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ABSTRACT. Let G be a graph of size ("}1) for some integer n >
2. Then G is said to have an ascending star subgraph decompo-.
sition if G can be decomposed into n subgraphs G1,Ga2,...,Gn
such that each G; is a star of size ¢ with 1 < ¢ < n. We shall
prove in this paper that a star forest with size ("}') possesses
an ascending star subgraph decomposition under some condi-
tions on the number of components or the size of components.

1 Introduction

For definitions and notations not presented here, we follow [2]. Let G be a
graph of size g, and let n be the positive integer with ("}') < ¢ < (*$?).
Then G is said to have an ascending subgraph decomposition (ASD) if G can
be decomposed into n subgraphs Gy, Gy, ..., G, without isolated vertices
such that G; is isomorphic to a proper subgraph of G+ for 1 <i<n-1.
Furthermore, if each G; is a star (matching, path, ... etc.,), then G is said
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to have an ascending star (matching, path, ... etc., respectively) subgraph
decomposition or simply a star (matching, path, ... etc., respectively) ASD.

Alavi, Boals, Chartrand, Erdés and Oellermann proposed the following
" conjecture [1]: Every graph of positive size has an ASD. In the same paper
they have reduced the verification of the conjecture to the following equiv-
alent version: Every graph of size (*}!) for n = 1,2,... has an ASD. In
order to obtain some insight of the eventual proof of this conjecture, many
authors have considered variations by restricting either the requirement on
the decomposed graph or the conditions on the factor subgraphs. Those
variations have their own significance too. Faudree, Gyarfas and Schelp
showed [4] that a star forest of size ("}') has an ASD, from which Erdos
suggested two problems: a star forest of size ("}') with each component
having more than n edges has a star ASD; a graph of size ("}) has a star
forest ASD. And in his joint paper with others as mentioned above (1], a
slightly different version of the first problem is formulated: a star forest of
size ("}!) with each component having size between n and 2n — 2 (n and
2n — 2 are included) has a star ASD.

It was mentioned in [4]-that the complete graph Ky 1 with n+1 vertices
could easily be proved to have a star ASD and a path ASD. They further
proved that any graph obtained from K, by deleting any n edges has a
star ASD. Chen and Ma [3] and Fu [6] proved that a star forest of size ("31),
where each component has size greater than n, and where two components
differ in size by at most one has a star ASD. Two further restrictions on
the size of components of a star forest that guarantee the star ASD can
be found in [3]. Zhao obtained the star ASD for a star forest of size ("}?)
by restricting either the number of components to two or the number of
components to three while keeping the size of each components at least n
[9].

There are five results about the matching ASD of a graph. Three of
them put restrictions on the maximum degree of a graph. Two were proved
in [1]: a graph of size ("'2"1), n > 4, with maximum degree at most 2,
has a matching ASD; a forest of size ("}'), with maximum degree d (2 <
2d — 2 < n), has a matching ASD. One was proved in [4]: a graph of size
("$"), with maximum degree d (n > 4d® + 6d + 3), has a matching ASD.
The other two can be found in [6]: Let G be a graph of size (*}!). If G
can be decomposed into n edge disjoint subgraphs G;, i =1,2,...,n, such
that the size of G; is ¢ and for each k € {2,3,...,n}, there is at most one
edge of Gy which is incident with some vertex of the edge induced subgraph
induced by the union of Gy, Gy, . .., Gx—1, then G has a matching ASD. If G
is a disconnected graph with n components, which have sizes 1,2,...,n—-1
and n, then G has a matching ASD. In [5] Fu also obtained a result on
the ASD of a graph with restrictions on the maximum degree: a graph of
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size ("}') with maximum degree at most (n — 1)/2 has an ASD. In [6] he
obtained a result on the ASD of complete bipartite graphs of size ("31).

In an ASD of G, a member of the decomposition is isomorphic to a
subgraph of all other members of the decomposition with larger size. A
closely related packing problem was considered in [7] where this property
was not demanded. In particular, the auther conjectured that the complete
graph Ky, 4 can be decomposed into n edge disjoint trees of sizes 1,2, ..., n.

We shall now prove the following four results about the star ASD for a
star forest:

Let G be a star forest with com;':onents G1,Ga,...,Gg such that G; has
size a; (i = 1,2,...,k), where }_;_; a; = ("}) for a natural number n.
Then G has a star ASD under one of the following four conditions:

1. k=3, and (a;, a;) # (1,1), (a:, a;) # (2,2) for any pair ¢ and 7 with
1,5 € {1,2,3} and i # j. (Note: This condition implies that n > 3.)

