On The Sizes Of Least Common Multiples Of Several Pairs Of Graphs

O. Favaron

Laboratoire de Recherche en Informatique Université de Paris-Sud Bât 490-91405 Orsay Cedex France

C.M. Mynhardt

Department of Mathematics, Applied Mathematics & Astronomy University of South Africa 0001 Pretoria South Africa

ABSTRACT. For nonempty graphs G and H, H is said to be G-decomposable (written G|H) if E(H) can be partitioned into sets E_1, \dots, E_n such that the subgraph induced by each E_i is isomorphic to G. If H is a graph of minimum size such that $F \mid H$ and $G \mid H$, then H is called a least common multiple of F and G. The size of such a least common multiple is denoted by $\ell cm(F,G)$. We show that if F and G are bipartite, then $\ell cm(F,G) \leq q(F) \cdot q(G)$, where equality holds if (q(F),q(G)) = 1. We also determine $\ell cm(F,G)$ exactly if F and G are cycles or if $F = P_m$, $G = K_n$ where n is odd and $(m-1, \frac{1}{2}(n-1)) = 1$, in the latter case extending a result in [8].

1 Introduction

A nonempty graph H is decomposable into the subgraphs G_1, \dots, G_n of H if G_i is isolate-free (i.e., has no isolated vertices) for each $i=1,\dots,n$ and E(H) can be partitioned into $E(G_1) \cup \dots \cup E(G_n)$. If $G_i \cong G$ for each i, then H is G-decomposable, in which case G divides H or, equivalently, is a divisor of H, denoted by $G \mid H$. If H is G-decomposable into at least two copies of G and $G \ncong K_2$, then H is non-trivially G-decomposable and G is a proper divisor of H. Clearly, $K_2 \mid H$ and $H \mid H$; thus K_2 and H are

called the *trivial divisors* of H. Obviously, if $G \mid H$ then $q(G) \mid q(H)$. That the converse is not true can be seen by, for example, taking $H \cong K_{1,3} + e$ and $G \cong 2K_2$.

We henceforth consider only isolate-free graphs. Following [3], H is called a least common multiple of F and G if H is a graph of minimum size such that $F \mid H$ and $G \mid H$. The set of all least common multiples of F and G is denoted by $\mathrm{LCM}(F,G)$ and the size of any such graph by $\ell\mathrm{cm}(F,G)$. Least common multiples of any nonempty finite set of graphs are defined similarly. That every such set of graphs has a least common multiple follows directly from the following result of Wilson [10].

Theorem A. [10]. Let F be a graph of size q. Then $F \mid K_p$ provided p is sufficiently large, $q \mid \binom{p}{2}$ and $d \mid (p-1)$, where d is the greatest common divisor of the degrees of the vertices of F.

The sizes of least common multiples of several classes of graphs were determined in [3,8,9]. For other results on least common multiples and the related concept of greatest common divisors (defined in [3]), see [1,2,4,6,7].

While it is obvious that $\ell \operatorname{cm}(F,G) = k \ell \operatorname{cm}(q(F),q(G))$ for some integer $k \geq 1$, Theorem A does not provide a good upper bound for k. A lower bound is given in Theorem B. In Section 2 we show that for F and G bipartite, $\ell \operatorname{cm}(F,G) \leq q(F) \cdot q(G)$. Equality obviously holds if (q(F),q(G)) = 1.

Theorem B. [8]. For any connected graphs F and G,

$$\ell cm(F,G) \geq \begin{cases} q(G) & \text{if } p(F) \leq p(G) \text{ and } q(F) \mid q(G) \\ ML & \text{otherwise} \end{cases}$$

where

$$L = \ell cm(q(F), q(G))$$

and

$$M = \max \left\{ \left\lceil \frac{2\delta(G)q(F)}{\Delta(F)L} \right\rceil, \left\lceil \frac{(p(F)-1)q(G)}{(p(G)-1)L} \right\rceil \right\}.$$

In Section 3 we determine $\ell cm(C_m, C_n)$ for all $m, n \geq 3$, thus improving the result for bipartite graphs when m and n are even.

