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ABSTRACT. For nonempty graphs G and H, H is said to be G-
decomposable (written G|H) if E(H) can be partitioned into
sets Ey, .-, E, such that the subgraph induced by each E; is
isomorphic to G. If H is a graph of minimum size such that
F| H and G| H, then H is called a least common multiple of
F and G. The size of such a least common multiple is denoted
by fem(F,G). We show that if F and G are bipartite, then
£em(F, G) < q(F)-q(G), where equality holds if (q(F),¢(G)) =
1. We also determine fem(F, G) exactly if F and G are cycles or
if F = P, G = Kn wherenisoddand (m -1, 4(n—-1)) =1,
in the latter case extending a result in [8).

1 Imtroduction

A nonempty graph H is decomposable into the subgraphs Gy, --- , G, of H
if G; is isolate-free (i.e., has no isolated vertices) for each i =1,--. ,n and
E(H) can be partitioned into E(G1)U---U E(Gy,,). If G; 2 G for each i,
then H is G-decomposable, in which case G divides H or, equivalently, is a
" divisor of H, denoted by G | H. If H is G-decomposable into at least two
copies of G and G 2 K3, then H is non-trivially G-decomposable and G
is a proper divisor of H. Clearly, K, | H and H | H; thus K, and H are
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called the trivial divisors of H. Obviously, if G | H then q(G) | ¢(H). That
the converse is not true can be seen by, for example, taking H =2 K;3+¢
and G = 2K,.

We henceforth consider only isolate-free graphs. Following (3}, H is called
a least common multiple of F and G if H is a graph of minimum size such
that F | H and G | H. The set of all least common multiples of F' and
G is denoted by LCM(F, G) and the size of any such graph by éem(F, G).
Least common multiples of any nonempty finite set of graphs are defined
similarly. That every such set of graphs has a least common multiple follows
directly from the following result of Wilson [10].

Theorem A. [10]. Let F be a graph of size q. Then F | Ky provided p is
sufficiently large, q | (5) and d | (p — 1), where d is the greatest common
divisor of the degrees of the vertices of F.

The sizes of least common multiples of several classes of graphs were
determined in [3,8,9]. For other results on least common multiples and the
related concept of greatest common divisors (defined in [3}), see [1,2,4,6,7].

While it is obvious that éem(F, G) = k €em(q(F), g(G)) for some integer
k > 1, Theorem A does not provide a good upper bound for k. A lower
bound is given in Theorem B. In Section 2 we show that for ' and G bipar-
tite, fem(F, G) < q(F) - q(G). Equality obviously holds if (¢(F), ¢(G)) = 1.

Theorem B. [8]. For any connected graphs F and G,

q(G) ifp(F) < p(G) and ¢(F) | ¢(G)

>
bem(F, G) 2 {M L otherwise

where
L = tem(q(F), q(G))

o = [EOHDY) [0 00

In Section 3 we determine ¢cm(Cp, Cy,) for all m,n > 3, thus improving
the result for bipartite graphs when m and n are even.

Least common multiples of paths versus complete graphs were investi-
gated in [8], where ¢em(P,, K3), fem(Pp,, K4) and éem(Pp,, K,), for all
m > 2 and n odd, (m—1,(3)) = 1, were determined. In Section 4 we
determine cm(Pp, K») where n is odd and (m -1, j(n— 1)) =1.

2 Bipartite Graphs

In general, upper bounds obtained by using Theorem A would be extremely
large and no good general upper bound for £cm(F, G) is known. We begin
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by improving this situation for bipartite graphs and obtain an upper bound
in this case which is often equal to the lower bound in Theorem B.

Proposition 1. For any bipartite graphs F and G,
tem(F,G) < q(F) - 9(G).

Proof: Informally, we construct a bipartite graph H with F | H, G | H
by replacing each edge e of F with a copy of G, where the partite sets of
G replace the endvertices of e. Let F (G, respectively) have bipartition
(A, B) ((C, D), respectively), where A = {ay,---,aq}, B = {b1,---,b.},
C={c1, - ,c;} and D= {dy,-+-,d:}. Let V(H) =V UW, where

V= {vll”" 1V1gy V21, , V25, 1vq8}
and

W= {wll:"' s Wie, W21, - , W, - :wrt}-

Join v;; to wyy if and only if a;b; € E(F) and ¢;d, € E(G). Consider any
fixed edge c;dy of G. Then the edges {vijwzy | @;ib; € E(F)} induce a copy
of F in H and such copies of F' corresponding to distinct edges of G are
edge disjoint, hence F' | H. Similarly, G | H and the result follows since

q(H) = g(F) - q(G). o
Since the graph H constructed above is bipartite, repeated applications
of Proposition 1 immediately.give

Corollary 2. For any bipartite graphs G,,:-- ,Gy,

€em(Gy,--- ,Gn) < f[ 9(Gi).

i=1

Further, if the graphs G; have coprime sizes, then equality holds.

