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ABSTRACT. The fine structure of a directed triple system of
index ) is the vector (c1, ¢2,...,Cx), where ¢; is the number of
directed triples appearing precisely ¢ times in the system. We
determine necessary and sufficient conditions for a vector to be
the fine structure of a directed triple system of index 3 for v =0
or 1 (mod 3).

1 Introduction and definitions

Let a, b and ¢ be three distinct elements. A transitive or directed triple
(a,b,c) is a set of three ordered pairs of the form {(a,b), (b,¢c),(a,c)}. A
directed triple system of order v and indez A, or (v, A) DTS, is a pair (V, D).
Here V is a v-set of elements, and D is a collection of directed triples (called
blocks) on V, with the property that every ordered pair (z,y) of elements of
V appears in precisely A of the directed triples. Directed triple systems have
been studied extensively, often under the name “transitive triple systems”.
The necessary condition for a (v, A) DTS to exist is simply that the number
of ordered pairs Av(v — 1) occurring in blocks be divisible by three. Hence,
we require v = 0, 1 (mod 3) for A = 1,2 (mod 3), and we require only
v # 2 for A = 0 (mod 3). Itris well-known that these conditions are also
sufficient for the existence of (v, \) DTSs (see Colbourn and Rosa [6] for a
recent survey).

The fine structure of a directed triple system of index A is the vector
(c1,¢2,...,c), where ¢; is the number of directed triples appearing precisely
i times in the system. Colbourn, Mathon, Rosa and Shalaby [4] determined
the fine structure of threefold triple systems for ¥ = 1 or 3 (mod 6), and
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Colbourn, Mathon and Shalaby [5] determined the fine structure of three-
fold triple systems for v = 5 (mod 6). In [7] the author found the fine
structure of balanced ternary designs with block size 3, index 3 and p2 = 3.

It is easy to determine the fine structure of (v,2) DTSs. Let (V, D) and
(V,D’) be two (v,1) DTS having exactly m directed triples in common,
where m € {0,1,2,3,...,v(v — 1)/3} \ {(v(v — 1)/3) — 1}; see [9]. Then
(V,DuUD’) is a (v,2) DTS with exactly m doubly repeated blocks. Moreover
there does not exist a (v,2) DTS with exactly (v(v — 1)/3) — 1 doubly
repeated blocks. Therefore the vector (cy, ¢z) is a fine structure of a (v, 2)
DTS if and only if 0 < ¢2 < (v(v — 1)/3), c2 # (v(v — 1)/3) — 1, and
c1 + 2cp = 2v(v —1)/3.

In this paper we study the fine structure of (v,3) DTSs. Indeed, we
determine the necessary and sufficient conditions for a vector to be the fine
structure of a directed triple system of index 3 for v = 0 or 1 (mod 3).
Since any two of {ci, ¢z, c3} determine the third, we use a more convenient
notation for the fine structure: (¢,s) is said to be the fine structure of a
(v,3) DTS if 2 = t and c3 = v(v — 1)/3 — s (note that v(v — 1)/3 is an
integer since v = 0, 1 (mod 3)). We first need to know the pairs (¢, s) which
can possibly arise as fine structures. We define Adm(v) = {(¢,8)|[0 <t <
s <wv(v-1)/3}\{(0,1),(1,1),(1,2),(1,3)}, and use the notation Fine(v)
for the set of fine structures which actually arise in (v,3) DTSs. Our result
is as follows.

Main Theorem:

Fine(4) = Adm(4) \ {(0,2), (0,3)},

Fine(6) = Adm(6) \ {(0,2), (0, 3), (0,4), (1,4)},

Fine(v) = Adm(v) for all v=0, 1 (mod 3), v & {4,6,7}. a

An argument similar to that used in Lemma 2.1 of [4] or Lemma. 1.1 of
[7] leads to the following result.

Lemma 1.1. If (t,s) € Fine(v) then0<t < s <v(v-—1)/3. a
Lemma 1.2. Fine(v) C Adm(v).

