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Abstract. Let G be a graph. A vertex subversion strategy of G, S, is
a set of vertices in G whose closed neighborhood is deleted from G. The
survival-subgraph is denoted by G/S. The vertex-neighbor-integrity of G,
VNI(G), is defined to be VNI(G) =sg\]ri?c;){lsl + w(G/S)}, where S is any

vertex subversion strategy of G, and w(G/S) is the maximum order of the
components of G/S. In this paper, we show the minimum and the maximum
vertex-neighbor-integrity among all trees with any fixed order, and also
show that for any integer ! between the extreme values there is a tree with
the vertex-neighbor-integrity [.

I. Introduction

In 1987 Barefoot, Entringer, and Swart introduced the integrity of a
graph to measure the “vulnerability” of the graph. [1] [2] In 1990 [5] we
modeled a spy network by a graph whose vertices represent the stations
and whose edges represent the lines of communication, and considered the
question of not only removing some vertices but also of removing all of their
adjacent vertices. Now we connect this idea and the concept of integrity to
create a new graph parameter, called “vertex-neighbor-integrity”.

To make the development of this new parameter clear, we give the
definitions step by step. Let G be a graph and u be any vertex in G.
N(u) = {v € V(G)|v # u, v and u are adjacent} is the open neighborhood
of u, and N[u] = {u} U N(u) denotes the closed neighborhood of u. A
vertex u in G is said to be subverted if the closed neighborhood of u, N{u],
is deleted from G. A set of vertices S = {u;,uz,...,um} is called a vertez
subversion strategy of G if each of the vertices in S has been subverted from
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G. Let G/S be the survival-subgraph left after each vertex of S has been
subverted from G. The vertez-neighbor-integrity of a graph G, VNI(G), is
defined to be

VNI(G) = sé‘%i?m {IS| +w(G/S)},

where S is any vertex subversion strategy of G, and w(G/S) is the maximum
order of the components of G/S.

Example 1: K, is a complete graph of oder n. VNI(K;) = 1.
Let v be a vertex in K. Then K, /{v} =0,s0 |{v}|[H+w(Kn/{v}) = 1+0=1.
Therefore,

VNI(K,)) = sgrg(ian){lsl +w(K,/9)} = {v}| +w(K,/{v}) = 1.

Example 2: K, ;,, wheren>1land m > 1,isa complete bipartite graph
with a bipartition (X,Y), where |X| = n and |[Y| = m. VNI(Ka,m) = 2.
Let v be a vertex in K, ;. Then Ky, /{v} contains n—1 (or m—1) isolated
vertices, so

VNI, ) = min {IS| + w(K, ./9)}

= [{v} +w(K, ,,/{v})
=1+1=2.

In this paper, we provide the minimum and maximum vertex-neighbor-
integrity among all trees with any fixed order, and also that for any integer
{ between the extreme values there is a tree whose vertex-neighbor-integrity
is I. [z] is the smallest integer greater than or equal to z. |z] is the greatest
integer less than or equal to z.

II. The Vertex-Neighbor-Integrity of Trees

Since VNI(K; n—1)=1 for n > 1, and VNI(G) > 1 for any connected
graph G, it follows that VNI(T) > VNI(K; n-;) for all trees T of order
n > 1. If a tree T (# Kin-1) has order at least 4, then VNI(T) > 2,
since there is no vertex v in T such that T/{v} = 0. Therefore Ky n- is
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a unique tree that has the minimum vertex-neighbor-integrity among all
trees of order n > 1.

Next, we show that the path P, has the maximum vertex-neighbor-
integrity among all trees of order n > 1. First, we evaluate the vertex-
neighbor-integrity of P,,.

Lemma 1 [2]: For positive integers, n and m, if n is fixed, then the function
g(m) = m + [n/m] has the minimum value [2/n] at m = [/n].

