Hamiltonian cycles in the square of a two-connected graph with given circumference

Antoni Marczyk Instytut Matematyki AGH Kraków, Al. Mickiewicza 30 Poland

ABSTRACT. Let p denote the circumference of a two-connected graph G. We construct a hamiltonian cycle in G^2 which contains more than p/2 edges of G. Using this construction we prove some properties of hamiltonian cycles in the square of G.

1 Introduction

At the Graph Theory Conference in Niedzica, Poland, in 1990, Günter Schaar asked if it is true that the square of every two-connected minimal graph G with circumference $\geq p$ contains a hamiltonian cycle which passes through p or more edges of G.

According to the well-known result of Fleischner [4] the square of every two-connected graph is hamiltonian. Recently Schaar [8] using a result of Riha [6] proved the following conjecture of Traczyk [9].

Theorem 1. For every two-connected graph G of order $n \geq 4$ there exists a hamiltonian cycle in G^2 that contains at least four edges of G.

Let c(G) denote the circumference of G, i.e. the length of a longest cycle of G. In the present article we show that in G^2 we can find a hamiltonian cycle containing at least $\min(c(G), \lceil c(G)/2 \rceil + 4)$ edges of G, provided G is two-connected graph of order ≥ 3 . So we give an answer to Schaar's question for $p = 3, \ldots, 9$. Applying this result we obtain some properties of hamiltonian cycles in the square of a two-connected graph.

2 Definitions

All graphs considered are finite graphs having no loops or multiple edges. For a graph G, we denote by V(G) the set of vertices of G, the set of edges by E(G).

Let X be a set. The symbols $\mathcal{P}_1(X)$, $\mathcal{P}_2(X)$ and $\mathcal{P}_{1,2}(X)$ stand for the set of one-element, two-element, and one- or two-element subsets of X, respectively.

Let G be a graph and X and Y two elements of $\mathcal{P}_{1,2}(V(G))$. We say that X and Y are matched in G iff every vertex of X is joined to some vertex of Y and every vertex of Y is joined to a vertex of X.

A path-system of a graph G is a subgraph of G whose each component is a path. A path which goes from x to y will be called an x - y path. By l(h) we denote the length of a path h.

Let $h_i = y_{11}, y_{12}, \ldots, y_{1r_i}$ $(i = 1, \ldots, n)$ and $h = x_1, y_{11}, y_{12}, \ldots, y_{1r_1}, x_2, y_{21}, \ldots, y_{2r_2}, x_3, \ldots, y_{n1}, \ldots, y_{nr_n}, x_n$ be paths of a graph H. We shall use the following notation for h: $h = x_1, h_1, x_2, h_2, x_3, \ldots, h_n, x_n$.

Two graphs G_1 and G_2 are homeomorphic iff there are graphs G'_1 , G'_2 such that G'_i is obtained from G_i by substituting some of the edges G_i by paths, i = 1, 2, and G'_1 , G'_2 , are isomorphic.

A two-connected graph G is said to be minimal if for any edge e of G the graph G - e is not two-connected.

A graph G is 1-hamiltonian if it is hamiltonian and every graph obtained by removing some vertex of G is also hamiltonian.

All concepts not defined in this paper can be found in [1].

3 Preliminaries

Let G be a 4t-vertex graph consisting of a cycle C_{2t} of vertices $y_0, y_1, \ldots, y_{2t-1}$ $(t \geq 2)$ and t vertex-disjoint paths h_1, h_2, \ldots, h_t such that for each $i = 1, \ldots, t$, $l(h_i) = 3$, and both end-vertices of h_i belong to C_{2t} . Thus, $d_G(x) = 3$, for x belonging to C_{2t} , and $d_G(x) = 2$ otherwise. Denote by G(4t) the class of all graphs G defined above.