Least common multiples of paths versus complete graphs were investigated in [8], where $\ell cm(P_m, K_3)$, $\ell cm(P_m, K_4)$ and $\ell cm(P_m, K_n)$, for all $m \geq 2$ and n odd, $(m-1, \binom{n}{2}) = 1$, were determined. In Section 4 we determine $\ell cm(P_m, K_n)$ where n is odd and $(m-1, \frac{1}{2}(n-1)) = 1$.

2 Bipartite Graphs

In general, upper bounds obtained by using Theorem A would be extremely large and no good general upper bound for $\ell cm(F, G)$ is known. We begin

by improving this situation for bipartite graphs and obtain an upper bound in this case which is often equal to the lower bound in Theorem B.

Proposition 1. For any bipartite graphs F and G,

$$\ell cm(F,G) \leq q(F) \cdot q(G)$$
.

Proof: Informally, we construct a bipartite graph H with $F \mid H$, $G \mid H$ by replacing each edge e of F with a copy of G, where the partite sets of G replace the endvertices of e. Let F (G, respectively) have bipartition (A, B) ((C, D), respectively), where $A = \{a_1, \dots, a_q\}$, $B = \{b_1, \dots, b_r\}$, $C = \{c_1, \dots, c_s\}$ and $D = \{d_1, \dots, d_t\}$. Let $V(H) = V \cup W$, where

$$V = \{v_{11}, \cdots, v_{1s}, v_{21}, \cdots, v_{2s}, \cdots, v_{qs}\}$$

and

$$W = \{w_{11}, \cdots, w_{1t}, w_{21}, \cdots, w_{2t}, \cdots, w_{rt}\}.$$

Join v_{ij} to w_{xy} if and only if $a_ib_x \in E(F)$ and $c_jd_y \in E(G)$. Consider any fixed edge c_jd_y of G. Then the edges $\{v_{ij}w_{xy} \mid a_ib_x \in E(F)\}$ induce a copy of F in H and such copies of F corresponding to distinct edges of G are edge disjoint, hence $F \mid H$. Similarly, $G \mid H$ and the result follows since $q(H) = q(F) \cdot q(G)$.

Since the graph H constructed above is bipartite, repeated applications of Proposition 1 immediately give

Corollary 2. For any bipartite graphs G_1, \dots, G_n ,

$$\ell cm(G_1,\cdots,G_n) \leq \prod_{i=1}^n q(G_i).$$

Further, if the graphs G_i have coprime sizes, then equality holds.

3 Cycles

By determining $\ell cm(C_m, C_n)$ for all pairs of cycles, we now improve Proposition 1 in the case where m and n are even. For any path P in a graph G, let -P be the path obtained by reversing the direction of P.

Theorem 3.

- (i) $\ell cm(C_m, C_{km}) = 2km \qquad (k \ge 2)$
- (ii) $\ell cm(C_m, C_n) = \ell cm(m, n)$ otherwise.

Proof: (i) Clearly, $\ell cm(C_m, C_{km}) \neq km$, hence $\ell cm(C_m, C_{km}) \geq 2km$. We construct $G \in LCM(C_m, C_{km})$ with q(G) = 2km as follows: Partition km

