Distances in Iterated Line Graphs
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ABSTRACT. For a connected graph G that is not a cycle, a path
or a claw, let its k-iterated line graph have the diameter diam;
and the radius rx. Then diamy;1 = diam + 1 for sufficiently
large k. Moreover, {ri} also tends to infinity and the sequence

{diami — r — \/21log, k} is bounded.

1 Introduction

In this paper we study distance properties of iterated line graphs. If Gis a
nontrivial graph then by its line graph L(G) we mean such a graph whose
nodes are the edges of G and two nodes in L(G) are adjacent if and only
if the corresponding edges are adjacent in G. Further by L we mean the
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line graph function, i.e. the function which maps each nontrivial graph into
its line graph. Later on L? is the identical graph function, while L* is the
composition L*~! o L for an integer k > 1.

Many papers have been written on line graphs [1] but only a few results
are known about iterated line graphs [3]. The aim of this paper is to initiate
the study of distance properties of iterated line graphs. Particularly, we
focus our attention on sequences of graphs, in which any member but the
first is the line graph of the preceding one. First we describe two types of
them.

Note that the k-iterated line graph of a path on n nodes is the path on
n — k nodes for k < n and such a graph does not exist if ¥ > n. Moreover,
each iterated line graph of a cycle is isomorphic to the original cycle and
each iterated line graph of K3 is a triangle. Hence it suffices to study
connected graphs with at least four edges and the maximal degree at least
three. Such graphs G will be called prolific, since each two members of the
sequence {L*(G)} are distinct.

For a function f on graphs we create a sequence fy: = f(L*¥(G)), or
shortly an f-sequence and study its behavior. We do this for the order n,
the diameter diam and the radius r of a graph. Main results are presented
in Chapter two and their proofs are postponed to Chapter three.

2 Results

Let G be a graph, then ng = n(G) denotes the number of its nodes, m(G)
denotes the number of its edges and o = §(G) and Ap = A(G) correspond
to its minimal and maximal degree. We will pay no attention to the m-
sequence, since the equation my = ng4q relates it to the n-sequence. We
will show that A, = 6(2%), 8, = 6(2F), ny = 9(2£i’—k ), diam,;, = O(k),
and diamy —r, = ©(VIn k) for prolific graphs. The following Lemma gives
bounds for these invariants in iterated line graphs.

Lemma 1. For a prolific graph and k > 1 we have

2. (fo-2)+2< 6 S A <28 (Ao —2)+2 1)
k—1 k-1
no- [J12! (Go—2)+1] <me <mo- [J2 - (A0—-2)+1] (2
=0 =0

Moreover, equalities hold for regular prolific graphs.

Better lower bounds for graphs with endnodes are given by the next
theorem.
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Theorem 2. For a prolific graph G and k > 5 we have

k-5

m>8- [J(2F+1) 3)
i=0

Ap>3.2442 (4)

Moreover, if G = J (see Figure 1) then the equality in (4) holds.

J L(J) LA(J)
Figure 1

It was shown in [2], that |r; — rg] < 1 and |diam; — diamg| < 1 for
a nontrivial connected graph. Here we prove that the sequence {diam}
increases for sufficiently large k.

Theorem 3. Let G be a prolific graph. Then
diamgyy =diamg+1 for k > 3+ ns. (5)
Moreover, if G is a noncomplete graph with §(G) > 3, then
diamg +p — 2 < diam, < diamg+p foranyp > 1. (6)

Note that the left equality in (6) holds if G is an N-dimensional cube
for N > 3 and p > 2, the right equality holds for complete graphs with at
least six nodes, and diam, = diamg +p — 1 holds for K, —e and n > 6. It
could be of some interest, for a given graph G, to find a smallest number
ko such that diam, increases for k > ko. The bounds given in Theorem 3
are rather far from this value.

Theorem 4. For a prolific graph there are numbers c¢; and cp such that
V2logs k+c; < diamy — ri < \/2log2 k+ co.
We conclude this section with several open problems.