Suppose that $G \in \mathcal{G}(4t)$. Let $M_o = \{y_oy_1, y_2y_3, \dots, y_{2t-2}y_{2t-1}\}$ and $M_1 = \{y_1y_2, y_3y_4, \dots, y_{2t-1}y_o\}$ be two perfect matchings of C_{2t} (M_o and M_1 are subgraphs of G) and let z_i denote the neighbour of y_i in G that does not belong to C_{2t} ($i = 0, \dots, 2t-1$). We shall write that a graph \hat{G} belongs to the class $\hat{G}(4t)$ if \hat{G} can be obtained from a graph $G \in \mathcal{G}(4t)$ by replacing each edge $y_{2k-1}y_{2k}$ ($k = 1, \dots, t-1$) by two independent edges e_k and f_k connecting the set $\{y_{2k-1}, z_{2k-1}\}$ with the set $\{y_{2k}, z_{2k}\}$.

Lemma 1. Every graph \hat{G} which belongs to the class $\hat{\mathcal{G}}(4t)$ contains a hamiltonian cycle which will be called hamiltonian cycle generated by M_o .

Proof: The paths h_1, \ldots, h_t together with all edges of M_o form a two-factor D of \hat{G} . Let A be the connected component of D that contains the edge y_oy_1 . If A = D then A is a hamiltonian cycle of \hat{G} generated by M_o ;

if $A \neq D$, define $r = \min\{k \mid y_{2k}y_{2k+1} \text{ does not belong to } A\}$ and let B be the cycle of D containing $y_{2r}y_{2r+1}$. Construct a new cycle A_1 by removing the edges $y_{2r-1}z_{2r-1}$ and $y_{2r}z_{2r}$ from A and B and adding the edges e_r and f_r . Clearly A_1 contains all vertices of A and B. Then replace in D the cycles A and B by A_1 and proceed in the same manner. This process can be repeated until a hamiltonian cycle has been constructed.

A tree T in which the vertices of degree > 1 form the empty set or induce a path x_1, x_2, \ldots, x_n $(n \ge 1)$ will be called a caterpillar. It is known (see [5]) that the square of a tree T of order ≥ 3 is hamiltonian if and only if T is a caterpillar. A caterpillar with $n \ge 1$ is denoted also by $T(P_1, P_2, \ldots, P_n)$, where $P_i = \{p_{i1}, p_{i2}, \ldots, p_{ir_i}\}$ $(i = 1, \ldots, n)$ is the set of one-degree vertices adjacent to x_i .

Lemma 2. Let G be a graph and $T = T(P_1, \ldots, P_n)$ $(n \ge 2; (P_1, P_n \ne \emptyset))$ a subgraph of G which is a caterpillar. Suppose that there is a partition $(S_i)_{i \in \{1,\ldots,n\}}$ of the set V(G) - V(T) such that for each $i, S_i \cup P_i$ is the set of vertices of a path h_i in G^2 which goes from p_{i1} to p_{ir_i} . Then

- (i) there is a hamiltonian cycle C in G^2 that contains the edges x_1p_{11} and x_np_{n1} ;
- (ii) there exists in G^2 a path h with end-vertices x_1 and x_n that contains n-1 edges of G and such that $V(h) = V(G) (P_1 \cup S_1 \cup P_n \cup S_n)$;
- (iii) for each $i=1,\ldots,n-1$ there exist in G^2 a x_1-p_{11} path h and a x_n-p_{n1} path h' such that h and h' are vertex-disjoint, $V(h)\cup V(h')=V(G)$, h contains an edge of G which is incident to x_i and h' contains an edge of G which is incident to x_{i+1} .

Proof: It is easy to check that the following cycles

 $x_1, h_1, x_2, h_3, x_4, \ldots, h_{n-1}, x_n, h_n, x_{n-1}, h_{n-2}, \ldots, h_2, x_1$ for n even ≥ 2 , and $x_1, h_1, x_2, h_3, x_4, \ldots, x_{n-1}, h_n, x_n, h_{n-1}, \ldots, h_2, x_1$ for odd, are hamiltonian in G^2 and contain the edges x_1p_{11} and x_np_{n1} of G. Note that this statement is also true for n = 1 and $|P_1| \geq 2$.

Since the edges x_1x_2 and x_ip_{i1} $(i=2,\ldots,n-1)$ belong to G, the path $h=x_1,x_2,h_2,x_3,h_3,\ldots,x_{n-1},h_{n-1},x_n$ fulfills the condition (ii).