Theorem 2:

[va+3] -4, ifn>2

VNI(P,) =

1, ifn=1
Proof: If n = 1, it is clear that VNI(P,)=1. Hence assume that n > 2.
Let V(P,)={v1,v2,v3,...,v,}, and S={v;,, v;,, vi,. ..., vi,, } be any subset of
V(P,). If v; € S, then P, /S does not contain v;_,v;, and v;;;. Hence

n—3|S|] =[n—3m

“’(P"/S)Z[|S|+1 mtll

VNI(P,) = ng{}(ugn) {IS| +w(P,/S)}

. n—3m
Z,?,‘é%{’"+[m+1]} (1)

. n+3
——4+’I;l‘1-;_l(l]{m+ 1+[_m+1 }

= -4+ [2¥/n+3]. (By Lemma 1.)

[S|=m=[v/n + 3] — 1 achieves the minimum value of {m + [(n —3m)/(m+
1)]} and the equality of (1) holds by taking S to be a set of m equally
spaced vertices of P, with the distance of two consecutive members equal
to3+[(n—3m)/(m+1)]. m=[v/n+3]—-1and n—3m > 0if and
onlyifn>9orn=26. If n > 9 or n =6, then the set of S is taken as
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described above. If n =1 or 2, S is chosen the set of any single vertex. If
3 < n <5, S is chosen the set of a single central vertex. If n =7 or 8, let
V(P,) = {vi|l < i< n} and E(P,) = {[vi,vi41]]l i< n—1}. ThenSis
chosen the set of the vertices v3 and vs. QED.

Using the following lemma, we now show that the path P, has the
maximum vertex-neighbor-integrity among all trees of order n.

Lemma 3: If T is a tree of order n and 0 < m < n, then there is a subset
S C V(T) such that |S|= m and w(T/S) < [(n — 3m)/(m + 1)].

Proof: Assume that the result is not true for some n, and let T be a tree
of order n with largest diameter, say d, satisfying

n — 3|S|
w(T/8) > BT ]
for any subset S C V(T). From the proof of Theorem 2, we know that
T % P,, ie., d < n—2. Let P=(v;,vs,...,0441) be a longest path in T.
Then there is a vertex v in the path P such that the degree of v is greater
than 2; let the least index of such vertices be k. Then 1 < k <d+ 1. Now
construct the tree T/ which is T —[vi,vk41] + [v1, Ve+1] with order n and
diameter d’ > d (as shown in Figure 1). By the assumption on T, there is
a subset 8’ C V(T') = V(T) such that [S'| = m and

n-—3m
m+1 1

W(T'/8) <|

The subversion of v from T produces the path component

(v1, va,...,ug-1) and the component containing vi4s, called Cry3. (Note:
Ci4+3 may be 0.) The subversion of vy, from T’ produces the component
containing the path (v, vs. ..., v¢), called C3, and the component containing
k43, called Cp, 3. (Note: Cj,; may be 8.) C; contains a (k — 1)-path
and Ci43 = Cp .3, 50 T/{vk41} C T'/{vk41}. It is clear that T/{ve} C
T'/{vs}. T/{v} = T'/{v}, where v is adjacent to vr4; in T and v # v;.
T/{u} C T'/{u}, where u is adjacent to vg in T'. Hence vry;, v, v, u
¢ S, for all v, v # v, and v is adjacent to vgy, in T, and for all u, u is
adjacent to v in T'.

Next we show that v, g S':

Assume that v; € S'.
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(1) If there is no vertex v;;, where 2 <t; < k—2,in §', then let S be S’
with v, replaced by vi. T/S and T’/S’ have only one different component
as follows: T/S has the path component P = (v, vy, ..., v3—2), and T'/S’
has the component C’ containing the path (v3, v4, ..., v¢). Besides that, T/S
and T'/S' have the same components. Since the order of P < the order
of C’, all of the components of T/S have sizes smaller than or equal to
w(T'/8"), and w(T/S) < w(T'/S') < [(n — 3m)/(m + 1)], a contradiction.