Proof: We must only eliminate the cases (0, 1), (1,1), (1,2) and (1, 3). Let
(V,D) be a (v,3) DTS of type (1,3). Let H be the simple directed graph
whose edges are the ordered pairs of elements of V which do not appear
in a three times repeated block. Let G be the graph H without direction
on edges (the underlying graph). Note that G can have at most two edges
between any two distinct vertices. Obviously | E(G)| = 9 and all vertices of
G have even degree. Since 3H can be decomposed into directed triples so
that none are repeated three times and precisely one is repeated twice it
follows that G cannot have more than one vertex of degree two. Therefore
G is isomorphic to one of the following graphs in figure 1.
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An exhaustive computer search shows that if H is a directed graph whose
underlying graph is G; (above) then 3H cannot be decomposed into directed
triples so that none are repeated three times and precisely one is repeated
twice. So (1,3) ¢ Fine(v). A similar method shows that (0, 1), (1,1) and
(1,2) are not in Fine(v).

We make use of pairwise balanced designs and group divisible deszgns in
the next section. A pairwise balanced design ((v, K, A) PBD) is a collection
of subsets of size k € K, called blocks, chosen from a set of » elements
in such a way that every pair of elements belongs to A blocks. A group
divisible design, GDD(K, A, M;v), is a collection of subsets of size k € K,
called blocks, chosen from a v-set, where the v-set is partitioned into disjoint
subsets (called groups) of size m € M such that each block contains at
most one element from each group, and any two elements from distinct
groups occur together in A blocks. If M = {m} and K = {k} we write
GDD(k, A,m;v). Note that if a GDD(K, 1, M;v) exists then a (v, {k|k €
K} U {m|m € M},1) PBD exists.

2 Construction

In this section we show that Fine(v) = Adm(v) for all v =0, 1 (mod 3),
v 2> 15.

Lemma 2.1. (n,n) € Fine(v) forall 0 <n <v(v—1)/3 and n # 1.

Proof: Let (V, D) and (V, D’) be two (v, 1) DTSs with exactly m blocks in

common, where m € {0,1,2,...,v(v — 1)/3} \ {(v(v —1)/3) —1}; (see [9]).

Then (V,DUDUTD') is a (v,3) DTS with fine structure ((v(v —1)/3) — m,

(v(v - 1)/3) — m). a
Now we examine Fine(v) for v =3, 4 and 6.

Lemma 2.2. Fine(3) = {(0,0),(0,2), (2,2)}.
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Proof: Let D = {(1,2,3),(3,2,1),(1,3,2),(2,3,1),(2,1,3),(3,1,2)}. Then
D yields a (3,3) DTS of type (0,2) on {1,2,3}. Now the result follows from
Lemma 1.2 and Lemma 2.1. 0

Lemma 2.8. Fine(4) = Adm(4)\ {(0,2), (0,3)}.

Proof: We apply Lemma 2.1 for the types (0,0), (2,2), (3,3) and (4,4).
Then we use Designs 1-5 in [8] for the types (0,4), (1,4), (2,4), (3,4) and
(2,3). Moreover an exhaustive search shows that (0, 2), (0, 3) € Fine(4). O

Lemma 2.4. Fine(6) = Adm(6) \ {(0,2), (0,3), (0,4), (1,4)}.

Proof: First we show that (0, 2), (0, 3), (0, 4) and (1, 4) are not in Fine(6).
Let (V, D) be a (6,3) DTS of type (¢, s), where (t, s) € {(0,2),(0,3),(0,4),
(1,4)}. Let H be the simple directed graph whose edges are the ordered
pairs of elements of V' which do not appear in a three times repeated block.
Let G be the graph H without direction on edges. Note that G can have
at most two edges between any two distinct vertices. Obviously all vertices
of G have even degree. Moreover, if ¢ = 0 then G cannot have a vertex of
degree two and if ¢ = 1 then G can have at most one vertex of degree two.
An exhaustive computer search shows that when (¢, s) = (0, 2) or (0,3), in
each case there is exactly one candidate for G; when (¢, s) = (0,4) there are
exactly 22 candidates for G, and when (¢, s) = (1,4) there are exactly 60
candidates for G (up to isomorphism). Checking each of these candidates
exhaustively shows that (0,2), (0,3), (0,4) and (1,4) are not in Fine(6).
Secondly we apply Lemma 2.1 and Designs 6-53 in [8]. (]