2. a;2n(i=1,2,...,k) and at least (k — 2) a;’s among a;,as,...,ax
are equal;

3., 2n(i=1,2,...,k) and max{e; | i = 1,2,...,k — 1} — min{a; |
i=1,2,...,k-1} <1

4. a; 2 n (i=1,2,...,k) and max{a; | i = 1,2,...,k} —min{a; | i =
1,2,...,k} <2

All the above four results are proved before 1990 and they supposed to
be published in 1993. Because of some incidents in the publishing house, it
was delayed and three results became out of dated. The last three results
(presented in 2, 3 and 4) became special cases of a general result published
in [8]. We eliminate the proofs in this paper. Note that their methods of
proof are totally different.

2 Main Results

In connection with the problem mentioned in Section 1, we present and
prove an equivalent number-theoretic problem following the presentations
mentioned in [1]. We first introduce some new terms. Let a,b;,bo,...,b;
be natural numbers. If a = Z:=1 b;, then a is said to be decomposed into
b1, b2, ..., b, denoted by a = [by, b, ..., b]). If we let Ny = {b1,b2,...,b:},
then we simply write a = [N,] to mean a = [b;,b,, ..., b,]. Furtheomore,
if by, b2, ..., b, are pairwise distinct, then we have a distinct decomposition
of a. For natural numbers ay,as,...,ax (not necessarily distinct), if each
a; = [Ng,] = [b3,85,...,85] (i = 1,2,...,k) is a distinct decomposition
and N, N Ny; = O for i # j, then the decomposition of ay,az,...,ax
is called a distinct decomposition. If, furthermore, UX_;N,, = N, i.e.,
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Na,, Nay, ..., Na, is a partition of N, where N is a finite subset of nat-
ural numbers, then N, , Ng,,..., Ny, is said to be a whole decomposition
of {a1,az,...,ax} by N. We shall also say that {aj,az,...,ax} can be
wholly decomposed by N, or simply ay, a2, ..., ax can be wholly decomposed
by N.

Now the result stated in graph-theoretic terms in the end of last section
can be formulated equivalently as follows.

Theorem. Let @y, a; and a3 be natural numbers with a)+az+az = ("’2“),
(ai,a5) # (1,1) and (as, a;) # (2, 2) for any pair i and j withi,5 € {1,2, 3}
and i # j. Then a;,a2,a3 can be wholly decomposed by 1,2,...,n.

The following lemma, which will be frequently used in our proof, can be
found in [9).
Lemma. Let a; and ay be natural numbers with a; + a3 = (*}?) for a
natural number n. Then a,,as can be wholly decomposed by 1,2,...,n.

Proof of The Theorem. Consider the value of a; + as. If there exists
an integer r < n such that a; + a2 = ("}'), then by the lemma there exists
a partition of the set {1,2,.:.,7} into two subsets N, and N2 such that
for i = 1,2, a; = [N;]. Let N3 = {r + 1,7 +2,...,n}. Then a3 = [N3].
Therefore, N1, N2, N3 is a whole decomposition of a3, az,a3 by 1,2,...,n.

Assume now that there exist integers r < n and 0: 1 £ ¢ £ 7 such
that a; +a; = ("3!) + 0. Set o’ =r+1—-0. Then1l < o’ < 7. Set
Ms={o',7+2,7+3,...,n}. Then a3z = [M3].

Claim: At least one of a;, and a; will be at least .

Assume, otherwise, that ) < 0, a3 < 0. Then a; +a3 = ("}!) +0 < 20,
which implies that 0 < r < 1, a contradiction.

Without loss of generality, suppose o < ap. Let b = a3 —o. Then
a1 +by = ("3).