Now suppose $P_i \neq \emptyset$ and $P_{i+1} \neq \emptyset$. By (i) there are hamiltonian cycles C_1 and C_2 in the subgraphs of G^2 induced by the sets $\sum_{j=1}^i \{x_j\} \cup P_j \cup S_j$ and $\sum_{j=i+1}^n \{x_j\} \cup P_j \cup S_j$ that contain x_1p_{11} and x_np_{n1} . It is clear that the paths $h = C_1 - x_1p_{11}$ and $h' = C_2 - x_np_{n1}$ satisfy (iii). If $P_i = \emptyset$, then i > 1 and we can substitute the caterpillar $T(P_1, \ldots, P_i)$ by $T(P_1, \ldots, P_{i-2}, P_{i-1} \cup \{x_i\})$ and the path h_i by h_i, x_i , and apply the above method. Clearly, the case $P_{i+1} = \emptyset$ can be treated in the same manner.

Observe that for each $i = 2, \ldots, n-2$ we can find a path in G^2 verifying (ii) and containing the edge $x_i x_{i+1}$ and two edges of G incident to x_i and x_{i+1} . Moreover, there is a path g [resp. g'] of G^2 satisfying (ii) which contains $x_1 x_2$ [resp. $x_{n-1} x_n$] and an edge of G incident to x_2 [resp. x_{n-1}].

The following result of Schaar [8] resembles but is different from a theorem of Fleischner [3].

Lemma 3. For every two-connected graph G with $n \ge 4$ vertices and any vertex $x \in V(G)$ there are vertices $y, z \in V(G)$ being adjacent to x in G and a Hamiltonian path h in $G^2 - x$ joining y and z and containing at least two edges of E(G - x).

The following result of Chartrand, Hobbs, Jung, Kapoor and Nash-Williams (see [2]) follows immediately from Lemma 3.

Corollary. The square of every two-connected graph G of order ≥ 4 is 1-hamiltonian.

Lemma 4. Let G be a 2-connected graph and C a cycle in G of length ≥ 4 . Then there exist a partition $\mathcal{B} = (B_s)_{s \in I}$ of the set V(G) - V(C) and a function $f: \mathcal{B} \to \mathcal{P}_{1,2}(V(C))$ which satisfy the following conditions:

- (1) each B_s is the set of vertices of a path h_s in G^2 ,
- (2) $| f(h_s) | \le | B_s |$ and the set of end-vertices of h_s and $f(h_s)$ are matched in G,
- (3) if $f(h_s)$ and $f(h_{s'})$ ($s \neq s'$) are both of cardinality 2 then they are disjoint.

Proof: We shall construct a path-system \mathcal{B} and a function f, which have the required properties, in four steps (compare the algorithm (A) in [7]).

Step 1. Denote by $U_3(C)$ the set of all connected components of G-C containing at least 3 vertices and let $S \in U_3(C)$. Let G_S be the graph obtained from S by replacing all the neighbours of S on C by a new vertex O_S , that we join to a vertex x of S iff x is adjacent in G to a vertex of G. Obviously, G_S is a two-connected graph with at least four vertices. By Lemma 3 there exist a Hamiltonian path g_S in $G_S^2 - O_S$ joining two vertices G_S and G_S which are both adjacent to G_S in G_S .

Let F be the set of edges of $G_S^2 - O_S$ that do not belong to G^2 , i.e. F is the set of edges xy such that x and y are adjacent to O_S in G_S and the distance in G between x and y is greater than two. The graph $g_S - F$ consists of a set D_S of vertex-disjoint paths (possibly trivial) of the subgraph of G^2 induced by V(S) and such that each end-vertex of a path belonging to D_S is adjacent in G to some vertex of C. Moreover, every vertex of S belongs to a path of D_S .

Suppose now that S is a connected component of G-C which possesses less than three vertices. For S having exactly one vertex, we denote by D_S the one-element set which consists of the trivial path containing the only element of S, and for S such that |V(S)|=2, D_S will stand for the set of two trivial paths each of them containing one vertex of V(S). Observe that in the last case every element of D_S is adjacent to a vertex of C because G is two-connected.