Lemma 2.5. Let v = 1 or 3 (mod 6) and v > 15. Then there exists a
(v, {8,4,6},1) PBD with exactly one block of size 6, six blocks of size 4
and (v(v — 1)/6) — 17 blocks of size 3.

Proof: Let w € {15,19,21,25,27,31,33} and let (W,B;),1 <1 <7, be
Design i in Appendix 1, where W = {1,2,3,...,w)}. We define B =
{{1,2,3,4,5,6},{1,7,8,9},{2,7,10,11}, {3, 8,12,13}, {4, 9, 14, 15}, {5, 10,

12,14}, {6,11,13,15}}. Then (W,BU B;) is a (w,{3,4,6},1) PBD with
the required structure. Now let v > 37. It is well-known that there
exists a (v,3,1) BIBD having a (w,3,1) BIBD as a subdesign, where
w € {15,189, 21,25,27,31,33}. Now if we place a (w, {3,4,6},1) PBD (con-
structed above) on the elements of the subdesign then the resulting design
is a (v,{3,4,6},1) PBD with the required structure. This completes the
proof. a

Lemma 2.8. There exist a (v, {3,4,6},1) PBD with at least one block of
size 3, one block of size 4 and one block of size 6 for all v =0 or 4 (mod 6),
v > 18.
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Proof: Let v =4 (mod 6), v > 22. Then there exists a GDD(3, 1, {6,4*};v)
(with exactly one group of size 4); see [3]. Therefore there exists a (v, {3,4*, 6},
1) PBD with the required structure.

Now let v = 0 (mod 6). We take a GDD(4, 1, {2,5*};6n + 5) which
exists for n > 3 (see [2]). By adding a new point co to the groups of
this design we can construct a (v,{3,4,6*},1) PBD with the required
structure, where v = 0 (mod 6), v > 24. For v = 18 we proceed as
follows. Let B be the blocks of Design 8 in Appendix 1 and let B’ =
{{1,2,3,4,5,6},{7,8,9,10}, {11,12, 13,14}, {15,16, 17, 18}}. Then BU B’
yields a (18,{3,4,6*},1) PBD on {1,2,3,...,18}. This completes the
prooof. a

Lemma 2.7. Adm(v) \ {(0,3)} C Fine(v) for all v = 1 or 3 (mod 6),
v > 15, and for all v=0 or 4 (mod 6), v > 18.

Proof: Let (V,B) be a (v,{3,4,6},1) PBD which we obtain from Lemma
2.5 or Lemma 2.6. For each block B € B we place the triples of a (| B|, 3)
DTS on the elements of B. The result is a (v,3) DTS. Using DTSs with
different types (see Lemmas 2.2, 2.3 and 2.4) on each block of the PBD we
find that Adm(v) \ {(0,3)} C Fine(v) 0

Lemma 2.8. (0,3) € Fine(v) for v=0, 1 (mod 3), v > 9.
Proof: Let G be the following directed graph.
4

2

Then 3G can be decomposed into nine directed triples D = {@1,3,4),(1,4,3),
(2,1,4),(2,4,1),(3,2,4),(3,4,2),(4,1,3),(4,2,1),(4,3,2)}. Nowlet D;, 1 <
i < 7, be the blocks of Designs 1-7 in Appendix 2. Then (W, DUD;UD;UD;)
is a (w, 8) DTS of type (0, 3), where w € {9,10,12,13, 15, 16, 18} and W =
{1,2,3,...,w}. Now let v > 19. It is well-known that there exists a (v,1)
DTS having a (w, 1) DTS as a subdesign, where w € {9,10,12,13, 15, 16, 18};
see e.g. [1]. Triplicate each directed triple of the (v,1) DTS which is not in
the subdesign, and then place a (w,3) DTS of type (0,3) on the elements
of the subdesign. The result s a (v,3) DTS of type (0.3). This completes
the proof. a