into 2k parts of size at most m-1 each; say $km=n_1+\cdots+n_{2k}$, where $n_i \leq m-1$ for each i, and note that $km=(m-n_1)+\cdots+(m-n_{2k})$. Consider two disjoint cycles $R\cong S\cong C_{km}$. Partition R (S, respectively) into 2k consecutive internally disjoint paths R_i (S_i , respectively) with length n_i ($m-n_i$ respectively) and endvertices u_{i-1} and u_i (w_{i-1} and w_i), where $u_0=u_{2k}$ ($w_0=w_{2k}$), $i=1,\cdots,2k$. Let G be the graph obtained by identifying u_i and w_i for each $i=1,\cdots,2k$. Clearly, $C_{km}\mid G$. Also, the 2k copies of C_m in G are the cycles formed by R_i followed by $-S_i$, $i=1,\cdots,2k$. Therefore $G\in LCM(C_m,C_{km})$ and $\ell cm(C_m,C_{km})=2km$. (ii) Let n>m and $k=\gcd(m,n)$; say m=rk and n=sk so that $\ell cm(m,n)=rsk$. If r=2, let G be the graph of size rsk=2n obtained

(ii) Let n > m and $k = \gcd(m, n)$; say m = rk and n = sk so that $\ell \operatorname{cm}(m, n) = rsk$. If r = 2, let G be the graph of size rsk = 2n obtained from two copies of C_n with vertex sequences v_0, \dots, v_{n-1} and w_0, \dots, w_{n-1} , respectively, by identifying the vertices v_{ik} and w_{ik} for each $i = 0, \dots, s-1$. As in the proof of (i), $C_m \mid G$ and $C_n \mid G$. Thus we may henceforth assume that $r \geq 3$.

Partition n into s-1 parts of size at most m-1 each, say $n=n_1+\cdots+n_{s-1}$ where $0 < n_j \le m-1$ for each j. (Elementary arithmetic shows that this is always possible.) Similarly, partition m into r-1 parts of size less than n-1 each, say $m=m_1+\cdots+m_{r-1}$, $0 < m_i < n-1$ for each i. Note that

$$\sum_{i=1}^{r-1} (n - m_i) = (r - 1) n - \sum_{i=1}^{r-1} m_i = rsk - n - m = \sum_{j=1}^{s-1} (m - n_j). \quad (1)$$

Consider three disjoint cycles $R \cong C_m$, $S \cong C_n$ and $T \cong C_{rsk-m-n}$. Partition R (S, respectively) into r-1 (s-1, respectively) consecutive internally disjoint paths R_i (S_j) with length m_i (n_j) and endvertices u_{i-1} and u_i (v_{j-1} and v_j), where $u_0 = u_{r-1}$ ($v_0 = v_{s-1}$), for $i = 1, \dots, r-1$ ($j = 1, \dots, s-1$). Partition T into r-1 (s-1 respectively) consecutive internally disjoint paths T_i (T_j') with length $n-m_i$ ($m-n_j$) and endvertices x_{i-1} and x_i (y_{j-1} and y_j), for $i = 1, \dots, r-1$ ($j = 1, \dots, s-1$), where $x_0 = x_{r-1}$ ($y_0 = y_{s-1}$). Note that by (1), these partitions of T are always possible. Also note that possibly $x_i = y_j$ for some i and j.

Now let G be the graph obtained by identifying u_i and x_i (v_j and y_j) for each $i=0,\cdots,r-2$ ($j=0,\cdots,s-2$). Then $C_m \mid G$, the copies of C_m being R and the cycles formed by S_j followed by $-T'_j$, $j=1,\cdots,s-1$; similarly, the copies of C_n in G are S and the cycles formed by R_i followed by $-T_i$, $i=1,\cdots,r-1$. Since $q(G)=rsk=\ell cm(m,n)$ the result follows.

4 Paths versus Complete Graphs

If we restrict Theorem B to the case $F \cong P_m$ and $G \cong K_n$, we obtain

Theorem C. [8]. For all integers $m \ge 2$ and $n \ge 3$,

$$\ell cm(P_m, K_n) \ge egin{cases} \binom{n}{2} & \text{if } m \le n \text{ and } m-1 \mid \binom{n}{2} \\ ML & \text{otherwise,} \end{cases}$$

where $L = \ell \operatorname{cm}(m-1, \binom{n}{2})$ and $M = \lceil (m-1)(n-1)/L \rceil$.