Conjecture 1: There exists k > 0 such that for any two prolific graphs G
and H, n(L}(H)) = n(L¥(G)) for i =0, ..., k implies n(L*(H)) = n(L*(G))
for all 1.

Conjecture 2: There exists & > 0 such that for any two prolific graphs G
and H, n(L'(H)) < n(L*(G)) for i = 0,...,k implies n(L*(H)) < n(L(G))
for all 4.
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Conjecture 3: Given a prolific graph, we have 6x11 =26 —2and Ax 1 =
2A; — 2 for sufficiently large k.

Note that Lemma 1 gives an exact value of n; for a regular graph G.
For a given graph G, n(L(G)) equals to the number of edges in G, while
n(L*(G)) = £(%5™), where deg(v) denotes the degree of v in G and the
summation goes over all nodes v of G. But to compute n(L*(G)) in general
seems to be an uneasy task unless G is regular.

The problems of the complexity of nk, 8k, Ak, diamy, 7 for a prolific
graph remain open.

3 Proofs

We will identify edges in a graph G with the corresponding nodes in L(G).
Hence if u and v are two adjacent nodes in G then by u» we mean an edge in
G as well as the node in L(G) corresponding to the edge uv. This notation
enables us to consider a node in L*(G) (k > 2) as a pair of adjacent nodes
in L*=1(G), either of these is a pair of adjacent nodes from L*~%(G), and
so on. Furthermore we can define each node in L*(G) using only edges of
G, and such a definition will be called the recursive definition of v in G.

Proof of Lemma 1: Let G be a prolific graph. Note that if e = ab is an
edge in G then deg(e) = deg(a) + deg(b) — 2, hence Ax < 2-Ax_1 —2 and
8k > 2-6k—1 — 2 (for k > 1), which gives (1). Further as nodes in L¥(G)
are edges in L*~1(G), we have ny < A"—“z'“"—" < [2%2%. (A0 —2) +1]-nk—3
from (1) and this recurrent relation gives the right inequality in (2). The
proof of the left one is very similar. O

Let H be a nontrivial subgraph of G. By L(H,G) we mean just the
subgraph of L(G) induced by nodes that are edges of H. Clearly L(H,G) 2
L(H). Later on L'(H,G) = L(H,G) and L*(H,G) means L*~(L(H,G),
L(G)).

Proof of Theorem 2: It is easy to see that G contains either J or L(J)
(see Fig.1) or K 4 as a subgraph. Put H = L%(J) and note that n(H) =8
and §(H) = 4. Then (2) gives
k-5
n(L*(J)) = n(L*4(H)) 2 8- [ 2* +1).
=0

Moreover, A(H) = 5 and the four nodes of the degree five lie on a cycle
C (see Fig.1). Then LP(C, H) is also a 4-cycle for any p. It is easy to
check that for nodes v, of LP(C, H) we have deg(vp41, LPYI(H)) = 2.
deg(vp, LP(H)) — 2, where deg(v, G) means the degree of v in a graph G.
This recurrent relation together with (1) gives

A(L*(J)) = A(L*4(H)) =3 - 2" + 2.
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Now if G contains J then (3) and (4) follow as L*(G) contains L*(J).
Further if G contains L(J), then L*(G) contains L*+!(J) and (3) and (4)
also follow. Finally, if G contains K 4, then as L(J) C L(K)4) = K3, the
graph L(G) contains L(J), the result follows. a

Let G be a graph and v be a node in L¥(G), (k > 1). By the i-butt B;(v)
of the node v in L*(G) we mean the subgraph of L*—*(G) induced by the
edges involved into the recursive definition of the node v. The butt we will
abbreviate to B(v) when it is clear in which graph it is considered.

As L*(H, G) contains just those nodes of L*(G) whose recursive definition
contains edges of H and only such edges, for any nontrivial graph H C G
we have

A node v of L¥(G) lies in L*(H,G) if and only if By(v) C H. (7)

By P. we mean a path on k edges. If H and J are two subgraphs of a
graph G, then by HV J we mean the edge-union of H and J. Symbols V(G)
and E(G) denote the node set and the edge set of a graph G, respectively.

