy to verify, that a bipartite solution is of the size 6n + 3,
while the diagonal independent set is of the size 5n + 4. Note that these
two examples show that the difference between the bipartite solution and
a diagonal solution can be arbitrary large.

Lemma 4.1 For any graph G there ezisls a mazimum independent set of
GOPs 4y of the form (A, B, A, ..., B, A), wheren > 1.

Proof. Let S = (X1, X2, ..., X2n41) be a maximum independent set of
GOPap41. Choose i, such that IX,I + |X,'+1| = ma.)quszn(IXjI + |Xj+1|).
We may without loos of generality assume that |X;| > |Xi41|. Then S’ =
(Xi, Xig1,-- -, Xip1, Xi) is clearly an independent set and by the choice of
i, 1> 1SI. 0

Theorem 4.2 Let n > 1 and let Sy + So be a largest 2-independent set of
a graph G, such that |Ss| is as small as possible. If |Sz| < n+2 then

a(GOPzt1) = (n+1) 51| + 1S,
otherwise a(GOPany1) < (n+1)(1S11+152])—n—-2.

Proof. Let s; = |S)| and s = |S2|. Clearly, S = (S51,S52,...,52,51) is an
independent sel of GOPapyy.

Suppose that |S| < a(GOPan41) and let S’ be a largest independent set
of GOPsp4y. Hence |S’| > |S|. According to Lemma 4.1 we may assume
that S’ = (X1, X2,...,X2,X1). Let z; = |Xi| and 22 = |X;|. Clearly,
1 2 .

Note first that z; + z2 < s1 + s2. If £; + 22 = 51 + 52, then according
to the choice of Sz, s; > z; and therefore |S’| < |S|. Hence

z1+z2<s51+s2—-1. (1)
It follows from (1) that z; < sy + s2 — 1 — z2. Since z3 > 1, we obtain
zy < s1+52—2. (2)
From (1) and (2) we conclude:

15

(n+1)zy+nzs
n(z) + z2) + 21
n(si+s2—1)+s1+s52—2
S|+ s2—2—n.

A
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If 537 —2—n < 0 we get a contradiction, hence in this case S is a largest
independent set. Otherwise the upper bound follows. ]

The next theorem shows a similar result for products with odd cycles.
Let (G — S) denote the subgraph of G induced by the vertices V(G) — S.

Theorem 4.3 Let S = S1+35; be a largest 2-independent set of a graph G
such that «(G—S) is as large as possible. Let S3 be a mazimum independent
set of (G— S). Then

1
n|S|+183] < a(GOCon41) < (n+ 3151

Furthermore, if G is a bipartile graph, then a(GOCap41) = n|G).

Proof. Clearly, the set X = (51, 53,...,5,,53) is an independent set of
GOC2n41, hence the lower bound.

Suppose now that X = (X, X3, ..., Xag, X2n+1) is a largest indepen-
dent set of GOCyn41. Because |S| = a5(G) we have

[ Xl + | Xiga] S 51452 for 1 <i<2n,

and also |Xn41] 4+ [X1] < 81 + s2. Therefore 2|X| < (2n + 1) (s; + s3).
This implies the upper bound.

Let now G be a bipartite graph and let V(G) = V] +V; be the bipartition
of G. Then S = (W, Va,...,V4,V5,0) is an independent set of the claimed
size. Since a(Can41) = n the equality follows from Theorem 2.1. a

We conclude the paper with the following result, which is proved in [9)
for the case n = k.

Theorem 4.4 For 1 <k <n, a(C2%4+10C2n41) = k(2n+1).

Proof. Let V(Cm) = {0, 1, ..., m—1}. By Theorem 2.1, a(C2k410C2041)
< k(2n+ 1). To show the lower bound assume first n = k. Consider the
following set of vertices of Cpp410C2p41:

I = {((i+j)mod (2n+1),j)},

where 1 = 0,2,...,2n—~2and j =0, 1,..., 2n. Obviously, I contains
n(2n+1) different vertices. We claim that I is an independent set. Consider
different vertices u = (i+j,j) € I and v = (i + 5, j') € I, where all indices
are taken by appropriate modulos. If j = j’ then the first components
differ by at least two, so u and v are not adjacent. If j # j' then u and v
could only be adjacent if j = j'+ 1 or j = 0 and j' = 2n (or vice versa).
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In both cases the first components of u and v differ by at least one, which
implies that u and v are not adjacent. I is therefore an independent set.

Consider now the case ¥ < n. Let I = (S1, S2, ..., S2x41) be the
solution for k = n as above. Then

I'=(S1, Sz, ---, S2k+1, S1, Sak41, S1, - -+, Szk41)

is an independent set. Furthermore since |S;| = k,1<i < 2k+1, || =
k(2n + 1) and the proof is complete. m
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