3 Cycles

By determining £em(Cy, Cy) for all pairs of cycles, we now improve Propo-
sition 1 in the case where m and n are even. For any path P in a graph G,
let —P be the path obtained by reversing the direction of P.

Theorem 3.
(i) fem(Cp,, Ckm) =2km (k2 2)
(ii) €em(Cpn,Cy) = bem(m,n) otherwise.

Proof: (i) Clearly, &em(Cyn, Ckm) # km, hence €em(Ciy,, Ciern) > 2km. We
construct G € LCM(Cp,, Cikmm) with ¢(G) = 2km as follows: Partition km
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into 2k parts of size at most m — 1 each; say km = ny + - - - + nok, where
n; < m-1 for each , and note that km = (m—n; )+ - -+(m—ny;). Consider
two disjoint cycles R = S = Ciy,. Partition R (S, respectively) into 2k
consecutive internally disjoint paths R; (S;, respectively) with length =n;
(m — n; respectively) and endvertices u;_; and u; (w;_; and w;), where
ug = ugx (wo = wax), i = 1,---,2k. Let G be the graph obtained by
identifying u; and w; for each i = 1,--.,2k. Clearly, Cy,, | G. Also,
the 2k copies of Cy, in G are the cycles formed by R; followed by —S;,
i=1,...,2k. Therefore G € LCM(Cy,, Ckm) and €ecm(Crm, Crm) = 2km.
(ii) Let n > m and k = ged(m,n); say m = rk and n = sk so that
fem(m,n) = rsk. If r = 2, let G be the graph of size rsk = 2n obtained
from two copies of C,, with vertex sequences vp, - - - ,Un—1 and wp, - - , Wn_1,
respectively, by identifying the vertices v;x and w;; foreachi=0,.--,s—1.
As in the proof of (i), Cy,, | G and C,, | G. Thus we may henceforth assume
that » > 3.

Partition » into s —1 parts of size at most m—1 each,sayn=mn;+---+
ns—1 where 0 < n; < m —1 for each j. (Elementary arithmetic shows that
this is always possible.) Similarly, partition m into r — 1 parts of size less
than n—1each,saym =mi+---+my—1, 0 <m; <n—1 for each i. Note
that

r—1 r—1 8—1
Ytn-m)=@-1)n-) mi=rsk-n-m=> (m-n;). (1)
i=1

i=1 J=1

Consider three disjoint cycles R 2 C,,,, S = C,, and T = C,sx——n. Parti-
tion R (S, respectively) into »r—1 (s—1, respectively) consecutive internally
disjoint paths R; (S;) with length m; (n;) and endvertices u;—; and u; (vj—;
and v;), where up = 4,1 (Vo =vs—1), fori=1,--- ,r=1(G=1,--- ,5-1).
Partition T into r — 1 (s — 1 respectively) consecutive internally disjoint
paths T; (TJ’) with length n — m; (m — n;) and endvertices z;_; and z;
(yj—1 and y;), fori = 1,..- 47 =1 (§j = 1,---,58 — 1), where 29 = 2,
(yo = ys—1). Note that by (1), these partitions of T are always possible.
Also note that possibly z; = y; for some i and j.

Now let G be the graph obtained by identifying u; and z; (v; and y;) for
eachi=0,..- ,7r=2(j=0,---,5—2). Then Cy,, | G, the copies of C,, being
R and the cycles formed by S; followed by —T,f ,j=1,---,8—1; similarly,
the copies of C,, in G are S and the cycles formed by R; followed by —T;,
i=1,--.,r —1. Since ¢(G) = rsk = fcm(m, n) the result follows. ]

4 Paths versus Complete Graphs
If we restrict Theorem B to the case F £ P, and G £ K,,, we obtain
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Theorem C. [8]. For all integers m > 2 and n > 3,

(3) ifm<nandm-1|(3)
>
lcm(Pm» Kn) = {ML Othemise:

where L = tem(m —1, (3)) and M = [(m — 1)(n —1)/L].

In the case where n is odd, the following upper bound was also obtained
in [8].

Theorem D. [8]. For all m > 2 and n > 3, where n is odd,
em(Pp, Ky) < (m-1) (;) .

An immediate corollary of the above two results is

Theorem E. [8]. Forallm >'2 andn > 3, wheren is odd and (m — 1, ())
=1,

tem(Ppn, Ky) = (m — 1) (;) =ML.