(2) If there are vertices vy, vt,, ..., v, where r > 1, in §' with 2 <
t) <t3<..<tr < k-2, then we consider the following cases.

(i) If ¢, = 2 and t5 > 4, then let S be §’ with v, replaced by vi, and vy;
replaced by v;;_», where 2 < j <r.

(ii) If t;, = 2 and t, = 3, then let S be §’ with v;, replaced by v, v,
replaced by any vertex u adjacent to vx in T, and v, ; replaced by ve;_2,
where3 <j<r.

(iii) If t; > 3, then let S be S’ with vy; replaced by vg;_a, where 1 < j < r,
and v; replaced by v;.

Now we consider the sizes of all components of T/S and T'/S’. T/S and
T'/S' have the following different components:

T/S has the components ——
path Py = (vs,...,v¢,—4), if¢t; =2 and only if £, > 7, or
(vh PRIEY) v!z—4): if ty Z 3&
path P; = (v,...,v,,-4), where 2< j < r—1, and onlyifr >3,
path P, = (v, ...,vx_3),
Cu: the component containing uz, us, ..., (note: C, may be 9), as
shown in Figure 1,
path Py = (vy,...,v¢,—4), onlyift; > 5.

T'/S’ has the components ——
path P{ = (v4,...,v¢,-2), if t; = 2 and only if £, > 6, or
(vt|+2) eeey vtg—Z)r if tl Z 3,

path P} = (vy;42,...,0¢;4,-2), Where2< j <r—1, andonlyifr >3,
C;: the component containing the path (v, 42, ..y Uk), U1, and

Cu (containing uy, us, ...), (note: C, may be @), as shown

in Figure 1,
path Py = (vg, ..., v¢, -2), only if £, > 5.
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Besides above, T/S and T’/S’ have the same components. Since the order of
Py < the order of P}, the order of P; = the order of P}, forall2 < j < r—1,
the order of P, < the order of C., the order of Cy < the order of C;, and
the order of Py = the order of P}, all of the components of T/S have
the sizes smaller than or equal to w(T'/S’), and w(T/S) < w(T'/S') <
[(n —3m)/(m + 1)], a contradiction.

Therefore v, ¢ S'.

Since it has been shown that v, ve41,v,u € &', for all v adjacent to
vk41 in T’, and for all u adjacent to v in T', we know v and v must be
in T//S'. It follows that there must exist v;,,v;,,...,%;,, r > 1, in §' with
2< i <iy <izg<..<i <k—2 since otherwise vy and vy are in
the same component of T'/S’. Thus, taking S=5', w(T/S) = w(T'/S') <
[(n — 3m)/(m + 1)], a contradiction.

Let S* be S’ with v;; replaced by v;i;+k—i,, where 1 < j < r. Then
w(T/S*) > [(n—3m)/(m+1)], and this can hold only if the path component
(v1, v2, -y Vij4k—i,—2) of T/S* has order greater than [(n—3m)/(m+1)].
Hence

n—-3m
m+1

i+ k=i =22 ]+1.
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Let C} and Ci,, be two different components in T'/S’ containing v
and vi4; respectively, and h be the number of vertices in C}, that are
not in the set {vy,v2, ..., vi,—2}, hence

n—3m
m+1

Now, let S be the set S’ with v;; replaced by v;; 44, 1 < j < r, and consider
the sizes of the components of T/S. By the constructions of $' and S, all
components of T/S, except those containing v; and v, have at most

[(n = 3m)/(m + 1)] vertices. The vertex set of the component of T/S con-
taining v; is obtained from the vertex set of C} , by deleting the h vertices
Ciy1—1{v1,v2,...,v;, -2} and appending vertices v;,_1,i,, Vi, 41, ..., Vi, +h=2
with no change in number of vertices. Similarly, the vertex set of the compo-
nent of T/S containing v, is obtained from the vertex set of C}, by deleting
the h vertices v; 42, vi +3, ..., Vi, +h, Vi, +h+1 and appending the h vertices
of Ci,y — {v1,v2,...,v5,_2} with no change in number of vertices. Hence
w(T/S) < [(n = 3m)/(m + 1)], a contradiction.