Lemma 5. Let H be a subgraph of a graph G and L*(G) exist (k > 1).
Then H is a butt for some node in L*(G) if and only if H is a connected
graph with at most k edges, distinct from any path with less than k edges.

Proof: First assume H = By (v) for some node v of L*(G). We prove that
By (v) is a connected graph with at most k edges distinct from paths on at
most k nodes by induction on k. This clearly holds for k = 1,2, as each
1-butt is an edge and each 2-butt is a path P,. For k > 2 suppose that the
inductive hypothesis holds for values less than k. First we prove that By(v)
is connected. Note that v = (zy)(yz) for some nodes z,y, z of L*~2(G).
Moreover, By(v) is the edge-union Bj_j(zy) V Bx—1(yz) and both these
butts are connected and contain a common subgraph Bi_2(y), hence the
butt Bg(v) is connected.

Further as Bj_,(v) is connected and has at most k — 1 edges, it contains
at most k nodes. Since V(Bi—1(v)) = E(B(v)), Bx(v) contains at most k
edges.

Finally, for H = By(v), (7) gives that v lies in L*(By(v), G), hence Bi(v)
cannot be a path P, with ¢ < k, as the graph L*(P,, G) does not exist.

Conversely, let H be a graph that satisfies the hypothesis of Lemma 5.
We prove by the induction on k that H is a butt for some node in L*(G).
Clearly this holds for k = 1. Assume &k > 2 and let the statement hold for
numbers less than k. Distinguish three cases,

(i) Let H be a path on k edges. Let v be a node of L*(H, G). (Remember,
that L¥(H,G) & L*(H).) Then By(v) = H follows from (7) and the
first part of this proof.
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(ii) Let H be a claw or a cycle of length I < k. Since the i-iterated
line graph of a claw is isomorphic to the i-iterated line graph of a
triangle for ¢ > 1, it suffices to study the case when H is a cycle.
It is clear that Li(H,G) is a cycle with I nodes for any i > 0. Put
L¥—Y(H,G) = H' and represent this cycle as an edge-union P,_; V
VP/_;, with P_; N P{_; = P,_3. Denote u = L'"(P_;, L*~Y(G))
and v’ = L*-!(P/_,, L**}(G)). Then u and u’ are adjacent nodes in
L*~1(G) and form a 1-butt of a node v € L*¥(G). Thus, H = By(v).

(iii) Let T denote a spanning tree in a connected graph L(H,G) and T
do not be a path. Such a tree exists, because L(H,G) has a node
of degree greater than two. Then T has at most k — 1 edges, as
n(T) = m(H) < k. Now according to the induction hypothesis, T
is a (k — 1)-butt for some node u of L*~!(L(G)). Since E(By(u)) =
V(Bk-1(u)) = V(T) = E(H), the k-butt Bj(u) is edge-induced by
E(H) and H = By(u).

O

The distance d(H, J) between two subgraphs H and J of a graph G equals
to the length of a shortest path in G joining a node from H to a node from
J. The following lemma enables us to compute distances between nodes in
iterated line graphs.

Lemma 6. Let G be a connected graph, L¥(G) exist for an integer k > 1,
and let u and v be distinct nodes in L*(G). Then

(S1) d(u,v) = k + d(Bx(u), Bx(v)) if the k-butts of v and u are edge-
disjoint.

(52) d(u,v) = max{t; t-butts of u and v are edge-disjoint} if k-butts of
u and v have a common edge.