Lemma 2.9. Fine(16) = Adm(16).
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Proof: We add a new point co to the groups of a GDD(3,1,5; 15), which
exists (see [3]), to obtain a (16,{3,6},1) PBD. Now using a method simi-
lar to that described in Lemma 2.7 we obtain Adm(16) \ {(0,3),(1,4)} C
Fine(16). For the type (1,4) we take a (16,4,1) BIBD and place (4,3)
DTSs with type (0,0) on the elements of each block of the design except
one block which we place a (4,3) DTS with type (1,4). Finally we apply
Lemma 2.8 for the type (0,3). ]

So far we have proved the following result.
Theorem 2.10. Fine(v) = Adm(v) forv=0,1 (mod 3),v =3 or v 2 15.

8 Solutions for small orders

In this section we examine Fine(v) for v =7, 9, 10, 12 and 13. We show
that Fine(7) = Adm(7)\ {(0,3),(1,4),(0,5)} and Fine(v) = Adm(v) for
v=29, 10, 12 and 13.

Lemma 38.1. If there exists a (v,3,3) BIBD of type (t1,s1) and a (v,3,3)
BIBD of type (t2, s2) then there exists a (v,3) DTS of type (t1+t2, s1+s2).

Proof: Let (Z,,B;) be a (v,3,3) BIBD of type (t;,s:), ¢ = 1,2 (see [4]
and [5] for the fine structure of (v,3,3) BIBDs). Without loss of generality
we can assume a < b < c for each block {a,b,c} € By and d > e >
f for each block {d,e, f} € B2. Form D = {(a,b,c)|{a,b,c} € Bi} U
{(d,e, f)l{d,e, f} € B2}. Then (Z,, D) is a (v,3) DTS of type (t1+t2, 81+
82). 0

Lemma 3.2. Let v,w =0, 1 (mod 3). If there exists a (v,1) DTS having
a (w,1) DTS as a subdesign then Fine(w) C Fine(v).

Proof: Triplicate each directed triple of the (v,1) DTS which is not in the
subdesign, and then place a (w, 3) DTS on the elements of the subdesign.

Lemma 3.3. Fine(7) = Adm(7) \ {(0,3), (1,4), (0,5)}.

Proof: First we show that (0,3), (1,4) and (0,5) are not in Fine(7). Let
(V, D) be a (7, 3) DTS of type (¢, s), where (¢, s) € {(0,3),(1,4), (0,5)}. Let
H and G be the graphs defined in Lemma 2.4. An exhaustive computer
search shows that when (t,s) = (0,3) there is exactly one candidate for
G, when (t,s) = (1,4) there are exactly 60 candidates for G and when
(t, 8) = (0,5) there are exactly 180 candidates for G (up to isomorphism).
Checking each of these candidates exhaustively shows that (0,3), (1,4) and
(0,5) are not in Fine(7). Secondly we apply Lemma 2.1 for the types of
the form (n,n), 0 < n < 14, n # 1. Thirdly we take a (7,3,1) BIBD and
place (3,3) DTSs with different types on the elements of the blocks of the
design to obtain (7,3) DTSs with types of the form (2n,2m), 0 <n,m < 7.
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Finally we apply Lemma 3.1 with v = 7 (see [4] for the fine structure of a
(7,3,3) BIBD). For the remaining types see Designs 54-100 in [8]. O

Lemma 3.4. Fine(9) = Adm(9).