Therefore we obtain the result of the lemma. QED.

15hs[ —(1-2)<k—i, —1.

Theorem 4: The path P,, has the maximum vertex-neighbor-integrity
among all trees of order n > 1.

Proof: It is trivial for n = 1.
Let T be any tree of order n > 2. By Lemma 3, we have

VNI(T) = sg\lli(nT) {IS| +w(T/S)}

< min {m+[nm_f'ln }, if |S|=m.

By the proof of Theorem 2, VNI(P,) = m+ [(n — 3m)/(m + 1)] with m =
[v/n + 3] — 1. Therefore the path P, has the maximum vertex-neighbor-
integrity among all trees of order n > 1. QED.

From the proof of Theorem 2, it is easy to obtain the following result,
which will be used later on.

Corollary 5: There are only paths P, = P,, P3, or Ps satisfying the
following condition (A) for any subset S of V(P,), if VNI(P,) = |S|
+ w(Py/S), where n > 2, then w(P,/S) = 0.
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Proof: If P,, where 2 < n < 5, satisfies the condition (A), then by the
proof of Theorem 2, n =2 or n = 3.

If P,, where n > 9 or n = 6, satisfies the condition (A), let S* be a
subset of V(P,) satisfying VNI(P,) = [S*| + w(Pn/S*), then by the proof
of Theorem 2,

n—3|S"|1,

WS =TT

where

8*|=[vn+3] -1

Since P, satisfies the condition (A) and VNI(P,,) = |S*| +w(P,/S*),

we have w(P,/S*) = 0, and hence VNI(P,) = |S*|. By Theorem 2,
VNI(P,) = [2v/n + 3] — 4. Therefore [2v/n+3] —4=[Vn+ 3] -1, and
[2v/n + 3] — [V/n + 3] = 3. This implies that n =6 or 9 (sincen =7 and 8
have been excluded).

It is easy to verify that Pg satisfies the condition (A) but P7, P, and
Py do not. Hence there are only paths P, = Pa, P3, or P satisfying the
condition (A) —— for any subset S of V(Py), if VNI(P,) = S| +w(Pa/S),
where n > 2, then w(P,/S) =0. - QED.

Lemma 6 [2]: For any positive integer n, [2v/n +1] - [2v/n] < 1, and the
equality holds if and only if n = m? or n = m? + m for some integer m.

We have shown that the path P, has the maximum vertex-neighbor-
integrity among all trees of order n. However, Py, is not the only tree
which has the maximum vertex-neighbor-integrity. We evaluate the vertex-
neighbor-integrity of Ty (as shown in Figure 2), where 1 < k < n—2,
in the next theorem, stating also that there are at least [v/n +3 — (13/4)]
nonisomorphic trees of order n having the same vertex-neighbor-integrity
as P,.

Theorem 7:

k vertices
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([2vn+3] -4, ifl1<k<van+3-4E
[2vn — k] - 3, fvn+3-—8<k<n-7 and
k#n-9;
VNUTop) = [oymn=FFT] -3, ifk=n—5n—6n—9;
2, fk=n—-4,n-3;
\ 1, fk=n-2.

Proof: If k =n — 2, T, is a star, and VNK(T, ) = 1.

Now we consider the case of k < n— 3. Let S* be a subset of V(T i)
satisfying VNI(Ty k) = |S*| + w(Tn,x/S*).

If v; € S*, for some end-vertex v;, we may let §'= (§* — {v;}) U {v},
then

IS'] +w(Tn 1 /S) < IS*] + w(Tn i /S)-

Since
[S*] + w(Ty,x/S") = VNKT,, )
= i {1 +e(T/s)}
we have

VNI(T, ;) = |S'| + w(Tnt/S')-

Therefore without loss of generality, we may assume that the end-
vertices vy, v2, ..., v & S”.