In the case where n is odd, the following upper bound was also obtained in [8].

Theorem D. [8]. For all $m \ge 2$ and $n \ge 3$, where n is odd,

$$\ell cm(P_m, K_n) \leq (m-1)\binom{n}{2}.$$

An immediate corollary of the above two results is

Theorem E. [8]. For all $m \ge 2$ and $n \ge 3$, where n is odd and $(m-1, \binom{n}{2})$ = 1,

$$\ell cm(P_m, K_n) = (m-1)\binom{n}{2} = ML.$$

We now extend Theorem E to show that the lower bound given in Theorem C is also exact if $(m-1, \frac{1}{2}(n-1)) = 1$. We need the following result, which can easily be obtained as a consequence of the standard proof of the fact that every complete graph of odd order n is the edge sum of $\frac{1}{2}(n-1)$ hamilton cycles (cf. [5, p. 237]).

Theorem F. Let u and v be two vertices of K_n , where n is odd. There exists an edge-decomposition of K_n into n-1 (u,v)-paths Q_1, \dots, Q_{n-1} such that Q_i has length i and $Q_i \cup Q_{n-i}$ is a hamilton cycle of K_n .

(Graphs of size $\binom{n}{2}$ (for some integer $n \geq 2$) which are decomposable into n-1 paths Q_1, \dots, Q_{n-1} with $|E(Q_i)| = i$ $(1 \leq i \leq n-1)$ are called path perfect graphs.)

Theorem G. If n is even, then K_n is decomposable into n-1 paths of length $\frac{1}{2}n$, all of which originate at the same vertex of K_n .

Proof: Let $V(K_n) = \{0, \cdots, n-1\}$ and consider the representation of K_n obtained by arranging the vertices $1, \cdots, n-1$ in a regular (n-1)-gon with vertex 0 in the centre. Let Q_i be the path with vertex sequence $0, i, i+1, i-1, i+2, i-2, \cdots, r$, where $r=i+\frac{1}{4}n$ if $n\equiv 0 \pmod 4$ and $r=i-\left\lfloor \frac{1}{4}n\right\rfloor$ if $n\equiv 2 \pmod 4$. Then Q_i has length $\frac{1}{2}n$ and it is easy to see from the representation that $E(Q_1)\cup\cdots\cup E(Q_n)$ partitions $E(K_n)$. \square

The following two types of graphs will be used in the construction of least common multiples of P_m and K_n . Let $G_1 \cong \cdots \cong G_q \cong K_n$. Denote by

 $F_{n,q}$ the chain of graphs G_1, \dots, G_q such that $V(G_i) \cap V(G_{i+1}) = \{a_{i+1}\}$ and $V(G_i) \cap V(G_j) = \emptyset$ if $j \notin \{i-1,i,i,+1\}$, and by $H_{n,q}$ the necklace consisting of G_1, \dots, G_q with the same conditions as for $F_{n,q}$, but with arithmetic modulo q. In $F_{n,q}$, let a_1 $(a_{q+1}$, respectively) be any vertex of G_1 $(G_q$, respectively) distinct from a_2 $(a_q$, respectively).

We use the notation of Theorem C in the following theorems.

Theorem 4. If $n \mid m-1$ and n is odd, then

$$\ell cm(P_m, K_n) = (m-1)(n-1) = ML.$$

Proof: Let $m-1 = \mu n$ for some integer $\mu \ge 1$. By Theorem C,

$$\ell \operatorname{cm}(P_m, K_n) \ge \lceil (m-1)(n-1)/L \rceil \times L,$$

where $L = \ell \text{cm} \left(m - 1, \frac{1}{2} n(n-1) \right)$. Now, (m-1)(n-1) is a multiple of m-1 and of $\frac{1}{2} n(n-1) = (m-1)(n-1)/2\mu$. Thus (m-1)(n-1)/L is integral and $\ell \text{cm}(P_m, K_n) \geq (m-1)(n-1) = ML$.