If there exists v, > 1 such that a; = ("), then we have a partition of
the set {1,2,...,r} into two subsets M; and M>:

M1={1,2,...,r1}andM2={r1+l,r1+2,...,r} (*)

with a; = [Ml] and b; = [MQ]

Otherwise there exists 7, > 1and § (1 < § < 1) such that a; = ("}!)+6.
Let & = r; + 1 — 6. Then we have a partition of the set {1,2,...,7} into
two subsets M, and M>:

M, = {1,2,...,6’—1,5'-}-1,...,1‘1,1'1-{-1} and M, = {5’,1‘1 +2,...,T}
(**)
with a = [M1] and bg = [Mg]
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Since 1 < ¢’ < r, it follows that o’ € M; U M,y. If 0/ € My, then

we can set Ny = My, Np = (Mo\{e'}H)U{r+1} wherer+1 =0+’
and N3 = {¢’,7 +2,...,n}. Then Ny, Na, N3 is a whole decomposition of
aj,a2,a3 by 1,2,...,n

Now we assume that o’ € M;. According to the two different cases of
a1 = (") and @y = ("} +6 (1 <6 < 1), My and M, will have two
different forms in (*) and (**).

Case 1: a; = (";’ 1). We discuss according to the following two subcases
r=ryandr>ry. '

Case 1.1: r = ;. In this case My = 0.

If o # o', then we can find the two distinct ¢ and o’/ in M; such that
o + 0’ =1 +1; thus we can set

N = (Ml\{d, 0"}) v{r+ 1}, Ny = {0}, and N3 = Mg,

which is a whole decomposition of a;,a2,a3 by 1,2,...,n. (From now on
we shall omit the words after “which” for simplicity. So when we set N,
N, and N3, they should always be a whole decomposition of a;, ay, az by
1,2,...,n.)

If o = o/, then r is an odd number. If r # 1,3, then we can find three
distinct numbers 1, o0 — 1 and ¢ in M;; thus we can set

Ny = (M1\{1,0 - 1,0"})0{1‘-!- 1}, Np = {1,0 - 1}, andN3; = M3.
Ifo=0',r=3and n>r+1=4, then o = ¢’ = 2; hence we can set
N1={1,5}, N2={2}, and N3={3,4,r+3,...,n}.

Ifo=0',7=3,and n =7+ 1 = 4, then a3 = a3 = ¢ = 2, which is not
allowed.

If o0 = o’ and r = 1, then a; = a3 = ¢ = 1, which is not allowed.

Case 1.2: r; <.

If ry is an even number or r; is an odd number but o’ # (r; +1)/2, then
7T=711+1-0"# o'. Thus we can set

N, = (Ml\{d',T})U{Tl-l-l}, Ny = (Mz\{r1+1})U{T, T-l-l}, and N3 = Mj3.
If r; is an odd number but ry # 1,3 and ¢’ = (r; +1)/2, then we can set

Ny = (Mi\{1,0' -1,0'})U{r1 +1},
Na = (M2\{r1 +1})U{l,0' — 1,741}, and N3 = M.
Ifry=3and o’ = (ry +1)/2 =2, thenif r = r; +1 = 4, we can set

Ny ={1,5}, N ={4,3},and N3 = {2,6,...,n};andifr > 7 + 1 =4, we
can set N1 = {1,5}, N2 = (M,\{5}) U {3,7+ 1}, and N3 = M3.
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Ifr1 =1, then ¢’ =1 and o = r. Therefore, n > r+2, for otherwise a; =
ag = 1, which is not allowed. We canset N; = M, Np = (Ma\{2})u{r+2},
and N3 = (Ma\{1,7 +2}) U{2,7 +1}. (If r = 2, then we have N; = {1},
Ny = {4}, and N3 = {2,3,5,...,n}; if r > 2, then we have N; = {1},
Ny={3,4,...,n,7+2},and N3={2,r + 1,7 +3,...,n}.)

Case 2: a; = ("f)+6(1<6<r). Inthiscaser; <r <=n.

Recall that M; and My are’given by (**), and o’ # & since o’ € M;. We
consider two cases.

Case 2.1: o/ < &. In this case §' > 1.

If & is an odd number or & is an even number with o’ # §'/2, then there
exists T in M; different than o’ such that §' = 7 + o’. Hence we can set

Ny = (Mi\{r,0'})U {8}, N2 = (Ma\{§'})U {7, +1}, and N3 = Ms.

If & is an even number with o/ = §’/2 and ¢’ # 1,2, then there exist two
different numbers 1 and ¢’ — 1 in M;. Hence we can set

Ny =(M\{1,0' - 1,0’} U {5},
Nz = (M\{6'})U{1,0' —1,r + 1}, and N3 = M.

If 6 is an even number with ¢’ = §/2 and ¢’ = 2, then §’ = 4. We shall
have the following two subcases depending on whether r = r; 4 1.