Define $\mathcal{B}' = \bigcup D_S$ where S runs through the set of all connected components of G - C (we shall identify a path belonging to D_S with its set of vertices) and let f' denote an arbitrarily chosen function verifying the condition (1) and (2) (by the construction of \mathcal{B}' such a function exists).

Step 2. We shall construct a spanning path-system \mathcal{B}_1 of G^2-C and a function $f_1:\mathcal{B}_1\to\mathcal{P}_{1,2}(C)$ verifying the conditions (1), (2) and the following one:

(4)
$$f_1(h_{\alpha}) = f_1(h_{\beta})$$
 and $|f_1(h_{\alpha})| = 2$ implies $h_{\alpha} = h_{\beta}$.

Consider the set $\{h_{\alpha_1}, h_{\alpha_2}, \dots, h_{\alpha_r}\} = (f')^{-1}(\{a, b\}) \neq \emptyset$, where a and b are two distinct vertices of C. For r even, replace all the paths h_{α_i} by a path h of G^2 such that $V(h) = \bigcup_i V(h_{\alpha_i})$ and each end-vertex of h is joined in G to a = a(h). For r odd, replace in the same way the paths $h_{\alpha_2}, h_{\alpha_3}, \dots, h_{\alpha_r}$ by a path h of G^2 . Proceeding similarly with every pair a, b of distinct vertices of C with $(f')^{-1}(\{a, b\}) \neq \emptyset$ we obtain a collection \mathcal{B}_1 of paths of $G^2 - C$.

Now put $f_1(h) = \{a(h)\}$ for every new path h, and $f_1(h) = f'(h)$ otherwise. Thus the required partition and function have been found.

Step 3. Consider a graph H_o with $V(H_o) = V(C)$ and $E(H_o) = \{xy \mid \text{there is a path } h \text{ of } \mathcal{B}_1 \text{ such that } f_1(h) = \{x,y\}\}$. Let $C' = a_1, a_2, \ldots, a_r, a_1$ be a cycle in H_o , and let for $i = 1, ..., r, e_i = a_i a_{i+1}$ (indices are taken modulo r).

Replace all the paths g_{e_i} in \mathcal{B}_1 satisfying $f_1(g_{e_i}) = \{a_i, a_{i+1}\}$ $(i = 1, \ldots, r)$ by a new one, named g, which is formed by all vertices belonging to paths g_{e_i} , and whose end-points are adjacent to a_1 by two edges of G. Let \mathcal{B}_2 be this modified set of paths and H_1 the graph obtained by deleting from H_o all the edges of C'. Define $f_2(g) = \{a_1\}$, and $f_2(h) = f_1(h)$ for h belonging to \mathcal{B}_2 and $h \neq g$. Obviously, the set \mathcal{B}_2 and the function f_2 satisfy the conditions (1), (2) and (4).

Repeating this operation as many time as needed we obtain a subgraph H of H_o being a forest, a spanning path-system \mathcal{B}_3 in G^2-C and a function f_3 verifying the conditions (1), (2) and (4).

Step 4. Observe that each tree and forest can be decomposed into edgedisjoint paths in such a way that no two paths have the same end-point. Let D be such a decomposition of the graph H, $h = a_1, a_2, \ldots, a_r$ a path of D and $g_{a_1a_2}, g_{a_2a_3}, \ldots, g_{a_{r-1}a_r}$ the paths of \mathcal{B}_3 which correspond to the edges $a_1a_2, \ldots, a_{r-1}a_r$ of h. It is clear that there exists a path g(h) in G^2 , formed by vertices of all paths $g_{a_ia_{i+1}}$, such that one of its end-vertices is joined in G to a_1 the other one to a_r .

For each $h \in D$ replace the paths $g_{a_1a_2}, g_{a_2a_3}, \ldots, g_{a_{r-1}a_r}$ by g(h) and define $f(g(h)) = \{a_1, a_r\}$ for every new path g(h), and $f(g) = f_3(g)$ otherwise. Let \mathcal{B} stands for the obtained set of paths. By the above construction \mathcal{B} and f are the set and function required in Lemma 4.

4 Results

Before we prove the main theorem we give a short sketch of the proof of this result which improve its readability. Suppose C is a longest cycle in a two-connected graph G and let p denote its length. We shall show that there is a hamiltonian cycle C_2 in G^2 which passes through $\min(\lceil p/2 \rceil + 4, p)$ or more edges of G.