Proof: First we apply Lemma 2.1 for the types of the form (n,n),0 <n <
24, n # 1. Secondly we take a (9,3,1) BIBD and place (3,3) DTSs with
different types on the elements of the blocks of the design to obtain (9,3)
DTSs with types of the form (2n,2m), 0 < n, m < 12. Thirdly we apply
Lemma 3.1 with v = 9 (see [4] for the fine structure of a (9,3,3) BIBD). For
the type (0,3) we use Lemma 2.8 and for the types (2,3), (1,4) and (3,4) we
apply Lemma 3.2 (note that there exists a (9,1) DTS having a (4,1) DTS
as a subdesign; see e.g. [1]). The remaining types are settled by Designs
101-159 in [8). a

Lemma 3.5. Fine(10) = Adm(10).

Proof: We take a (10, {3,4},1) PBD and place the triples of a (4,3) DTS
or a (3,3) DTS on the elements of each block of size 4 or 3. Using DTSs
with different types covers all the types of Fine(10) except the types (t,s) €
{G,25 +1)li = 0,1 and 2 < j < 14} U {(0,3)}. The type (0,3) is covered
by Lemma 2.8 and the remaining types are settled by Designs 160-185 in
(8] (|

Lemma 3.6. Fine(12) = Adm(12).

Proof: Since there exists a GDD(3,1,4; 12) it follows that there exists a
(12, {3,4},1) PBD. Now a method similar to that described in Lemma 3.5
covers all the types of Fine(12) except the types (¢, s) € {(¢,27+1)|i=0,1
and 2 < j < 21} U {(0,3)}. The type (0,3) is covered by Lemma 2.8 and
the remaining types are settled by Designs 186-225 in [8). (]

Lemma 3.7. Fine(13) = Adm(13).

Proof: Since there exists a (13,1) DTS containing a (6,1) DTS as a sub-
design (see e.g. [1]) it follows that Fine(6) C Fine(13) (see Lemma 3.2).
We take a (13,3,1) BIBD and place (3,3) DTSs with different types on the
elements of each block of the design to obtain (13,3) DTSs with types of
the form (2r,2m), 0 < n, m < 26. We also apply Lemma 3.1 with v = 13
(see [4] for the fine structure of a (13,3,3) BIBD). The remaining types are
(0,3), (1,4) and (0,11). For the type (0,3) we apply Lemma 2.8 and for the
type (1,4) we take a (13,4,1) BIBD and place (4,3) DTSs with type (0,0)
on the elements of each block of the BIBD except one block which we place
a (4,3) DTS with type (1,4). Finally we use Design 226 in [8] for the type
(0,11). This completes the proof. 0
Remark The fine structure for (v,3) DTSs when v = 2 (mod 3) is more
difficult. The difficulty is in determining (and proving) the necessary con-
ditions. However, the author has found some results for this case.
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Appendix 1

Let B = {{1,2,3,4,5,6},{1,7,8,9},{2,7,10,11}, {3,8,12,13}, {4,9, 14,15},
{5,10,12,14},{6,11,13,15}} and let B; be the blocks of Design i in this ap-
pendix, i # 8. Then BUB; yields a (w, {3,4,6},1) PBD on {1,2,3,...,w},
where w € {15, 19, 21, 25, 27, 31, 33}. Let B’ be the blocks of Design 8 in this
appendix and let B” = {{1,2,3,4,5,6},{7,8,9,10}, {11, 12,13, 14}, {15, 16,
17,18}}. Then B’ U B” yields a (18, {3,4,6},1) PBD on {1,2,3,...,18}.
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{3,20,31}  {3,22,24 {325,271} {4,712} 4,8,25 {4,10,24}
{4,11,20} {4,13,26} {4,16,19} {4,17,29} {4,18,22} {4,21,23
{4,27,30} {4,28,31} {5,7,21} {5,8,31} {5,9,16} {5,11,19
{5,13,27} {5,15,28} {5,17,22} {5,18,24} {5,20,23} {5,25,29}
{5,26,30} 6,7,27 {6,8,23} 6,9,28 {6,10,31} {6,12,22}