Ifr=r1+1,thenoc=r+1-2=r; and My = {4}. We can set

Nl = (Ml\{2’3»7'1 + 1}) U {4:7'1 + 2}1
N; = {3,1’1 + 1}, and N3 = Mz = {2,1‘1 +3,...,n}.

Ifr>ri+1l,theno=r+1-2=r—1. Wecan set

Nl = (Mi\{2,3,7'1 + 1})U {417'1 +2})

No = (M2\{4,71 +2})U {3,71 + 1,7 + 1},
and

Na=M; ={2,r+2,...,n}.

If & is an even number with ¢’ = §'/2and o’ =1,then§ =2and o =r.
We shall have the following two subcases depending on whether r = r; +1.
If r =7; 4+ 1, then we can set

N = (Ml\{l,rl + 1}) U {1‘1 + 2}, Ny = {2, ™+ l}, and N3 = M3,
If » > r1 + 1, then we can set

Ny=M\{1,m+1}))U{r +2},
No = (Ma\{r1 + 2hu{m+1,r+ 1}, and N3 = Ms.
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Case 2.2: o’ > §. Since o’ € My, it follows that ¢/ < r; +1. We
consider following two subcases.

Case2.21:r7r>r+2. Lett=r1+2-0".
If 7 # 0’ and 7 # &, then we can set

Ny = (Mi\{r,0'Yu{r1+2}, N2 = (M2\{r1+2})U{7,7+1}, and N3 = Ma.
If 7 = 6’ where &’ # 1,2, then we can set
Ny = (M\{1,8 —1,0’H U {r1 +2},
Ny = (Ma\{r;1 +2})U{1,8' — 1,7 +1}, and N3 = M.
i 7=6§ =2, then o/ =r;. We can set
Nl = (Ml\{]., 3) TI}) U {2’ 1+ 2}:
N2 = (MZ\{zirl + 2}) U {1,3,T+ 1}: and N3 = Ma.
Ifr=6"=1, then o’ =r; + 1. We can set

Ny =(Mi\{2,nn +1}U{1,r1 +2},
Ny, = (Mz\{l,rl + 2}) U {2,T+ l}, and N3 = {1’1 +1,7r4+2,... ,n}.

IfT=0',theno’ < 0’ +6 < 20’ =r1+2. Hence @ = ¢’ + &' is a number
in M, between ¢’ and r; + 2. We can set

Ny = (Mi\{d’,a})u{¢',r1 + 2},
Ny = (Mg\{&', ry + 2}) U {a,r + 1}, and N3 = Ms.

Case 2.2.2: 7 = r; + 1. In this case, M, = {§’}. Since ¢’ > § and
o’ +0 =711 +2, it follows that o + § < r; +2.

First, we assume that o + 8 = r; + 1. Then o’ = & + 1. Recall that
& <rs.
If ¥ < ry, then we can set

Ny = (Ml\{a, +1,71+ 1}) U{‘s,)rl +2}:N2 = {7'1 + 1}, and N3 = M3.
If§ =71 #1, then 0/ = r; + 1. We can set
N = (Ml\{l, 1+ 1}) U {1‘1 + 2}, N2 = {1‘1 + 1},

and

N3 = (Ms\{n + 1}) U {1,1‘]} = {1, r,T1+3,... ,n}.

If ¥ =r; =1, then a; = ap = 2, which is not allowed.
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Second, we assume that 0+6’ < ry+1. Recall that 0 +0’ = r+1 = r; +2.
Leta=6+0>§.
If @ # o', then we can set

Ny = (Mi\{0’,a}) U{&,r1 + 2}, N2 = {a}, and N3 = M;.
If a =0’ # & + 1, whete 6*# 1, then we can set
Ny =(M\{1,¢' -=1,0'})U{6',71 +2}, N2 = {1,6' — 1}, and N3 = Ms.
Ifa=0'+# 6 +1, where § =1, then 0 = ¢’ — 1. We can set
Ny =(M\{o'-1,0'})U{r1 +2}, N2 = {1,0' — 1}, and N3 = M.

Ifa=0'=6+1,where§ #1,thenoc=1,0'=r1+1=¢, and § =r;.
We can set

N1=(M1\{1,T1+1})U{1'1+2}, Ny = {1,1‘1}, and N3={T1+1, T143,... ,n}.

Ifa=0'=6+1, where§ =1, thena=0'=2,0 =1, and r, =1,
hence, a) = ap = 2, which is not allowed. o
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