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ABSTRACT. Let p denote the circumference of a two-connected
graph G. We construct a hamiltonian cycle in G? which con-
tains more than p/2 edges of G. Using this construction we
prove some properties of hamiltonian cycles in the square of G.

1 Introduction

At the Graph Theory Conference in Niedzica, Poland, in 1990, Giinter
Schaar asked if it is true that the square of every two-connected minimal
graph G with circumference > p contains a hamiltonian cycle which passes
through p or more edges of G.

According to the well-known result of Fleischner [4] the square of every
two-connected graph is hamiltonian. Recently Schaar [8] using a result of
Riha [6] proved the following conjecture of Traczyk [9].

Theorem 1. For every two-connected graph G of order n > 4 there exists
a hamiltonian cycle in G? that contains at least four edges of G. a

Let ¢(G) denote the circumference of G, i.e. the length of a longest cycle
of G. In the present article we show that in G? we can find a hamiltonian
cycle containing at least min(c(G), [¢(G)/2] + 4) edges of G, provided G
is two-connected graph of order > 3. So we give an answer to Schaar’s
question for p = 3,...,9. Applying this result we obtain some properties
of hamiltonian cycles in the square of a two-connected graph.

2 Definitions

All graphs considered are finite graphs having no loops or multiple edges.
For a graph G, we denote by V(G) the set of vertices of G, the set of edges
by E(G).
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Let X be a set. The symbols P;(X), P2(X) and P; 2(X) stand for the
set of one-element, two-element, and one- or two-element subsets of X,
respectively.

Let G be a graph and X and Y two elements of Py 5(V(G)). We say that
X and Y are matched in G iff every vertex of X is joined to some vertex
of Y and every vertex of Y is joined to a vertex of X.

A path-system of a graph G is a subgraph of G whose each component
is a path. A path which goes from z to y will be called an  — y path. By
l(R) we denote the length of a path h.

Let hi =Y11,Y125--- y Y1Ir; (i = 1: .. 1"’) and
h= T1, Y11, Y12y - -+ yY1r s T2, Y215 -+ - 1 Y2r20 T35 - .- 3 Ynly - - - 1 Ynras Tn
be paths of a graph H. We shall use the following notation for h:
h= r, h],$2, h2v£31 ey hm Tn.

Two graphs G; and G, are homeomorphic iff there are graphs G’l, G;
such that G; is obtained from G; by substituting some of the edges G; by
paths, i = 1,2, and G'l, G;, are isomorphic.

A two-connected graph G is said to be minimal if for any edge e of G the
graph G — e is not two-connected.

A graph G is 1-hamiltonian if it is hamiltonian and every graph obtained
by removing some vertex of G is also hamiltonian.

All concepts not defined in this paper can be found in [1).

8 Preliminaries

Let G be a 4t-vertex graph consisting of a cycle Co; of vertices y,,1,...,
y2e—1 (t > 2) and t vertex-disjoint paths hy, ko, ..., he such that for each
i=1,...,t, l(h;) = 3, and both end-vertices of h; belong to C. Thus,
dg(z) = 3, for = belonging to Cy, and dg(z) = 2 otherwise. Denote by
G(4t) the class of all graphs G defined above.

Suppose that G € G(4t). Let M, = {yoy1,y293,-.. ,¥2e—2y2e—1} and
M, = {y192,Y3¥4, - - - ,¥2e—1¥o} be two perfect matchings of Cy; (M, and
M, are subgraphs of G) and let z denote the neighbour of y; in G that
does not belong to Cp¢ (i =0, ...,2¢t —1). We shall write that a graph G
belongs to the class G(4t) if G can be obtained from a graph G € G(4t) by
replacing each edge yor—1y2x (K =1,...,t — 1) by two independent edges
ex and fi connecting the set {yox_1, 22k—1} With the set {yax, 225}

Lemma 1. Every graph G which belongs to the class G(4t) contains a
hamiltonian cycle which will be called hamiltonian cycle generated by M,.