6,14,20} 6,16,26} {6,17,24} {6,18,25} {6,19,29} {6,21,30}
7,13,18} 7,15,22} {7,16,30 {7,17,25} {7,19,23} 7,20,24
{7.26,31}  {7,28,29})  {8,10,16}  {8,11,18}  {8,14,27}  {8,15,17}
{81920}  {8,21,22}  {8,24,28}  {8,26,20}  {9,10,22}  {9,11,27}
{9,12,25} {9,13,21} {9,17,30} {9,18,29} {9,19,31} {9,24,26}
{10,129}  {10,17,23} {10,18,26}  {10,19,25}  {10,20,27}  {10,21,28}
{11,12,16}  {11,14,17} {11,21,31} {11,23,30}  {11,24,29}  {11,25,26}
{12,15,26}  {12,17,28} {12,18,19}  {12,20,30}  {12,21,20}  {12,23,24}
{13,16,25}  {13,17,19}  {13,20,28}  {13,22,30 {13,23,31 {14,16,24}
{14,18,30} 14,21,25}  {14,22,31} {14,23,29 {14,26,28 {15,16,31}
{15,18.20}  {15,19,27} {15,23,25} {15,24,30} ~ {16,20,29}  {16,22,23}
{1627,28} {17.1831} {17,21,27} {18,23.27} {19,21,24}  {19,22,28}
{20,21,26} {20,22,25} {22,26,27} {24,27,31} {25,28,30 29,30,31

7 133 | {L10,13} {L,11,12}  {1,14,16}  {1,15,17 {1,18, 1,19,26
{1,2021}  {1,22,23}  {1,24,25}  {1,28,29 {1,80,31}  {1,32,33}
{2,8,29} {2,9,22} {2,12,19} {2,13,16 {2,14,32} {2,15,31}
{2,17,33}  {2,18,28} 2,20,30 {2,21,23 {2,24,26} 2,25,27}
{3,7,32} 39,17}  {3,10,24} {311,316}  {3,14,21} 3,15,33}
{83,18,19} {3,20,23} {3,22,26} {3,25,29 {3,27,30} {3,28,31}
{4,7,20} {48,108  {4,11,25}  {4,12,16 {4,13,18}  {4,17,31}
{4,19,24} {4,21,30} {4,22,28} {4,23,27 {4,26,32} 4,29,33}
{5,7,13} {5, 8,15} {59,11}  {5,16,20}  {5,17,21}  {5,18,32}
{5,19,23} {5,22,33} {5,24,30} {5,25,28} {5,26,29} {5,27,31}
{6,7,23} {6,8,17} 16,9,18} {6,10,19 {6,12,20}  {6,14,28}
{6,628}  {6,21,22}  {6,24,29} 6,26,27 {6,30,32}  {6,31,33}
{71217}  {7,14,22}  {7,15,19} 7,16,28}  {7,18,24}  {7,21,25}
{7,26,31} {7,27,29} {7,30,33} {8,11,33} {8,14,31} {8,16,26}
{8,18,20} {8,19,21} {8,22,25} {8,23,24} {8,27,32} {8,28,30}
{9,10,30} {9,12,27} {9,13,19} {9,16,31} {9,20,25} {9,21,24}
{9,23,26} {9,28,33} {9,29,32} {10,15,22} {10,16,21} {10,17,32}
{10,18,29} 10,20,26}  {10,23,33} 10,2531}  {10,27,28}  {11,14,18}
117,28}  {11,19,30} {11,20.27} {11,21,26} {11,22,32}  {11,23,29}
11,2431}  {12,15,24} {12,18,23}  {12,21,28}  {12,22,30}  {12,25,32}
{12,26,33} {12,29,31} {13,14,25} {13,17,30} {13,20,33}  {13,21,29}
{13,22,27} {13,23,31} {13,24,32} {13,26,28} {14,17,23}  {14,19,27}
{142020} {14,24.33} {14,2630} {15,16,27} {15,08,21}  {15,20,32}
{15,23,28; {15,25,26} {15,29,30}  {16,17,20}  {16,18,30}  {16,19,33}
{16,22,24 {16,2332} {17,18,26} {17,19,25} {17,20,22}  {17,24,27}
{18,22,31} 18,2533}  {19,20,31} {19,22,29} {19,28,32}  {20,24,28}
{21,27,33} 21,31,32}  {23,25,30}