For the reverse inequality, let $q=2\mu$ and consider the graph $F_{n,q}$ with $\frac{1}{2}qn(n-1)$ edges as well as the (n-1) (a_1,a_{q+1}) -paths P_j , passing through a_2, \dots, a_q , and respectively obtained by the concatenation of q paths guaranteed by Theorem F: Let $Q_{r,i}$ denote the relevant path of length i in the subgraph G_r of $F_{n,q}$. Then

$$\begin{split} P_1 &= Q_{1,n-1} \cup Q_{2,1} \cup Q_{3,n-1} \cup Q_{4,1} \cup \cdots \cup Q_{q,1} \\ P_2 &= Q_{1,n-2} \cup Q_{2,2} \cup Q_{3,n-2} \cup Q_{4,2} \cup \cdots \cup Q_{q,2} \\ &\vdots \\ P_{n-1} &= Q_{1,1} \cup Q_{2,n-1} \cup Q_{3,1} \cup Q_{4,n-1} \cup \cdots \cup Q_{q,n-1}. \end{split}$$

Each P_j has length $\mu n = m-1$ and these (n-1) paths partition $E(F_{n,q})$. Consequently, $\ell \text{cm}(P_m, K_n) = ML$.

Theorem 5. If $m-1 \mid n$, then $\ell cm(P_m, K_n) = ML$.

Proof: Let $n = \nu(m-1)$ for some integer $\nu \ge 1$. If $m \le n$ and $m-1 \mid {n \choose 2}$, *i.e.* if $\nu > 1$ and n is odd or ν is even, then by Theorem C, $\ell \text{cm}(P_m, K_n) \ge {n \choose 2}$. But in this case, $L = \frac{1}{2}\nu(m-1)(n-1) \ge (m-1)(n-1)$ and so $ML = {n \choose 2}$. In all other cases ML = n(n-1). The lower bound is given by Theorem C. We show that the upper bound also holds.

If n is odd and $\nu=1$, the result is proved in Theorem 4. If n is odd and $\nu>1$, then K_n is decomposable into $\frac{1}{2}(n-1)$ hamilton cycles, each of which is decomposable into ν paths of length m-1. If n and ν are both even, then by Theorem G, K_n is decomposable into n-1 paths of length $\frac{1}{2}n=\frac{1}{2}\nu(m-1)$, each of which is decomposable into $\frac{1}{2}\nu$ paths of length

m-1. If n is even and ν is odd, consider the graph $F_{n,2}$. For i=1,2, the subgraph $G_i \cong K_n$ of $F_{n,2}$ is decomposable into n-1 paths of length $\frac{1}{2}n$, each path originating at a_2 . Hence $F_{n,2}$ is decomposable into n-1 paths of length n, each of which is decomposable into ν paths of length m-1. \square

Now let $m-1=k\mu$ and $n=k\nu$, where n is odd, $\mu,\nu\geq 2$, $(\mu,\nu)=1, k>1$ i.e. $(m-1,n)\neq 1$ and $(\mu,\frac{1}{2}(n-1))=1$. (Note that since (k,n-1)=1, $(\mu,\frac{1}{2}(n-1))=1$ if and only if $(m-1,\frac{1}{2}(n-1))=1$.) Then, using the notation of Theorem C,

$$L = \ell \operatorname{cm}\left(k\mu, \frac{1}{2}k\nu(n-1)\right) = \frac{1}{2}k\mu\nu(n-1) = \frac{1}{2}\mu n(n-1)$$
$$= \frac{1}{2}(m-1)\nu(n-1),$$
$$M = \left\lceil \frac{2}{\nu} \right\rceil = 1,$$