Proof: Thehpa.ths hiy, ..., ht together with all edges of M, form a two-
factor D of G. Let A be the connected component of D that contains the
edge yoy1. If A= D then A is a hamiltonian cycle of G generated by M,;
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if A# D, define r = min{k | y2xyox+1 does not belong to A} and let B be
the cycle of D containing y,92,+1. Construct a new cycle A; by removing
the edges y2r—122-—1 and ys,29, from A and B and adding the edges e,
and f,.. Clearly A; contains all vertices of A and B. Then replace in D the
cycles A and B by A; and proceed in the same manner. This process can
be repeated until a hamiltonian cycle has been constructed. O

A tree T in which the vertices of degree > 1 form the empty set or induce
a path z,23,... ,Z, (n 2 1) will be called a caterpillar. It is known (see
[5]) that the square of a tree T of order > 3 is hamiltonian if and only if T is
a caterpillar. A caterpillar with » > 1 is denoted also by T'(Py, P, ... , P,),
where P; = {pi1,pi2, . .. ,Pir,} (i = 1,... ,n) is the set of one-degree vertices
adjacent to x;.

Lemma 2. Let G be a graph and T =T(Py,...,P,) (n > 2; (Py, P, #0)
a subgraph of G which is a caterpillar. Suppose that there is a partition
(Si)ieq,... m} of the set V(G) — V(T') such that for each i, S; U P; is the set
of vertzces of a path h; in G? which goes from p;; to Pir;- Then

(i) there is a hamiltonian cycle C in G? that contains the edges z1py;
and ZnPnl;

(ii) there exists in G? a path h with end-vertices z, and z, that contains
n —1 edges of G and such that V(h) =V (G) — (PLUS1UP,US,);

(iii) for each i = 1,. — 1 there exist in G* a z1 —p11 path h and a
Zp,—Pn1 path h’ such that h and k' are vertex-disjoint, V(h)UV(h’ )=
V(G), h contains an edge of G which is incident to z; and k' contains
an edge of G which is incident to ;1.

Proof: It is easy to check that the following cycles

Zz1, hlv z2, h3i E 7 PRERIN hn—ls Zn, hrn Tn—1, hn—2) ey h2szl for n even 2 21
and x, hl, Z2, h3, T4y-.. ,Tp—1, hﬂ,, Ty, hn—l' ceey hz,zl for Odd, are hamil-
tonian in G? and contain the edges z1p1; and Z,pn; of G. Note that this
statement is also true forn =1and | P, |> 2.

Since the edges z;z2 and z;p;; (i =2,... ,n — 1) belong to G, the path
h =zy,z2,hy,%3,h3,...,Tn_1, hn—1,Zn fulfills the condition (ii).

Now suppose P; # @ and Pi;; # 0. By (i) there are hamiltonian cycles C;
and C; in the subgraphs of G2 induced by the sets 3°%_,{z;} U P;US; and
Zrz .+1{%7}UP;US; that contain x1p11 and Znpn). It is clear that the paths

= C1—z1p11 and h = Co—Znpn; satisfy (iii). If P, =0, theni > 1 and we
can substitute the caterpillar T(Py, ... ,P;) by T(P,,... , Pima, P U{z:})
and the path k; by h;, z;, and apply the above method. Clearly, the case
P;;1 =0 can be treated in the same manner. a
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Observe that for each i = 2,... ,n— 2 we can find a path in G? verifying
(ii) and containing the edge z;z;+1 and two edges of G incident to z; and
zip1. Moreover, there is a path g [resp. g'] of G? satisfying (ii) which
contains z;z; [resp. Tn—1zn) and an edge of G incident to z2 [resp. zp—1}.

The following result of Schaar [8] resembles but is different from a theo-
rem of Fleischner [3].

Lemma 3. For every two-connected graph G with n > 4 vertices and any
vertex ¢ € V(G) there are vertices y,2 € V(G) being adjacent to z in G
and a Hamiltonian path h in G? — z joining y and z and containing at least
two edges of E(G — ). o

The following result of Chartrand, Hobbs, Jung, Kapoor and
Nash-Williams (see [2]) follows immediately from Lemma 3.

Corollary. The square of every two-connected graph G of order > 4 is
1-hamiltonian.

Lemma 4. Let G be a 2-connected graph and C a cycle in G of length
> 4. Then there exist a partition B = (B;)ser of the set V(G) —V(C) and
a function f : B — Py o(V(C)) which satisfy the following conditions:

(1) each B, is the set of vertices of a path h, in G?,

(2) | f(hs) |S| Bs | and the set of end-vertices of hy and f(hs) are
matched in G,

(3) if f(hs) and f(hy) (s # s') are both of cardinality 2 then they are
disjoint. :

Proof: We shall construct a path-system B and a function f, which have
the required properties, in four steps (compare the algorithm (A) in [7]).