Now we discuss two possibilities:

Case 1. If v € S*, then
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VNI(T, ;) = VNI(P, _;,z) +1

{([2\/(n—k-2)+3'|—4)+1, ifn—(k+2)>2:
1+1, ifn—(k+2)= L
(By Theorem 2.)
{f?\/n—k+l]—3. ifk<n-—4
2, if k=n-3.

Case 2. If v € S*, then let P = (w;, ws, w3, ..., Wyt -1 ) be a path (as shown
in Figure 2), and r be the least index for which w, € S§*.

Subcase 1. If r = 1, then
2, ifrn—(k+3)=0,
VNI(T, ) = ¢ VNI(P,_(;,3)+2. ifn— (k+3)=2,3,6,
VNI(P,_(443) +1, ifn—(k+3)#0,23,6.
(By Corollary 5.)
r 2, ifk=n-3,
[2m1 -2, fk=n-5n-6,n-9,

= 4
2, ifk=n—4,

 [2vn—k] -3, fk#n-3n—-4n-5,n-6,n-9.
(By Theorem 2.)

Subcase 2. If » > 1, then v, v, v9, ..., and v; are in the same component
of Tp/S*. So

VNK(T, ;) = VNI(P,) = [2Vn + 3] — 4.

Ifk=n—4andk >1,then [2v/n—k+1]-3=2,and [2y/n +3]-42> 2.
Ifk=n—-3and k> 1, then [2/n+3] -4> 2.
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Hence,
VNIT,,.)=2, if k=n-3 or k=n—4,

and

VNKT, )= min ([2Va—Fk+1]-3,[2VR—k| —h,[2Vn+3] - 4),

1<k<n—5

where h = 2 (whenk =n-5,n—6,n—9) or 3 (when k £ n—5,n—6,n—9).
By Lemma G,

[2Vn—k+1] -3<[2Vn-k] -2,

wherek=n-5, n—6, or n—9.

VA +3l—4< VA= Fl =8 if k<VATI- 2

and

[VAT3 —4> [2vVa—F| -3 if k>Va¥ —gu

Therefore,

( [2v/n + 3] — 4, if1<k<vn+3-1
[2\/7sz]—3. ifﬁ—%skSn—7 and
k#n-9;
VNIT, ,)=4q[2vVn—Fk+1]-3, ifk=n-5n—6,n—09;
2, fk=n-4,n-3;
1, if k=n-2.

QED.

Among all trees of order n, the maximum vertex-neighbor-integrity
is [2y/n+3] — 4, and the minimum is 1. For any integer ! between the
extreme values, we also can find a tree whose vertex-neighbor-integrity is
I, as shown below.
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Theorem 8: If [ is any integer, where 1 <! < [2v/n + 3] — 4, then there
is a tree T of order n such that VNI(T) = I.

Proof: First we show that VNKT, ,.,) < VNI(T, ,) S VNKT, ., ,)+1,
for all k, 1 < k¥ < n— 3. (Compare T, ¢+, in Figure 3 with Ty ; in Figure
2)

U1
v2
Tpis): O oo k +1 vertices
Wp—k-2
Vi

Vk+1

Figure 3

By Theorem 7, it is easy to obtain the first inequality. To show the sec-
ond inequality, we let S* be a subset of V(T,, , , ,) satisfying VNI(T,, ,,,) =
[S*| + w(Tnk41/S*). It is clear that ve4y & S*. So S* is also a sub-
set of V(Tn k). Then w(Tp/S*) < w(Tnk41/S*)+1 and VNI(T, ;) <
I*] 4 w(Tn k/S") < I8*| + w(Tn41/S%) + 1= VNI(T, 1 ,,) + 1.

Since path P,=T,, and star K;,_1=T,n_2 are extreme cases of
Th k, it follows that Ty i, where 1 < k < n — 2, achieve all values between
VNI(K, ,,_,) = 1 and VNI(P,)) = [2vn + ]—-4. QED.
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