Proof: First we prove (S1) by the induction on k. It is not difficult to
check up that if u and v are two distinct edges in G (i.e. the nodes in
L(G)), then

dr(c)(u,v) =1+ d(By(u), B1(v)). (8)

This verifies (S1) for k = 1. Now let (S1) hold for integers less than k
and assume that u = u,us and v = v,v, are distinct nodes in L*(G) with
edge-disjoint butts in G. Then (8) gives

dpx(G)(u1u2, v1v2) = 1 + min(dpe-1(g)(w, v;)]i, 5 € {1,2}) 9)
as ujug is the only edge in the butt B;(u) and v,v; is the only edge in
By (v). Since Bi(u) and By(v) are edge-disjoint and Bi_1(u;) C Bi(u)
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and By (v;) € Bx(v) for i € {1,2}, also Bx—_;(u;) and Bi_;(v;) are edge-
disjoint for ¢, j € {1,2}. Hence the induction hypothesis gives

dpr-1(g) (i, v5) = (k — 1) + d(Bg—1(us), Br-1(v;))

and after substituting to (9) we have dzx(c)(x, v) = 14+(k—1)+d(Bg~1(u1)V
Bix_1(u2), Bx-1(v1)V Bk_1(v2)). Now the observations Bx(u) = Bi—j(u;)V
Bi—1(u2) and Bi(v) = Bi-1(v1) V Bi—1(v2) complete the proof of (S1).
In order to prove (S2) assume that ¢ is maximal integer such that the
t-butts of u and v in L*¥~*(G) are edge-disjoint (¢ < k as Bi(u) and Bi(v)
have a common edge). Then the (¢ + 1)-butts of » and v in L*~*~1(G)
have a common edge e, which is also a node in L*~¢(G). Finally, statement
(S1) reduces the problem on computing distances in L*~¢(G), d(u,v) =
k — (k —t)+ d(Bi(u), Bi(v)) =t as both butts in question contain the node
e. a

Proof of Theorem 3: By A\,(G) we mean the maximal distance between
any two p-butts in a prolific graph G.

If p > 1 and G contains two edge-disjoint p-butts,
then diam(LP(G)) = p + Mp(G). (10)

Proof of (10): Lemma 6 implies that for any p > 1, two nodes in LP(G)
with edge-disjoint p-butts have the distance at least p, while two nodes
whose p-butts possess a common edge have the distance less than p. Hence
in computing the diameter of LP(G) we can restrict ourselves to pairs of
nodes with edge-disjoint p-butts, and (S1) gives (10).

Now we prove (6): As §(G) > 3 and G is noncomplete, any claws W, and
W; in G, whose central nodes have the distance diam(G), are edge-disjoint
p-butts (for any p > 3) according to Lemma 5. Evidently, diam(G) —
2 < d(W1,W3) < M(G) < diam(G). If p = 1 or 2, we take appropriate
subgraphs of these claws.

Now we show that H = L3(G) contains two edge-disjoint p-butts for
any p > 1 and any prolific G. Since G contains either J (see Fig.1) or
L(J) or K14 as a subgraph, the graph L3(G) contains L3(J) or L*(J) or
L3(K1,4) = L?(K4) as a subgraph and one can directly verify that each of
them contains two edge-disjoint claws. Clearly a claw is a p-butt for p > 3.
If p = 1 or 2, we take appropriate subgraphs of these claws and obtain
edge-disjoint p-butts.

Now, according to Lemma 6, A\,(H) = diam, — p is a constant function
for all p, p > n(H), as the sets of minimal p-butts remain the same. Since
H = L3(G), (10) completes the proof. )

Lemma 7. For a prolific graph and t > 2rqy, we have 6, > 3.
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Proof: Let H(G) be the subgraph of a prolific graph G induced by the
nodes with the degree at most two. Then H(G) consist of paths with at
most 2ro nodes. Since H(L(G)) = L(H(G)), H(L**(G)) is empty and
bary 2 3. a

Proof of Theorem 4: Due to Lemma 7 and Lemma 1 we can suppose

that §(G) > 4. In this case for the sequences {n;}, {m;} holds the next
inequality which is sharp for ¢ > 0

N =mi>2n;, 1=0,1,.... (11)
For the given graph G we shall consider the sequence
‘ Wi = dtam. -Ti

and try to estimate it for sufficiently large n.