and

$$ML = \frac{1}{2}\mu n(n-1).$$

Theorem 6. If n is odd and $(m-1, \frac{1}{2}(n-1)) = 1$, then

$$\ell cm(P_m, K_n) = \frac{1}{2}\mu n(n-1) = ML.$$

Proof: If $\mu=1$, the result is proved in Theorem 5 and if $\nu=1$, the result is proved in Theorem 4. Hence we may assume $\mu>1$ and $\nu\geq 3$ (note that ν is odd). Then m-1 $\binom{n}{2}$ and by Theorem C, $\ell \text{cm}(P_m,K_n)\geq ML$. For the reverse inequality we exhibit a graph $G\in \text{LCM}(P_m,K_n)$ of size $\frac{1}{2}\mu n(n-1)$. We consider three cases.

Case 1. $\mu=2$. In the graph $G=F_{n,2}$ each G_i , i=1,2, decomposes into $\frac{1}{2}(n-1)$ hamilton cycles, each of which decomposes into 2 paths originating at a_2 (where $\{a_2\}=V(G_1)\cap V(G_2)$) and of respective length m-1=2k and $n-(m-1)=(\nu-2)k$. Each of the $\frac{1}{2}(n-1)$ paths of length $(\nu-2)k$ of G_1 can be concatenated with one of the $\frac{1}{2}(n-1)$ paths of length $(\nu-2)k$ of G_2 to form a path of length $2k(\nu-2)$, which decomposes into $\nu-2$ paths of length m-1. Therefore $F_{n,2}\in LCM(P_m,K_n)$.

Case 2. $\mu \geq 3$ is odd. Consider the eulerian graph $G = H_{n,\mu}$ of size $\frac{1}{2}\mu n(n-1)$. Let S' be the sequence of integers

$$n-1, 1, n-2, 2, n-3, 3, \dots, \frac{1}{2}(n+1), \frac{1}{2}(n-1)$$

and let $S = \{s_r\}$ be the sequence of length $\mu(n-1)$ obtained by the concatenation of μ copies of S'. Let R be the circuit of G obtained by

traversing the necklace clockwise n-1 times, beginning at a_1 , and by using the (a_i, a_{i+1}) -path Q_{s_r} of length s_r in G_i if G_i is the r'th copy of K_n encountered on the circuit. Using arithmetic modulo μ , the path Q_{n-1} of length n-1 is used in the subgraphs G_i of $H_{n,\mu}$ for

$$i \in \{1, (n-1)+1, 2(n-1)+1, \cdots, (\mu-1)(n-1)+1\}.$$

These subgraphs are all distinct, for suppose $\alpha(n-1)+1\equiv\beta(n-1)+1$ (mod μ) for $0\leq\alpha<\beta\leq\mu-1$. Then $(\beta-\alpha)(n-1)\equiv0$ (mod μ), contradicting $(\mu,n-1)=1$. Therefore the path Q_{n-1} is used exactly once in each G_i , $i=1,\cdots,\mu$. Similarly, each Q_j , $j=1,\cdots,n-1$, is used exactly once in each G_i . Thus R is an eulerian circuit of G. Now consider any vertex u of G, say $u\in V(G_i)$, and let G be the cycle of length G (say) consisting of the subtrail of G between two successive passages through G if G (successive copies of G in any pair of successive copies of G in the G contains at least two edges in G in the G contains at least G in any two successive copies of G beginning with G in the G contains at least G in any two successive copies of G beginning with G in any two successive copies of G beginning with G in any two successive copies of G beginning with G in any two successive copies of G beginning with G in any two successive copies of G beginning with G in any G in any two successive copies of G beginning with G in any G in the G contains at least G in any two successive copies of G beginning with G in any G in the G in any G in G in G in the G in any G in G in

$$x > 1 + \frac{1}{2}(\mu - 1)(n - 1) \ge 1 + \frac{1}{2}(\mu - 1)(3k - 1)$$

and

$$x - (m-1) > 1 - k\mu + \frac{1}{2}(\mu - 1)(3k - 1)$$
$$= \frac{1}{2}(\mu - 3)(k - 1)$$
$$\geq 0.$$

Therefore R can be decomposed into paths of length $k\mu = m-1$ and thus $H_{n,\mu} \in LCM(P_m, K_n)$.