3 [ 18 [ {1,714} 11,816} {1,911}  {1,10,18F  {1,12,17} 1,13,18]
{10,14,17}  {2,7,17} {2,8,12} {2,9,14}  {2,10,18 }2,11,15}
{2,13,16}  {3,7,11} {3.8,14} {3.9,18}  {3,10,16 {3.12,15}
{3,13,17} {4,7,12} {4,817} {4,9,15} {4,10,13}  {4,11,16}
{4,14,18} 5,7,18} {5,8,15} {59,13}  {5,10,12}  {5,11,17}
{5,14,06}  {6,7,16} {6,8,13} {69,17}  {s,10,11}  {6,12,18}
{6,14,15}  {7,13,18}  {8,11,18})  {9,12,16}
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Appendix 2

Let Dy, 1 < i < 7, be the blocks of Designs 1-7 in this appendix and let D =
{(1,3,4),(1,4,3),(2,1,4),(2,4,1), (3,2,4),(3,4,2), (4,1,3), (4,2,1),(4,3,2)}.
Then DUD; UD; UD; yields a (w, 3) DTS of type (0,3) on {1,2,3,... yw},
where w € {9, 10,12, 13, 15, 16, 18}.

o, v ‘Transitive triples

1 (1,2,5) (1,9,7) (3,8,9) (2,3,6) (2,7,8) (3,7,5)
(7,4,9) (4,5,6) (48,7 (5,2,9) (5,1,8) (8,5,4)
(6,9,4) (6,7,1) (7,6,2) (6,8,3) (9,6,5) (9,3,1)
(9,8,2) (5,7,3) (8,1,6)

2 10 (1,2,5) (1,6,7) (8,9,3) (2,3,6) (2,7,8) (9,10,6)
(3' 1,10) (3)917) (l|918) (4)5'6) (4,7i9) (4‘8310)
(5,10,8) (5,9,2) (5,7,3) (6,10,4) (8,6,2) (6,9,1)

(6,3,8) (7,10,1) (8,7,9) (9,5,4) (10,7,2) (10,3,5)
(2,10,9) (7,6,5) (8,5,1)

12 (.25 (167 (189) (05I) (235 Z78)
(29,10)  (2,11,12) (3,1,12)  (3,7,5) (3,8,10) (3,9,11)
(4,5,6) (7.4,9) (4,7,11)  (4,10,12) (8,1,11) (5,9,2)
(5103)  (11,54) (65,12) (11,68)  (6.1.10) (10,4,8)
(611,3)  (7,101) (11,7,2) (12,7.3) (5.8,7) (8,12,5)
9,5 1)  (9.83) 9,64)  (10,7,6) (862 (11,10, 9)
(12,69)  (12,102) (12,11,1)  (9,7,12)  (12,8,4)

7T |13 (129 (167 (LI  (LI13,10)  (12,13,8) C3.5)
(2,7,8) (29,10)  (2,11,12)  (35.1) (3,7,9) (3,8,10)

B11,13)  (456)  (47,0) (48,11)  (4912)  (52.13)

(5,3,12) (5,7.4) (598) (511,10) (6,4,13) (6,8,1)

(6,9,2) (6,003)  (6,11,5) (7,6,12)  (7.11,1) (7,13,2)
(8,7,3) (6,12,2) (1384)  (9,7.5) (9,11,3) (9,13,1)
(1085  (109,4) (10,12,1) (10,13,6)  (11,8.6) (12,9,6)
(12,10,7)  (12,11,4) (13,1,7) (13,123) (10,11,2)  (1,12,8)

5 | 15[ (1,2.8) 6,157 (1,148) (I0,I,i1) (12,13,3) (14,1,6)
(9,3,6) (278)  (29,15) (2,11,6) (2,13,14) (3,5,1)