At the beginning we construct a family \mathcal{B} of paths of the graph V(G)-C having the properties (1), (2) and (3) of Lemma 4. Next, we choose these paths of \mathcal{B} whose endvertices are joined in G to two different vertices on G. This path-system and the cycle G form a subgraph G_1 of G^2 homeomorphic to a graph G' belonging to G(4t) for some G. Now we modify the graph G' in order to obtain a graph G' of G' of G' of G' which is homeomorphic to a subgraph of G' which is homeomorphic to a subgraph of G' which contains G'. Therefore, there exists a cycle G' of G' corresponding to G'. Finally, we construct a hamiltonian cycle G' by replacing some portions of G' by other paths of different lengths. Each of these paths contains a large number of edges of G' and we can easily estimate the cardinality of G'.

Now we are going to prove the following main result.

Theorem 2. For every two-connected graph G with $c(G) = p \ge 3$ there exists a hamiltonian cycle in G^2 that contains at least $\min(\lceil p/2 \rceil + 4, p)$ edges of G.

Proof: Because the only two-connected graph with c(G) = 3 is a triangle, we can assume that $c(G) \geq 4$. Let $C = x_1, x_2, \ldots, x_p, x_1 \ (p \geq 4)$ be a longest cycle of G with a fixed orientation. For $u \in V(C)$ we use u^+ to denote the successor of u on C and u^- to denote its predecessor. Consider a partition B of the set V(G) - V(C) with a function f which satisfy the conditions (1) - (3) of Lemma 4. For a path h of B with end-points x and y and such that |f(h)| > 1 we denote by $\phi(h)$ a path of G^2 obtained by adding an edge $e_x \in E(G)$ joining x to a vertex of f(h) and an edge $e_y \in E(G)$ which joins y to the other vertex of f(h). The graph G_1 formed by the cycle C and all the paths $\phi(h)$ of B with |f(h)| = 2 is a subgraph

of G^2 homeomorphic to a graph $G' \in \mathcal{G}(4t)$ for some $t \leq p/2$.

Let y_0, \ldots, y_{2t-1} be the vertices of degree 3 in G_1 occurring on C in consecutive order and let z_i $(i=1\ldots,2t-1)$ stand for the neighbour of y_i in G_1 that does not belong to C. Denote by $\mu(y_i,y_{i+1})$ the portion of C between y_i and y_{i+1} (indices modulo 2t) indicated by the order of C and by $[y_i,y_{i+1}]$ the set $\mathcal{P}_1(V(\mu(y_i,y_{i+1})))$. The portions $\mu(y_i^+,y_{i+1}^-)$ and $\mu(y_i^+,y_{i+1})$ of C (for $y_i^+ \neq y_{i+1}$) are analogously defined.

Without any loss of generality we can assume that

$$w = \sum_{i=0}^{t-1} l(\mu(y_{2i}, y_{2i+1})) \ge \sum_{i=1}^{t} l(\mu(y_{2i-1}, y_{2i})).$$

Hence $w \geq \lceil p/2 \rceil$.

By Lemma 2 for every pair y_{2k-1}, y_{2k} there are two vertex-disjoint paths h_k and h'_k in G^2 joining the set $\{y_{2k-1}, z_{2k-1}\}$ to the set $\{y_{2k}, z_{2k}\}$ and such that $V(h_k) \cup V(h'_k)$ is equal to the set of vertices of the path-system $f^{-1}([y_{2k-1}, y_{2k}]) \cup \{\mu(y_{2k-1}, y_{2k})\} \cup \{z_{2k-1}, z_{2k}\}$. Construct a graph $\hat{G} \in \hat{\mathcal{G}}(4t)$ by deleting from G' every edge $y_{2k-1}y_{2k}$ $(k=1,\ldots,t-1)$ and by adding to G' new edges $y_{2k-1}z_{2k}$ and $z_{2k-1}y_{2k}$ [resp. $y_{2k-1}y_{2k}$ and $z_{2k-1}y_{2k}$ if the end-vertices of h_k and h'_k are y_{2k-1}, z_{2k} and z_{2k-1}, y_{2k} [resp. y_{2k-1}, y_{2k} and z_{2k-1}, z_{2k}]. By Lemma 1 there exists in \hat{G} a hamiltonian cycle \hat{G} generated by M_o . Let G_1 be the corresponding cycle in the subgraph G_2 of G^2 consisting of G_1 and paths h_k and h'_k for k < t (G_2 is homeomorphic to $\hat{G} \cup \{e \mid e = y_{2k-1}, y_{2k}, k = 1, \ldots, t-1\}$).