Step 1. Denote by Us(C) the set of all connected components of G — C
containing at least 3 vertices and let S € U3(C). Let Gs be the graph
obtained from S by replacing all the neighbours of S on C by a new vertex
Ogs, that we join to a vertex = of S iff z is adjacent in G to a vertex of
C. Obviously, Gs is a two-connected graph with at least four vertices. By
Lemma 3 there exist a Hamiltonian path gs in G% —Og joining two vertices
z, and y, which are both adjacent to Og in Gs.

Let F be the set of edges of G —Og that do not belong to G2, i.e. Fis the
set of edges zy such that z and y are adjacent to Og in G5 and the distance
in G between z and y is-greater than two. The graph gs — F consists of
a set Dg of vertex-disjoint paths (possibly trivial) of the subgraph of G?
induced by V'(S) and such that each end-vertex of a path belonging to Ds
is adjacent in G to some vertex of C. Moreover, every vertex of S belongs
to a path of Dg.
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Suppose now that S is a connected component of G — C which possesses
less than three vertices. For S having exactly one vertex, we denote by Dg
the one-element set which consists of the trivial path containing the only
element of S, and for S such that | V(S) |= 2, Ds will stand for the set of
two trivial paths each of them containing one vertex of V(S). Observe that
in the last case every element of Dg is adjacent to a vertex of C because G
is two-connected.

Define B’ = | J Ds where S runs through the set of all connected com-
ponents of G — C (we shall identify a path belonging to Dg with its set
of vertices) and let f’ denote an arbitrarily chosen function verifying the
condition (1) and (2) (by the construction of B’ such a function exists).

Step 2. We shall construct a spanning path-system B; of G2 — C and
a function f; : By — Py 2(C) verifying the conditions (1), (2) and the
following one:

(4) fi(ha) = fi(hg) and | fi(ha |= 2 implies ko = hg.

Consider the set {hq,, hag,- - » ko, } = (f')"({a,b}) # 0, where a and
b are two distinct vertices of C. For r even, replace all the paths h,, by
a path k of G2 such that V(h) = |J; V(hs,) and each end-vertex of h is
joined in G to e = a(h). For r odd, replace in the same way the paths
hazshags - - - s ha, by a path h of G2. Proceeding similarly with every pair
a, b of distinct vertices of C with (f')~!({a,b}) # @ we obtain a collection
B; of paths of G2 — C.

Now put f;(h) = {a(h)} for every new path k, and f;(k) = f’(h) other-
wise. Thus the required partition and function have been found.

Step 3. Consider a graph H, with V(H,) = V(C) and E(H,) = {zy |
there is a path k of B; such that fi(k) = {z,y}}. Let C' = ay,as,...,ar,a1
be acyclein H,, and let for i = 1, .., 7, €; = a;a;+1 (indices are taken modulo
T).

Replace all the paths g, in B; satisfying fi(ge;) = {ai,ai1} (i =
1,...,r) by a new one, named g, which is formed by all vertices belonging
to paths g.,, and whose end-points are adjacent to a; by two edges of G.
Let B, be this modified set of paths and H; the graph obtained by deleting
from H, all the edges of C’'. Define f2(g9) = {a1}, and f2(h) = fi1(h) for
h belonging to B; and k # g. Obviously, the set B2 and the function fo
satisfy the conditions (1), (2) and (4).

Repeating this operation as many time as needed we obtain a subgraph
H of H, being a forest, a spanning path-system Bz in G2—C and a function
f3 verifying the conditions (1), (2) and (4).

Step 4. Observe that each tree and forest can be decomposed into edge-
disjoint paths in such a way that no two paths have the same end-point.
Let D be such a decomposition of the graph H, h = a;,as,... ,a, a path
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of D and ga,a,,9aza3: - - - +9ar—_1a, the paths of B3 which correspond to the
edges a,ay, ... , 8,10, of h. It is clear that there exists a path g(k) in G?,
formed by vertices of all paths ga.a,,,, such that one of its end-vertices is
joined in G to a; the other one to a,.

For each h € D replace the paths ga a2, 9azass - -« »9ar_1a DY g(k) and
define f(g(h)) = {a1,a,} for every new path g(h), and f(g) = fs(g) other-
wise. Let B stands for the obtained set of paths. By the above construction
B and f are the set and function required in Lemma 4. O

4 Results

Before we prove the main theorem we give a short sketch of the proof of
this result which improve its readability. Suppose C is a longest cycle in
a two-connected graph G and let p denote its length. We shall show that
there is 2 hamiltonian cycle C; in G2 which passes through min([p/2]+4, p)
or more edges of G.