We now extend Theorem E to show that the lower bound given in Theo-
rem C is also exact if (m — 1, 3(n — 1)) = 1. We need the following result,
which can easily be obtained as a consequence of the standard proof of the
fact that every complete graph of odd order = is the edge sum of {(n — 1)
hamilton cycles (cf. [5, p. 237)).

Theorem F. Let u and v be two vertices of K,,, where n is odd. There
exists an edge-decomposition of K,, into n — 1 (u,v)-paths @, -+ ,Qn_1
such that Q; has length i and Q; U Qn—; is a hamilton cycle of K.

(Graphs of size (3) (for some integer n > 2) which are decomposable into
n —1 paths @1, ,Qn—1 With [E(Q:)| =i (1 £i < n—1) are called path
perfect graphs.)

Theorem G. If n is even, then K, is decomposable into n — 1 paths of
length }n, all of which originate at the same vertex of K.

Proof: Let V(K,) = {0,--- ,n — 1} and consider the representation of
K, obtained by arranging the vertices 1,--- ,n — 1 in a regular (n — 1)-
gon with vertex 0 in the centre. Let Q; be the path with vertex sequence
0,4,é+1,4—1,442,i—2,---,7, where r = i + 1n if n = 0 (mod 4) and
r=i—|in] if n =2 (mod 4). Then Q; has length 3n and it is easy to see
from the representation that E(Q;) U ---U E(Q,) partitions E(K,). O

The following two types of graphs will be used in the construction of least
common multiples of P,, and K. Let G; = ... & Gq = K,. Denote by
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F,. 4 the chain of graphs Gy,!-- ,Gq such that V(G;) N V(Git1) = {ai+1}
and V(G;)NV(G;) = 0 if j ¢ {i —1,4,i,+1}, and by H, , the necklace
consisting of Gy,---,G, with the same conditions as for Fy g, but with
arithmetic modulo ¢g. In Fy, g, let a; (ag41, respectively) be any vertex of
G1 (Gy, respectively) distinct from a2 (aq, respectively).

We use the notation of Theorem C in the following theorems.

Theorem 4. If n | m —1 and n is odd, then

em(Pp, Kp)=(m —-1)(n—1)= ML.

Proof: Let m — 1 = un for some integer z > 1. By Theorem C,
tem(Pm, Kn) 2 [(m - 1)(n—1)/L] x L,

where L = fem (m — 1, in(n —1)). Now, (m — 1)(n — 1) is a multiple of
m —1 and of jn(n —1) = (m — 1)(n — 1)/2u. Thus (m —1)(n—1)/L is
integral and fem(P,,, K,,) > (m —1)(n—1) = ML.

For the reverse inequality, let ¢ = 2u and consider the graph F, 4 with
1gn(n—1) edges as well as the (n — 1) (a1, ag+1)-paths P;, passing through
az,--- ,aq, and respectively obtained by the concatenation of g paths guar-
anteed by Theorem F: Let Q; denote the relevant path of length i in the
subgraph G, of Fp, 4. Then

Pi=Q1n-1UQ21UQ3n-1UQ4s1U---UQq
Pr=Q1n-2UQ22UQ3n2UQ42U---UQq2

Po1=Q11UQ2,1UQ31UQqn-1U---UQqn-1.

Each P; has length un = m — 1 and these (r — 1) paths partition E(Fy q).
Consequently, fem(Pp,, K,) = M L. O

Theorem 5. If m — 1 | n, then éem(Pm, Kn) = M L.

Proof: Let n = v(m—1) for some integer » > 1. If m <nand m-1] (3),
i.e. if v > 1 and n is odd or v is even, then by Theorem C, éem(Fp, Ky,) >
(3)- But in this case, L = v(m —1)(n = 1) 2 (m — 1)(n — 1) and so
ML = (3). In all other cases ML = n(n—1). The lower bound is given by
Theorem C. We show that the upper bound also holds.

If n is odd and v = 1, the result is proved in Theorem 4. If n is odd
and v > 1, then K, is decomposable into -,:;(n —1) hamilton cycles, each of
which is decomposable into v paths of length m — 1. If n =nd v are both
even, then by Theorem G, K, is decomposable into n — 1 naths of length
in = Ju(m - 1), each of which is decomposable into 3v paths of length
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m — 1. If n is even and v is odd, consider the graph F, 5. For i = 1,2, the
subgraph G; = K,, of F, , is decomposable into n — 1 paths of length %n,
each path originating at az. Hence Fj, 2 is decomposable into n — 1 paths
of length n, each of which is decomposable into v paths of length m —1. O

Nowlet m—1 = ku and n = kv, where nisodd, u,v > 2, (g, v) =1,k > 1
i.e. (m—1,n)# 1and (i, 1(n—1)) = 1. (Note that since (k,n — 1) =1,
(1, 3(n—1)) = 1if and only if (m —1, (n — 1)) = 1.) Then, using the
notation of Theorem C,

L =écm (kp, %Iw(n - 1)) = %k;w(n -1)= %,u.n(n -1)

1
= 5(m—u(n-1),

-
and
ML= %pn(n -1).