Case 3. $\mu \geq 4$ is even. Let $G = H_{n,\mu}$ and for each $i = 1, \dots, n-1$, let S_i be the sequence $n-i, i, n-i, i, \dots, n-i, i$ of length μ . Let S^* be the sequence $S_1S_2\cdots S_{n-1}$ of length $\mu(n-1)$ and define the eulerian circuit R^* of G similar to R in Case 2, using the sequence S^* instead of S. For any vertex u of G, the number of edges of R^* between two consecutive passages through u is at least

$$\frac{1}{2}(\mu - 2)n + 3 > \frac{1}{2}(\mu - 2) k\nu$$

$$\geq \mu k = m - 1 \text{ if } \mu \geq 6 \text{ or if } \nu \geq 4 \text{ and } \mu \geq 4.$$

Thus in these cases, R^* can be decomposed into paths of length m-1. In the case $\nu=3$ and $\mu=4$, i.e., n=3k and m-1=4k, let T_i , $i=1,\cdots,\lfloor 3k/2\rfloor$,

be the sequence i, i, 3k - i, 3k - i, 3k - i, 3k - i, i, i. By using Theorem F to ensure that an edge-decomposition of each K_{3k} is obtained, let X_i be the closed trail of length 12k in $G = H_{3k,4}$ corresponding to T_i . Each X_i can be decomposed into three subtrails of length 4k and since each subtrail contains at most three of the vertices a_1 , a_2 , a_3 and a_4 , a decomposition of X_i into three paths P_{4k+1} results. But the concatenation of the X_i forms an eulerian circuit of G and we thus have the required path decomposition of G.

Acknowledgement

Financial support from the South African Foundation for Research Development and the Projet de Recherche coordonnee Mathematiques-Informatique (France) is gratefully acknowledged.

References

- G. Chartrand, W. Goddard, M.A. Henning, F. Saba and H.C. Swart, Principal common divisors of graphs, *Europ. J. Combinatorics* 14 (1993), 85-93.
- [2] G. Chartrand, W. Goddard, G. Kubicki, C.M. Mynhardt and F. Saba, Greatest common divisor index of a graph. To appear.
- [3] G. Chartrand, L. Hansen, G. Kubicki and M. Schultz, Greatest common divisors and least common multiples of graphs, *Period. Math. Hungar.* 27 (1983), 95–104.
- [4] G. Chartrand, G. Kubicki, C.M. Mynhardt and F. Saba, On graphs with a unique least common multiple, Ars. Combinatoria. To appear.
- [5] G. Chartrand and L. Lesniak, Graphs and Digraphs, Second Edition. Wadsworth & Brooks/Cole, Monterey CA (1986).
- [6] G. Chartrand, C.M. Mynhardt and F. Saba, Prime graphs, primeconnected graphs and prime divisors of graphs, *Utilitas Math.* 46 (1994), 179-191.
- [7] G. Chartrand, C.M. Mynhardt and F. Saba, On greatest common divisors and least common multiples of digraphs. To appear.
- [8] C.M. Mynhardt and F. Saba, On the sizes of least common multiples of paths versus complete graphs, *Utilitas Math.* 46 (1994), 117–127.
- [9] F. Saba, Gteatest Common Divisors and Least Common Multiples of Graphs, Ph.D. Thesis, University of South Africa (1992).

[10] R. Wilson, Decomposition of complete graphs into subgraphs, in: Proceedings of the Fifth British Combinatorial Conference, Congressus Numerantium XV, Utilitas Math., Winnipeg (1976), 647-659.