(5.3,7) (38,10) (3,13,11)  (8,3,14) (4,5,6) (2,3,12)
(4,8,11)  (49,12)  (4,15,13) (10,5,15)  (5.4,14) (7,6,3)
(5.8,12) (859)  (510,13) (6,12,15)  (6,8,1) (6,9,2)

(6,104)  (6511) (126,14) (7,11,2) (1,1,13)  (12,5,2)
(7,13,4)  (7,155)  (8,13,2) (14,3,15)  (8,15,4) (13,9,8)
(9,13,1)  (14,9,4) (1,159) (108,6)  (10,3.9) (12,1,7)
(@107) (11,87 (11,129) (11,153) (1510,2)  (1,10,12)
(12,114)  (13,15,6) (7,9,14) (14,13,8) (15,14,11) (15,12,8)
((13,12,10)) (15,7,1)  (9,11,5) (14,2,0) (4,7,10)  (11,10,14)
14,7,12
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No. | v Transitive triples

6 16 (1,2,5) (1,6,7) (4,9,8) (10,1,11) (1,12,13) (1,15,14)
(2,12,6) (2,16,7) 0,2,9) (8,11,1) (13,2,14) (16,12,3)
(3.1,8) @57  (21L15)  (953)  (3,146)  (3,18,15)
(4,5,6) (7,.169)  (3,16,11)  (4,12,10)  (7,11,13)  (16,4,14)
(5,14,8) (9,14,2) (13,5,9) (5,11,2) (5,12,1) (5,4,13)
(6516)  (6,2.8) (61,9)  (6,104)  (39,10)  (6,13,12)
(7614) (71,000 (7182  (73,12)  (12,154)  (7,5,15)
(8,10,6) (12,8,7) (8.4,06)  (8,15,13)  (8,14,5)  (15,12,5)
(9,13,6) (14,9,7) (9,4,11) (13,7,4) (15,10,8) (2,10,13)
(11,12,14)  (10,15,7) (10,16,5) (9,15,16) (11,4,7) (15,11,6)
(11,168) (12.11,9)  (12,16,2) (14,13,11)  (14,103) (10,14,12)
(14,16,1)  (15,2,3) (159,1)  (16,6,15) (16,13,10)  (14,4,15)
(13,1,16) (13,8,3) (8,9,12 6,11,3) (11,5,10)

7 118 (1,2.5) 1.6,7) a5, 1,10,11 1281 1,14,1
(16,17,2) (2,3.6) (5,2,7) 9,2,10)  (2,11,12)  (2,13,14)
(15,3,16)  (2,17,18)  (3,1,18) (3,12,7) (16,3,8) (3,17,5)
(39,14)  (183,13)  (1,17,16)  (45.6) (479)  (4,8,11)
(4,10,12) (13,10,16)  (4,14,17)  (4,15,13) (5,8,1) (14,5,9)
(10,5,3) (17,11,13)  (5,12,15) (5,13,17) (5,14,16) (6,5,18)
(6,2,8) (6,9,1) (6,10,4) (6,11,3) (12,16,1) (6,14,13)

(15,17,12)  (7,10,1) (7,11,2) (17,7,3) (13,7,4) (7,14,12)

(7,15,6) (8,7,18) (7.8,17) (8,12,4) (8,3,10) (8,14,6
(8,15,5) (8,216)  (9,12,17)  (9,13,6)  (12,143) (1594
(9,7,16) (179,8)  (10,9,18)  (10,13,2)  (10,14,7)  (10,15;8)
(16,5,10)  (10,17,6)  (3,15,11)  (14,11,8) (11,15,7)  (11,16,6)
(11,54) (1,189 (12,11,10) (1L,17,1)  (12,18,2)  (1,13,12)
(18,7,5) (129,5)  (14,18,1)  (13,9,3)  (15,14,2)  (6,16,12)
(16,7,13) (16,14,4) (2,9,15) (13,5,11)  (17,14,10)  (6,17,15)
(18,12,6)  (13,18,8) (18,11,14) (15,18,10) (18,17,4)  (169,11)
(13,15,1)  (4,16,18)  (18,16,15)
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