Let 30 be the minimal number with the property that there exists vp €
V(L*(G)) such that E(B,(v0)) N E(Bso(v)) # @ for all v € V(L*"(G)).
The existence of s° follows from Lemma 5. The complement of B,o(vp) in

G does not contain s%-butt of any node v € V(L*°(G)) so it should be a
forest with path components of length less then s°. Thus, we obtain

mg > 8° > |E(B,s(vo))| > mo — no. (12)

Now we show that |E(B,0(v))| = 8°. According the inequalities (11) and
(12) the complement of B,o(wp) in G has less then s°—1 edges and it cannot
contain (s° — 1)-butt of any node. Now suppose that | E(B,o(vp))| < s°. In
this case B,o(vp) is also an (s® — 1)-butt of a node v € V(L,o_;(G)) with
the property E(Byo_1(vg)) N E(Byo_1(v)) # 0 for any v € V(L’n"‘(G))
what is a contradiction with the minimality of s°.

We show that v is a central node of L*° (G). Suppose that w is a
node from L*°(G) with eccentricity less then s° — 1. Then E(B,o_;(w)) N
E(Bjo_1(v)) # 0 for all v € V(L*°(G)) from (S2) and m; > s* -1 >
my —ny > mo from (11) which is a contradiction with (12). Since the
eccentricity of vp is s® — 1, we have r,o = 8% — 1.

Now let k > s% For the radius r, of L*(G) we have ry_; — 1 < . <
rk—1+1, by Theorem 3 from [2]. Let ! be the minimal number s! > 5% with
r51 <Ts_1. Thenr, < s!—2 and there exists a node v; € V(L‘l (@)) with
property E(Bgs_1(v1)) N E(Bsi_1(v)) # 0 for any v € v (G)). From
the minimality of s! we obtain

m2s'=-1>m; -—n
|E(Byi—1(v1)) = 8! -1

200



in the same way as above. Since mz — ny > m; from (11), we have r, =
T41_1 and r,n = s! — 2. Thus,

Ta04s = O+
Wyt 4§ = Wyeo

for all nonnegative i < s! — s°.

Analogously, let s/ be the least number with a property that there exists
v; € V(L*(G)) such that E(B,s_j(v;)) N E(B,s_;(v)) # 0 for any v €
v’ (G)). By the same method as above we have

m; > 88 — j > mj —n;
rei =8 —(j+1)
and for nonnegative i < 89 — gi—1
Tad=144 = &1 —j+1.
From Theorem 3 it follows that there exists ko = s/ with the property
diamy = diam;._1 + 1
for any k > kg. On the other hand
T =Tk—1+1

for all k& > 50 except for k = s7. Thus, {wx} is a constant function on
all intervals [s7, s7*1 — 1] and in s7 it increases by one for j > jo. In the
following we estimate the values of w in k = 37, j > 0. If w,o = c+ jo
then w,; =c+ j for 5 > jo.
Now we bound the value of s7. Using (11) and Lemma 1 we have
m; —n; 2n; > 2(2) - ng.

Let I = [loga(Ap — 1)]. Then we have

j -
m; =nj41 <no- [ 12 (A0 —2) +1] < 20%") . 5,

=0
Putting together the above inequalities we obtain
2(’%") ‘g >my 2> g-j> m; —n; > 2(3) * ng.
Since 2'3"") . g > 20%") . g + j and wys = ¢ + , for k = 57 and 5 > Jo

we have oottt o
2( *3 ).no>k>2( 5 )no
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for k= & and j > jo. Using ¥*> > y(y — 1) > (y — 1) after a short
computing we obtain

V2loga k —2logano+c—1—1 < wk < /2logyk—2logano +c+1

thus,

V2loga k+ ¢y < wi < /2loga k+ 2

for some constants ¢; and cz that does not depend on k. Now let k be an
arbitrary integer greater than or equal to 8%. Since w is a constant function
on all intervals [, s+ — 1] and in &7 it increases by one for j > jo,

V20ogok+ec1 —1 <wg < /2logak+c2

for all k > s%. Now changing the constants completes the proof. O
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