Theorem 6. If n is odd and (m — 1, (n - 1)) =1, then

fem(Prn, K,) = %;m(n —1)=ML.

Proof: If u =1, the result is proved in Theorem 5 and if v = 1, the result
is proved in Theorem 4. Hence we may assume x > 1 and v > 3 (note
that v is odd). Then m —1/(3) and by Theorem C, em(P,n, K,,) > ML.
For the reverse inequality we exhibit a graph G € LCM(P,,, K,) of size
1pn(n - 1). We consider three cases.

Case 1. p = 2. In the graphi G = F,, 3 each G;, i = 1,2, decomposes into
%(n— 1) hamilton cycles, each of which decomposes into 2 paths originating
at az (where {as} = V(G1) N V(G2)) and of respective length m — 1 = 2k
and n—(m—1) = (v—2)k. Each of the 1(n— 1) paths of length (v —2)k of
G can be concatenated with one of the %(n —1) paths of length (v —2)k of
G2 to form a path of length 2k(v — 2), which decomposes into v — 2 paths
of length m — 1. Therefore Fy, 2 € LCM(Pp,, K,,).

Case 2. p > 3 is odd. Consider the eulerian graph G = H, , of size
1pn(n —1). Let S’ be the sequence of integers

n-11n—-22n-33,:-- ,-;-(n-i-l),%(n—l)

and let S = {s,} be the sequence of length u(n — 1) obtained by the
concatenation of x copies of S’. Let R be the circuit of G obtained by
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traversing the necklace clockwise n —1 times, beginning at a;, and by using
the (a;,a;+1)-path @, of length s, in G; if G; is the r'th copy of K,
encountered on the circuit. Using arithmetic modulo g, the path Q3 of
length n — 1 is used in the subgraphs G; of Hy,, for

ie{l,(n-1)+1,2r-1)+1,---,(p—1)(n - 1) +1}.

These subgraphs are all distinct, for suppose a(n —1)+1=pn—-1)+1
(mod p) for 0 < @ < f# <u—1. Then (8 — a)(n —1) = 0 (mod u),
contradicting (u,n — 1) = 1. Therefore the path Q,_, is used exactly once
in each Gy, i = 1,--- ,u. Similarly, each Q;, j = 1,--- ,n — 1, is used
exactly once in each G;. Thus R is an eulerian circuit of G. Now consider
any vertex u of G, say u € V(G;), and let C be the cycle of length z (say)
consisting of the subtrail of R between two successive passages through
u. If E(C) N E(G;) = {aiai+1}, then C contains n edges in any pair of
successive copies of K,, beginning with G;1, and thus z =1+ (s — 1)n.
Otherwise, if C contains at least two edges in G;, then C contains at least
n — 1 edges in any two successive copies of K, beginning with G, and
therefore z > 2+ 3(s — 1)(n — 1). Thus

z>l+%(#.—1)(n—-1)21-!-%([1—1)(3/:—1)
and
z—(m—l)>1—kp.+%(p—l)(3k—l)

= 2 =9k-1)
>0.

Therefore R can be decomposed into paths of length ki = m — 1 and thus
H, , € LCM(Pn, K,).

Case 3. u>4iseven. Let G=Hy,, and foreachi=1,--- ,n—1, let
S; be the sequence n — i,i,n — 4,4, -+ ,n —i,% of length u. Let S* be the
sequence 5152 - - - Sp—1 of length p(n —1) and define the eulerian circuit R*
of G similar to R in Case 2, using the sequence S* instead of S. For any
vertex u of G, the number of edges of R* between two consecutive passages
through u is at least

1
%(y.—2)n+3>§(;£—2)ku
>pk=m-1 if p>6 orif v>4 and p2>4.
Thus in these cases, R* can be decomposed into paths of length m—1. In the
casev=3and p=4,ie,n=3kandm-1=4k,letT;,i=1,-.-,|3k/2],
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be the sequence 4, ,3k — 1,3k — 4,3k — 4,3k — 4,4,i. By using Theorem F
to ensure that an edge-decomposition of each Kj; is obtained, let X; be
the closed trail of length 12k in G = Hzy4 corresponding to T;. Each X;
can be decomposed into three subtrails of length 4k and since each subtrail
contains at most three of the vertices @i, a2, a3 and a4, a decomposition of
X; into three paths Py, results. But the concatenation of the X; forms
an eulerian circuit of G and we thus have the required path decomposition
of G. ]
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