Now we shall construct a hamiltonian cycle C_2 in G^2 by replacing some portions of C_1 by other paths of different lengths.

Firstly, for every $k=1,\ldots,t-1$ such that $y_{2k}^+ \neq y_{2k+1}$, replace the portion $\mu(y_{2k},y_{2k+1})$ of C_1 by a $y_{2k}-y_{2k+1}$ path of G^2 whose vertex set consists of all the vertices of the path-system $f^{-1}([y_{2k}^+,y_{2k+1}^-])\cup\{\mu(y_{2k},y_{2k+1})\}$ and which contains at least $l(\mu(y_{2k},y_{2k+1}))$ edges of G. Secondly, for every $k\in\{1,\ldots,t\}$ such that G does not contain any edge joining the set $\{y_{2k-1},z_{2k-1}\}$ to the set $\{y_{2k},z_{2k}\}$ in G, replace the edge $y_{2k}z_{2k}$ by a $y_{2k}-z_{2k}$ path whose vertex-set coincides with set of vertices of the path-system $f^{-1}([y_{2k-1}^+,y_{2k}])\cup\{\mu(y_{2k-1}^+,y_{2k}]\}\cup\{z_{2k}\}$, and the edge $y_{2k-1}z_{2k-1}$ by a $y_{2k-1}-z_{2k-1}$ path whose vertex-set is equal to the set of vertices of $f^{-1}(\{y_{2k-1}^+\})\cup\{y_{2k-1},z_{2k-1}\}$. The existence of such paths is guaranteed by Lemma 2. Moreover, in the second case, each of these paths can have at least one edge of G.

If \hat{C} contains an edge joining $\{y_{2k-1}, z_{2k-1}\}$ and $\{y_{2k}, z_{2k}\}$ then \hat{C} must contain two such edges being independent (because of the construction of \hat{C}); now, it is easily seen that we have obtained a hamiltonian cycle C_2 in G^2 which possesses at least $\lceil p/2 \rceil$ edges of G.

We can assume that \hat{C} has no edge which goes from the set $\{y_{2t-1}, z_{2t-1}\}$ to the set $\{y_o, z_o\}$. Therefore, C_2 contains at least $\lceil p/2 \rceil + 2$ edges of G. Moreover, if $U_3(C)$ is the empty set, then, by Lemma 2, C_2 possesses at least p edges of G.

So suppose there is a connected component S of G-C with $|V(S)| \ge 3$. By Lemma 3 the path-system D_S (see the proof of Lemma 4) contains at least two edges of G. Therefore the cycle C_2 passes through at least $\lceil p/2 \rceil + 4$ edges of G. This completes the proof of the theorem. \Box

The following two theorems were found by Fleischner and Schaar (see [7]).

Theorem 3. Let G be a two-connected graph G of order ≥ 4 and let x, y $(x \neq y)$ be any two vertices of G. Then there exist three distinct edges e, f and g of G, and a hamiltonian cycle C in G^2 such that

- (a) e, f are incident to x,
- (b) g is incident to y,
- (c) C contains e, f and q.

Proof: Assume that G is a two-connected graph of order ≥ 4 and let x and y be two distinct vertices of G. By Menger's theorem there exists in G a cycle $C=x_1,x_2,\ldots,x_p,x_1$ with $p\geq 4$ containing x and y. Construct graphs \hat{G},G_2,\hat{C},C_1 in the same way as in the proof of Theorem 2. Now consider an integer k such that \hat{C} contains no edge joining the set $\{y_{2k-1}z_{2k-1}\}$ with the set $\{y_{2k}z_{2k}\}$. We may assume that k=t.