At the beginning we construct a family B of paths of the graph V(G)-C
having the properties (1), (2) and (3) of Lemma 4. Next, we choose these
paths of B whose endvertices are joined in G to two different vertices on C.
This path-system and the cycle C form a subgraph G of G? homeomorphic
to a graph G’ belonging to G(4t) for some ¢t. Now we modify the graph G’
in order to obtain a graph G of G(4t). It follows from Lemma 1 that &
possesses a hamiltonian cycle €. Applying Lemma 2 we can find a subgraph
G2 of G? which is homeomorphic to a subgraph of G which contains c.
Therefore, there exists a cycle C; of Ga corresponding to C. Finally, we
construct a hamiltonian cycle C; by replacing some portions of C; by other
paths of different lengths. Each of these paths contains a large number of
edges of G and we can easily estimate the cardinality of E(C2) N E(G).

Now we are going to prove the following main result.

Theorem 2. For every two-connected graph G with ¢(G) = p > 3 there
exists a hamiltonian cycle irr G? that contains at least min([p/2] + 4,p)
edges of G.

Proof: Because the only two-connected graph with ¢(G) = 3 is a triangle,
we can assume that ¢(G) > 4. Let C = zy,23,...,%p,%1 (p > 4) be a
longest cycle of G with a fixed orientation. For u € V(C) we use ut to
denote the successor of u on C and u~ to denote its predecessor. Consider
a partition B of the set V(G) — V(C) with a function f which satisfy the
conditions (1) - (3) of Lemma 4. For a path h of B with end-points z
and y and such that | f(k) |> 1 we denote by ¢(k) a path of G? obtained
by adding an edge e; € E(G) joining z to a vertex of f(h) and an edge
ey € E(G) which joins y to the other vertex of f(k). The graph G, formed
by the cycle C and all the paths ¢(h) of B with | f(k) |= 2 is a subgraph
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of G? homeomorphic to a graph G’ € G(4t) for some ¢ < p/2.

Let yo,... ,%2¢—1 be the vertices of degree 3 in G; occurring on C in
consecutive order and let z; (: =1...,2t — 1) stand for the neighbour of
¥; in G, that does not belong to C. Denote by u(y;,%:4+1) the portion of
C between y; and y;;; (indices modulo 2¢) indicated by the order of C
and by [ys,i+1] the set Py(V(u(yi, %4+1))). The portions p(y;,y;;,) and
p(y, yit1) of C (for ¥} # yiy1) are analogously defined.

Without any loss of generality we can assume that

= Zl(#(yzuyzs+1)) 2 Zl(l‘(y% 1,92:))-

i=0

Hence w > [p/2].

By Lemma 2 for:every pair y2x—1, ¥2x there are two vertex-disjoint paths
hk and h’k in 02 joining the set {yzk..l,zzk 1} to the set {ygk, 22,;} and
such that V(hx) U V(R'x) is equal to the set of vertices of the path-system

£ (fv2k—1,v26]) U {p(y2x—1,26)} U {221, 22 }. Construct a graph G €
g(4t) by deleting from G’ every edge yox—1yox (k = 1,...,t — 1) and
by adding to G’ new edges yor—120x and zok—1y2k [resp. ygk_lygk and
29k—129x) if the end-vertices of h; and A’y are yox_1,20r and zor_1, Yo
[resp. y2k—1,92k and 2zzx—1, 22x]. By Lemma 1 there exists in G a hamilto-
nian cycle € generated by M,. Let C; be the corresponding cycle in the
subgraph G, of G? consisting of G and paths hy and b/, for k < t (G2 is
homeomorphic to G U {e|e=yor-1,92%, k=1,...,t =1}).

Now we shall construct a hamiltonian cycle 02 in G? by replacing some
portions of C; by other paths of different lengths.

Firstly, for every k=1,... ,t—1 such that y;'k # Y2k+1, replace the por-
tion u(yzk, y2x+1) of C1 by a yor — y2k+1 path of G? whose vertex set con-
sists of all the vertices of the path-system f~([yz,, ¥, 1)U {(v2k, y25+1)}
and which contains at least l(p(yzk,yzk+1)) edges of G. Secondly, for ev-
ery k € {1,...,t} such that 'C' does not ‘contain any edge joining the set
{yzk_l,zzk_l} to the set {yak,zox} in G, replace the edge ysx2ox by 2
Y2k — 22k path whose vertex-set coincides with set of vertices of the path-
system £~ ([yf_y, v2x]) U {1s(w 12 ¥2k]} U {226}, and the edge yok—1226—1
by a yok—1 — 22k—1 path whose vertex-set is equal to the set of vertices of
F ' ({y2k—-1}) U {y2k—1,22k—1}. The existence of such paths is guaranteed
by Lemma 2. Moreover, in the second case, each of these paths can have
at least one edge of G.

If € contains an edge joining {y2k—1, 2251} and {yzk, 22x} then € must
contain two such edges being independent (because of the construction of
C); now, it is easily seen that we have obtained a hamiltonian cycle Cs in
G? which possesses at least [p/2] edges of G.
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We can assume that C has no edge which goes from the set {y2;_1, 22t-1}
to the set {y,,2,}. Therefore, C> contains at least [p/2] +2 edges of G.
Moreover, if U3(C) is the empty set, then, by Lemma 2, C; possesses at
least p edges of G.

So suppose there is a connected component S of G — C with | V(S) |> 3.
By Lemma 3 the path-system Dg (see the proof of Lemma 4) contains
at least two edges of G. Therefore the cycle Cy passes through at least
[p/2] + 4 edges of G. This completes the proof of the theorem. O

The following two theorems were found by Fleischner and Schaar (see
(7).
Theorem 3. Let G be a two-connected graph G of order > 4 and let z,y

(z # y) be any two vertices of G. Then there exist three distinct edges e,
f and g of G, and a hamiltonian cycle C in G? such that

(a) e, f are incident to z,
(b) g is incident to y,

(c) C contains e, f and g.

Proof: Assume that G is a two-connected graph of order > 4 and let =z and
y be two distinct vertices of G. By Menger’s theorem there exists in G a cy-
cle C =, x2,... ,%p, 1 With p > 4 containing z and y. Construct graphs
G, Gy, €, C, in the same way as in the proof of Theorem 2. Now consider
an integer k such that C' contains no edge joining the set {yox—120x—1} with
the set {y2x22x}. We may assume that k = ¢.

Suppose that y € u(y;, yj+1) and consider the following cases.

Case 1. z € p(y},v;;,), i =7 (mod 2), y # y; and y # y;41. Without
any loss of generality we may assume that ¢ = 0. Thus the edges y;yi+1 and
¥;59;+1 belong to the matching M,. Using Lemma 2 and the construction in
the proof of Theorem 2 we obtain a hamiltonian cycle in G2 which passes
through two edges of G incident to =z and one or two edges incident to y.

Case 2. z € u(y],¥;,) and i = j+1 (mod 2). We can label the vertices
of G; in such a way that j +1 = 0. Now y;yi4+1 belongs to M,. We may
apply Lemma 2 and the construction of Theorem 2 in order to obtain the
required hamiltonian cycle.

Case 3. For some i, z = y;, t = j (mod 2), y # y; and y # y;j4+1. Assume
i = 0. Hence y;%:+1 and y;y;.21 belong to M, and yi_1%: = y2:—1y,. We use
Lemma 2 and Theorem 2 in order to construct the required hamiltonian
cycle.

Case 4. Forsome ¢, z = y;, i = j+1 (mod 2), and (y # y; or y # yi—1).
We set i = 2t — 1 and we obtain the desired cycle in the same way as in
Case 3.
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Case 5. For some ¢, z = y; and y = y; = yi—1. Set ¢ = 0. We construct
a hamiltonian cycle in G2 in the same manner as in Case 3.
Because all cases have been examined the proof is complete. a

The following results can be obtained by the same method as in the proof
of Theorem 3.

Theorem 4. Let G be a two*connected graph. Then given an edge e of G
we can find another edge f of G which is adjacent to e, and a hamiltonian
cycle of G2 containing e and f. (]

5 Concluding remarks
It remains an open problem to prove the following conjecture.

Conjecture: There exists a hamiltonian cycle in the square two-connected
graph G of order > 3 that contains at least c(G) edges of G.

Note that the bound ¢(G) cannot be increased. For example, consider a
graph G obtained from the complete bipartite graph K3, by substituting
an edge by a path of length p—3. It is easy to check that the order of G may
be made arbitrarily large, ¢(G) = p and G? does not contain a hamiltonian
cycle having more than p edges of G.
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