Suppose that $y \in \mu(y_j, y_{j+1})$ and consider the following cases.

Case 1. $x \in \mu(y_i^+, y_{i+1}^-)$, $i = j \pmod 2$, $y \neq y_j$ and $y \neq y_{j+1}$. Without any loss of generality we may assume that i = 0. Thus the edges $y_i y_{i+1}$ and $y_j y_{j+1}$ belong to the matching M_o . Using Lemma 2 and the construction in the proof of Theorem 2 we obtain a hamiltonian cycle in G^2 which passes through two edges of G incident to g and one or two edges incident to g.

Case 2. $x \in \mu(y_i^+, y_{i+1}^-)$ and $i = j+1 \pmod{2}$. We can label the vertices of G_1 in such a way that j+1=0. Now y_iy_{i+1} belongs to M_o . We may apply Lemma 2 and the construction of Theorem 2 in order to obtain the required hamiltonian cycle.

Case 3. For some $i, x = y_i, i = j \pmod{2}, y \neq y_j \text{ and } y \neq y_{j+1}$. Assume i = 0. Hence $y_i y_{i+1}$ and $y_j y_{j+1}$ belong to M_o and $y_{i-1} y_i = y_{2t-1} y_o$. We use Lemma 2 and Theorem 2 in order to construct the required hamiltonian cycle.

Case 4. For some i, $x = y_i$, $i = j + 1 \pmod{2}$, and $(y \neq y_i^-)$ or $y \neq y_{i-1}$. We set i = 2t - 1 and we obtain the desired cycle in the same way as in Case 3.

Case 5. For some i, $x = y_i$ and $y = y_i^- = y_{i-1}$. Set i = 0. We construct a hamiltonian cycle in G^2 in the same manner as in Case 3.

Because all cases have been examined the proof is complete. \Box

The following results can be obtained by the same method as in the proof of Theorem 3.

Theorem 4. Let G be a two-connected graph. Then given an edge e of G we can find another edge f of G which is adjacent to e, and a hamiltonian cycle of G^2 containing e and f.

5 Concluding remarks

It remains an open problem to prove the following conjecture.

Conjecture: There exists a hamiltonian cycle in the square two-connected graph G of order ≥ 3 that contains at least c(G) edges of G.

Note that the bound c(G) cannot be increased. For example, consider a graph G obtained from the complete bipartite graph $K_{2,n}$ by substituting an edge by a path of length p-3. It is easy to check that the order of G may be made arbitrarily large, c(G) = p and G^2 does not contain a hamiltonian cycle having more than p edges of G.

Acknowledgements

- 1. I should like to express my gratitude to Professor Günter Schaar for his helpful comments and suggestions.
- This paper was partially supported by Polish Research Grant Nr 2 P301 050 03.

References

- [1] C. Berge, Graphs and Hypergraphs, North Holland Publishing Company, Amsterdam, London, 1976.
- [2] G. Chartrand, A.M. Hobbs, H.A. Jung, S. Kapoor, C.St.J.A. Nash-Williams, The square of a block is Hamiltonian-connected, J. Comb. Theory B 16 (1974), 290-292.
- [3] H. Fleischner, On spanning subgraphs of a connected bridgeless graph and their application to DT-graphs, J. Comb. Theory B 16, No. 1 (1974), 17-28.
- [4] H. Fleischner, The square of every two-connected graph is hamiltonian, J. Comb. Theory B 16, No. 1 (1974), 29-34.

- [5] A.M. Hobbs, Some hamiltonian results in powers of graphs, J. Research of the National Bureau of Standards., 77B (1973), 1-10.
- [6] St. Riha, A new proof of the Theorem by Fleischner, J. Comb. Theory B, to appear.
- [7] G. Schaar, Quadrate von Graphen, Graphentheorie und ihre Anwendungen (Tagung in Stadt Wehlen, 1988); PH Dresden, Dresdner Reihe zur Forschung 9/88, 33–38.
- [8] G. Schaar, On "maximal" Hamiltonian cycles in the square of a block, to appear.
- [9] T. Traczyk, A note on maximal Hamiltonian cycles in the square of a graph, Demonstratio Math. Vol. XXI, No. 4 (1988), 1089-1092.